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Abstract. This work addresses the task of categorizing and estimating the six-

dimensional poses of all visible and partly occluded objects present in a scene

from depth image information, in the absence of ground truth training examples

and exact geometrical models of objects. A novel multi-stage algorithm is pro-

posed to perform this task by first estimating object category probabilities for

each depth pixel using local depth features computed from multiple viewpoints.

It then generates a large set of object category and pose pairs, and reduces this set

via joint parsing to best match the observed scene depth and per-pixel object cate-

gory probabilities, while minimizing the physical overlap between objects within

the subset. A decision forest is trained on synthetic data and used to estimate pixel

category probabilities which are then used to generate a set of pose estimates for

all categories. Finally a combinatorial optimization algorithm is used to perform

joint parsing to find a best subset of poses. The algorithm is applied to the chal-

lenging Heavily Occluded Object Challenge data set which contains depth data

of sets of objects placed on a table and generic object models for each category,

but does not include registered RGB data or human annotations for training. It is

tested on difficult scenes containing 10 or 20 objects and successfully categorizes

and localizes 29% of objects. The joint parsing algorithm successfully catego-

rizes and localizes 56% of objects when ground truth poses are added to the set

of pose estimates.

Keywords: Joint parsing; categorization; object recognition; pose estimation;

scene understanding; robotic vision.

1 Introduction

Computer vision algorithms use a wide range of features to locate, categorize, and es-

timate the poses of objects in depth, RGB, and RGB-D images [1,2,3]. Many recent

works use machine learning algorithms, which learn features from training rather than

using hand-designed features [4,5,6], and popular examples include convolutional neu-

ral networks (CNNs) [7,8,9,5,10,11] and decision forests [4], which were famously used

in Microsoft’s Kinect human pose estimation algorithms [12]. Machine learning tech-

niques rely on data sets of annotated examples in order to learn features via supervised

learning and generally require large data sets to learn robust features [7,13]. However,

these are not always available.
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For example, take the case of a mobile robot navigating an unknown office environ-

ment. Assume that the robot is using a Lidar system for vision and has a low bandwidth

cellular network connection for communication. The robot has been told by its opera-

tor to find and retrieve a teacup, but the robot has not previously learned to recognize

teacups. It would not be practical to send a data set of annotated images of teacups to the

robot over the low bandwidth connection (and in the case of some categories of object,

such a data set may not yet exist), but it is possible to send a model of the geometry of

a generic teacup, which may not precisely match any of the actual teacups in the scene.

It is also not sufficient to be able to recognize the presence of a teacup in the scene as

the robot needs to estimate its 6D pose in order to manipulate the teacup.

If this is taking place in a typical office environment then there are also other chal-

lenges that cannot be avoided. The scene may contain a number of different categories

of object. The robot’s ability to move within the environment may be limited, and it

may only able to image the scene from a few viewpoints. The teacup may or may not

be in the scene and it may be partially occluded by other objects. The robot may need

to categorize and estimate pose for these objects as well in case that these must be

manipulated in order to gain access to the teacup.

A variety of approaches have been used for categorizing and estimating the pose of

objects in RGB images, including the use of image gradient-based part templates and

deformable part models [1,14], and complete 3D CAD models which are either aligned

to 2D RGB images [15] or are used to train detectors with task-dependent performance

[6]. Recent growth in the availability of RGB-D sensors has enabled the generation of

a large number of RGB-D data sets, and the creation of many algorithms that perform

object detection [5,11] and pose estimation [16,4,17,10] on RGB-D images. Some al-

gorithms that operate on RGB-D data sets deliberately discard RGB cues to remove the

influences of illumination and texture, and operate purely on depth data [18], and some

augment or replace parts of RGB-D data sets with synthetic data using CAD objects

[10]. An alternative goal is scene completion, where the categories of the objects in a

scene are not important but a geometric representation of occluded parts of the scene

are desired [19].

Some algorithms detect individual objects of specific categories in depth images

[18] or RGB-D images [11]. Others detect individual objects and estimate object 6D

poses in RGB-D images [4,17,10]. Certain approaches fit for a number of objects jointly

on RGB-D images, but do not attempt to categorize the objects [19]. This work presents

a method for categorizing and estimating 6D pose for all objects in a scene simultane-

ously, including those that are partially occluded, from single or sparse multiple-view

depth data. It does not require annotated depth data for training and generates its own

synthetic labelled training data using generic object models.

The proposed algorithm generates random synthetic images of scenes using generic

object models and learns decision forests on local depth features incorporating all avail-

able camera views, adapting the approach of Brachmann et al. [4]. These decision

forests estimate the probability that each pixel belongs to one of the object categories or

to the background. For each category, sampling a random pixel from one of the views

proportional to its category probability enables a bounding box to be placed on each of

the available views to extract a 3D object fragment from the depth images. The generic
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category model is then matched to the 3D object fragment to estimate a 6D pose. Many

such object fragments and resulting poses are generated for each category, and the best

fitting poses for each category are then processed by a joint parsing algorithm. This al-

gorithm finds a subset of categories and poses that fits well with the depth data and pixel

category probabilities while minimising the physical overlap between objects. Unlike

Brachmann et al., we generate features from multiple camera views in the absence of

exact object instance information, and search for all objects of classes of interest rather

than searching for a single instance of a specific object.

The contributions of this work lie in the use of local depth features incorporating

multiple views to categorize objects and estimate their poses combined with the use of

global properties of the scene to refine the set of all categories and poses simultane-

ously. Unlike Brachmann et al. [4], the use of multiple views to form a feature allows

full 3D features to be learnt. The use of local depth features enables the algorithm to

detect occluded objects but inevitably produces spurious categories and poses due to

ambiguous object fragments and the use of generic models that could not be expected

to match object fragments exactly. Global depth, pixel category probabilities, and object

overlaps enable the algorithm to remove spurious categories and poses.

In section 2 we discuss a selection of related work. In section 3 we discuss the

proposed algorithm, and in section 4 we discuss how the algorithm is implemented. In

section 5 we discuss the HOOC data set, and in section 6 we discuss the application of

the presented algorithm to the HOOC data set. Finally, in section 7 we give conclusions.

2 Related Work

There are many publications on object detection, pose estimation, and scene comple-

tion, which are topics relevant to this work. This section contains the most related work.

A classic approach to object categorization and pose estimation is to use object fea-

tures such as SIFT features [20,21], or learned features [22,23]. These features can be

used to find correspondences, identify parts, or to generate global descriptors for object

classification [24]. However, these require RGB or intensity images to identify features,

and a training set of RGB images of the objects of interest in order to construct a feature

set. Training RGB images are not accessible in the HOOC data set due to an absence

of RGB camera calibration information. There has been some research into identifying

analogous features in depth images [25], which could potentially form part of an alter-

native approach to object categorization and pose estimation. Another approach is to

use a set of RGB (or RGB-D) images and associated poses as templates, and compare

test images to template images directly [26].

It is possible to measure the 3D geometry and RGB texture of objects using an

apparatus such as a depth sensor and a turntable. These dense RGB-D measurements

can then be used to construct a model and extract features specific to the object to

maximise performance. Hinterstoisser et al. [16] presented an approach using templates

consisting of RGB image gradients and depth image normal vectors of each object

at a number of viewpoints to identify objects in RGB-D images. 6D pose was then

refined using the depth data. Their method was dependent on possessing exact object

representations in order to generate templates.
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Brachmann et al. [4] presented an approach that trained decision forests to estimate

pixel-wise category probabilities and poses based on local RGB-D features. They also

experimented with pure depth features which did not perform as well. They generated

pose estimates by associating object coordinates with the leaves of the decision forest,

relying on the fact that their test objects did not possess RGB-D symmetries under rota-

tion. The depth data and pixel probabilities were then used to decide whether to discard

a pose via a designed energy function. Krull et al. [17] extended their previous work by

replacing their designed energy function with a CNN which again evaluated individual

poses. We adapt their decision trees for estimating pixel category probabilities but do

not use the decision forests to directly estimate object poses, as the generic models,

symmetric objects, and the lack of RGB data does not allow this. Unlike their approach

we also do not attempt to detect a single object of a specific category and estimate its

pose, but instead search for all objects belonging to categories of interest and use an

energy function for the global scene to refine the set of potential object poses. By per-

forming this for all objects simultaneously we compensate for the lack of specific object

information.

Sun et al. [27] presented an approach using Hough voting to detect objects and

estimate poses from RGB and RGB-D images. Depth was used to address challenges

involving object scales in images and so was used to correct image patches for object

distance, but the primary features used by the algorithm were RGB image patches.

Tejani et al. [28] and Doumanoglou et al. [29] combined Hough voting with decision

forests, in conjunction with other techniques.

Song et al. [18] presented an approach for object detection from depth data only, but

did not focus on object pose. Similarly to this work, they used generic object models in

the detection process. However, they used designed features as inputs to support vector

machine (SVM) classifiers, and trained a classifier for each synthetic training object

pose. They also adopted a 3D sliding window and processed the depth data in 3D form,

rather than the approach in this work which operates on depth images directly. Song et

al. later presented a CNN-based approach [11] which instead operated on RGB-D data.

Gupta et al. [5,10] proposed an algorithm for object categorization and 6D pose se-

lection from RGB-D data. It used a CNN to detect objects using depth data converted

to a geocentric coordinate system and RGB edge data, then a CNN to estimate object

pose using normal vectors derived from the depth data, and finally the iterative clos-

est point (ICP) algorithm to refine the pose. Interestingly, they demonstrated that their

pose estimation CNN performed better when trained on synthetic data generated us-

ing generic object models than when trained on real data. Their algorithm successfully

identified multiple categories of object in a single RGB-D image and produced 6D pose

estimates. It was tested on a number of object categories and performed well on most of

them. However, detection performance on geometrically simple objects such as desks

(separate from tables) and boxes was poor, and this carried through to the pose esti-

mation. Similarly to this work, they partially trained their algorithm on synthetic data

generated using generic models and produced full 6D pose estimates for multiple in-

stances of multiple categories for a single image. However, they relied on RGB data for

object categorization.
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The previously discussed algorithms adopted a local approach processing single

objects. Guo et al. [19] examined the global scene instead, but with a different goal.

Rather than performing object categorization and finding poses, Guo et al. estimated a

complete 3D geometric representation of a scene including occluded regions, but did

not attempt to decompose the scene into individual objects with specific categories and

poses. Instead, generic objects were selected from a library irrespective of object cate-

gory, and positioned such that the collection of objects matched the depth and appear-

ance data and minimized object overlap in order to provide an estimate of the occluded

scene geometry. Their use of global scene optimization and object overlap is similar to

this work, but they also use RGB appearance data in their optimization function.

Finally, there are works that explore physical relations. Zheng et al. [30] proposed a

method of forming 3D volumes from RGB-D images by projecting onto a voxel repre-

sentation and executing a physical simulation to calculate parts that must be connected

for the scene to be stable. Contacts between objects, and physical stability in general, is

a property that could be used to extend the joint parsing stage of the algorithm in future

work. Jia et al. [31] also examined supports and stability in RGB-D images, but used

3D blocks to represent objects rather than using a voxel representation. 3D blocks may

not be an appropriate representation for some categories of object.

3 Method

The algorithm presented here consists of two stages: estimating a number of pose can-

didates for each object category, and selecting a globally consistent subset of those pose

candidates. Fig. 1 illustrates this process.

Estimating Pose Candidates

The task of estimating pose candidates for each category was adapted from the approach

of Brachmann et al. [4] in that a decision forest is used to estimate category probabilities

for each pixel in each available depth image. However, the situation in this work differs

significantly from that tackled by Brachmann et al. in several ways:

– They assumed a single view of a scene, whilst we consider one or sparse multiple

views of a scene acquired from very different viewpoints.

– They used RGB-D data, whilst we use only depth data.

– They used detailed RGB-D information of the exact objects present in the scenes to

create object models, whilst we use generic object models which do not correspond

exactly to the objects imaged in terms of shape or general size, and not at all in

terms of color.

– They searched for instances of a specific object category in each scene, whilst we

do not assume knowledge of which categories are present in any scene.

– They searched for individual objects in isolation, whilst we search for all objects

present in the scene.

– They used annotated data for training, whilst we have none.
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Scene (a) Depth (b) Probability (c) All poses (d) Final poses Final depth

Fig. 1. The processing stages of the algorithm shown for the first scene containing 10 objects. The

algorithm calculates pixel probabilities for each object category (b) using depth images acquired

from multiple views (a), generates a number of pose candidates for each category using the pixel

probabilities and depth images (c), and then selects a subset of pose candidates to match the

depth images and pixel probabilities and to minimise the physical overlap between objects (d).

The rows correspond to different camera views.

In order to use all viewpoints we modify each decision forest to make decisions based

upon all of the available views of the scene, and train a separate decision forest for each

view but which uses features constructed from all views. Using multiple views enables

truly 3D features to be learnt. Training these features requires the relative positions and

orientations of the cameras to be known. This limits the general applicability of the

multi-view features, but there are a number of cases where fixed cameras are standard,

such as industrial environments and security cameras. A potential alternative approach

would be to use features derived from point clouds combined from all views, but the

use of the structure in two dimensional depth images provide computational advantages

over unstructured three dimensional point clouds. The computational burden of training

a decision forest for a view increases linearly with the number of views available, and

a decision forest must be trained for each available view.

We train the decision forests by generating synthetic depth data for all of the views

for random subsets of the generic object models placed in random positions in the scene.

Because of the generic object models, lack of RGB data, and object symmetry, we

cannot use the decision forests to estimate an object pose directly with any reliability.

Instead we use the decision forests to segment pixels belonging to an object fragment

in all of the available views, and convert the pixel depths into points in 3D space. A

fitting process then estimates the 6D pose for the generic object model associated with

the object fragment points.

Selecting a Globally Consistent Subset of Pose Candidates

The first stage of the approach produces a set of candidate object category and pose

pairs from detected object fragments. This set should contain the set of correct poses,
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but the majority of the set candidates will be false. The second stage of the approach is

to take the set of pose candidates and reduce the set to the true set of pose candidates

or at a minimum to a globally consistent set of pose candidates. A globally consistent

set of pose candidates is one that is consistent with the depth data and pixel category

probabilities, and includes no or minimal volume overlap between objects.

Use of this information can enable discrimination between pose candidates for

which the object is expected to be significantly occluded. The consistency requirements

with respect to depth data and pixel category probabilities account for positive visibility

(parts of the pose candidates that should be visible), and also negative visibility (parts

of the pose candidates that should not be visible). The requirements that pose candidate

volumes do not overlap and that the set of pose candidates and environment match well

with the visual data in general can act as a natural constraint on solution complexity

(subset size), particularly in the case where multiple camera views can minimize the

occluded region. However, an artificial constraint on complexity could potentially be

added for single view scenes.

The joint parsing algorithm combines object and background depth discrepancy,

pixel category probabilities, and object volume overlap into an energy function which

converts the task into an optimization problem. This is a combinatorial optimization

problem as solutions to this problem are sets of objects. It is not practical to evaluate all

of the possible subsets because there is a computational cost to evaluating the energy

function, and the number of possible subsets also grows with the size of the full pose

candidate set. Consequently it is necessary to find an approximately or locally optimal

solution. A genetic algorithm (GA) [32] is used to find these solutions.

GAs can be attractive optimization algorithms because they are not necessarily

greedy and so can avoid local optima, and because the nature of the crossover operation

used to generate new solutions can preserve subsets of the existing solution. This can

be beneficial because the relations between objects in a scene are likely to be local to

a large extent. For example, three objects in close proximity are likely to largely deter-

mine each other’s visibility. Removing one of those objects would then greatly modify

the effect of the remaining two objects on the energy function, but not necessary objects

further away. Therefore, once this subset of three objects have been identified, the subset

should ideally persist as a single unit, so that the subset members are either all present

in a solution or none are present. Doing so would simplify the optimization problem.

An appropriately designed GA crossover operation can achieve this to an extent.

At the completion of the GA, a pose candidate subset with a locally minimum ob-

served energy function value is retained, regardless of the iteration of the algorithm at

which it was encountered. This is treated as the final output of the approach. See Fig.1

for an example of the stages of the process.

4 Algorithm Implementation

The decision forest (DF) features were modified so that a pixel in the camera view

associated with the DF defines the center of bounding regions in all camera views,

and individual features can arise from sub-features within these regions in any of the

camera views. The DF training process was modified to maximize information gain for
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sub-features in any of the views. The features for each decision tree were trained from a

set of 500 synthetic scenes containing random subsets of the generic object models. The

models were placed upright in the scene in a manner that ensured that there would be no

physical overlap between objects. To prevent overfitting of the probability distributions

in the leaves of the trees, the probability distributions of the leaves were estimated using

a different set of 500 random synthetic scenes once the decision tree features had been

learnt through the initial training.

The lack of RGB information and generic object models prevents the use of the DF

for initial pose estimation as performed in the Brachmann et al. algorithm [4]. Instead

the pixel category probabilities and bounding regions in each view (for a given chosen

central pixel) were used to extract probable 3D points in space to which a uniformly

sampled version of the generic object mesh was registered using the ICP algorithm.

Central pixels were sampled from the pixel category probability images for all views.

In each scene a total of 200 pose candidates were sampled for each object category.

Each pose candidate was generated with a random fixed size and a random pose which

was optimized using the ICP algorithm. The 5 best pose candidates for each category

were added to a pose candidate set and presented to the joint parsing portion of the

algorithm.

The joint parsing energy function used to quantify the global consistency of a pose

candidate subset incorporates depth images discrepancies, pixel-based category prob-

abilities, and object percentage volume overlap. The energy function itself is of the

following form:

E(D,P, V ; D̃, dmax) =
1

Npixels

Npixels
∑

i=1

1

dmax

min(
∣

∣

∣
di − d̃i

∣

∣

∣
, dmax)+

1

Npixels

Npixels
∑

i=1

(1− pi)+

1

Nobjects

Nobjects
∑

i=1

vi

(1)

Where D̃ is the set of measured pixel depths of the true scene, D is the set of calculated

pixel depths of the current pose candidate subset, dmax is a maximum limit on the pixel

depth discrepancy, P is the set of pixel category probabilities corresponding to the cur-

rent pose candidate subset and background, V is the set of of fractional volume overlaps

calculated for each pose candidate based of the volume fraction overlapping with any

of the other pose candidates within the current subset, Npixels is the number of pixels,

and Nobjects is the number of pose candidates within the current subset. The first term

in Eq.1 calculates the average pixel depth discrepancy. The discrepancy at each pixel is

limited to a maximum value of dmax (chosen to be 100mm in this case) as distances

larger than this are likely to result from incorrect categories or missing objects. In these

cases the discrepancies may be large, but small changes in their magnitudes should not

influence the optimization process because the degree of discrepancy between the mea-

sured depth and the depth generated from an incorrect pose candidate does not carry

any information beyond that the pose candidate is incorrect.
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Object
Fractional pixel visibility Fractional surface area visibility

1 2 3 1 2 3 Total

Teacup 0.86 1.00 0.69 0.18 0.36 0.20 0.49

Frying pan 0.55 0.52 0.64 0.24 0.21 0.29 0.47

Banana 0.50 0.57 0.76 0.24 0.26 0.33 0.47

Ball 0.89 0.32 1.00 0.40 0.17 0.47 0.68

Spatula 0.73 0.55 0.82 0.36 0.29 0.40 0.54

Tube 0.92 0.72 0.75 0.24 0.19 0.20 0.49

Sellotape core 1.00 0.96 1.00 0.35 0.45 0.47 0.71

Stapler 0.45 0.43 1.00 0.12 0.12 0.26 0.39

Glass 0.69 0.72 0.76 0.22 0.27 0.26 0.61

Table 1. Examples of object visibility for each camera in the first scene containing 20 objects

in the HOOC data set. The fractional pixel visibility is the fraction of the total image pixels

associated with an object in isolation that are still visible in the presence of other objects. The

fractional surface area visibility is the fraction of the total surface area of an object visible to the

camera in the presence of other objects. The total fractional surface area visibility is the fraction

of the total surface area of an object visible to at least one camera.

In detail, the HOOC data set contains 5 scenes each containing 10 objects on a

table, and 4 scenes each containing 20 objects on a table. Every object within a given

scene is of a different category, and there are a total of 25 object categories. A generic

object model is provided for each of the 25 categories. Three Kinect II cameras are

placed approximately at the vertices of an equilateral triangle with the scene in the

center. Intrinsic and extrinsic calibration data is provided for each depth camera, but

not for each RGB camera. The depth images contain significant spherical distortion

which primarily affects the background, and the calibration data was used to correct

each of the depth images using Bouguet’s camera calibration toolbox [34].

A number of properties of the HOOC data set complicate the process of scene un-

derstanding. Firstly, a number of the generic object models match poorly with the asso-

ciated real object. Small objects can be lost within the noise of the depth sensor, which

is significant. Some objects, such as the jug, are translucent, and the recorded depth

contains large systematic error that is different for each camera view. Many objects are

partially occluded in each scene. The presence of three camera views reduces occlusion

but does not remove it entirely.

Fig. 3 shows an example from the jug category. This category exhibits many of the

challenges associated with the HOOC data set. The jug is translucent, and this drasti-

cally affects the quality of the resulting depth data. The point cloud image shows the

3D points associated with the jug from the three camera views as seen from above. The

points should form an approximate cylinder, but in practice do not resemble a cylinder

due to the interactions of the depth camera light source with the translucent object. The

generic mesh of the jug has a different width to height ratio and the shape, position

and size of the handle is different. The generic mesh also contains a top surface that is

not present in the actual object. Once processed to be closed, the mesh diverges further

from the true object.
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generation process is a major limitation on performance. Fig. 4 shows the output of

the algorithm for the first scene involving 20 objects. Pose rotation error is not shown

because many of the objects in the HOOC data set contain symmetries and the concept

of rotation error in this context is unclear.

Scene

10 (1) 10 (2) 10 (3) 10 (4) 10 (5) 20 (1) 20 (2) 20 (3) 20 (4)

Ground truth 0.40 0.50 0.33 0.50 0.33 0.47 0.56 0.44 0.44

Localized ground truth 0.20 0.50 0.22 0.50 0.22 0.32 0.22 0.28 0.17

False categories 5 8 2 5 7 1 1 2 2

Table 2. Categorization performance on the HOOC data set. The fraction of the ground truth

categories found is listed, as is the fraction of ground truth categories where the ground truth

pose center differs from the estimated pose center by less than half of the generic model size.

Finally, the number of categories found that do not belong to set of ground truth categories is

listed. The localized ground truth fraction is the most important quantity, and the ideal value is 1.

Scene

10 (1) 10 (2) 10 (3) 10 (4) 10 (5) 20 (1) 20 (2) 20 (3) 20 (4)

Ground truth 0.50 0.88 0.44 0.60 0.56 0.63 0.67 0.67 0.67

Localized ground truth 0.30 0.88 0.44 0.60 0.56 0.58 0.56 0.61 0.56

False categories 4 5 2 6 5 0 3 2 1

Table 3. Categorization performance on the HOOC data set when the ground truth poses are

added to the input set of the joint parsing algorithm. The fraction of the ground truth categories

found is listed, as is the fraction of ground truth categories where the ground truth pose center

differs from the estimated pose center by less than half of the generic model size. Finally, the

number of categories found that do not belong to set of ground truth categories is listed. The

localized ground truth fraction is the most important quantity, and the ideal value is 1.

Table 4 shows the values of the energy function and of its components for the se-

lected pose candidate subset in the case where ground truth poses are not available and

in the case where the ground truth poses are available, and for the ground truth pose set

itself, in that order. The overall energy function value favors the ground truth poses and

the best subset with the option to choose ground truth poses. The depth component of

the energy function favors the ground truth poses. The probability and overlap compo-

nents both favor the best subset without the option to choose ground truth poses. The

overall energy function value suggests that subsets in the case where ground truth poses

are available perform similarly to the set of ground truth poses themselves, but both sets

consistently outperform the set of poses where ground truth poses are not available.

Clear patterns are observed in each of the components: depth discrepancy, pixel cat-

egory probability, and object overlap. As might be expected, the depth component con-
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Object set labels Object set depth

GT PS PSGT GTD PSD PSGTD

Fig. 4. The output of the algorithm for scene 20(1). From left to right: ground truth object cat-

egory labels (GT), pose candidate subset labels (PS), pose candidate subset with ground truth

labels (PSGT), ground truth object depth (GTD), pose candidate subset depth (PSD), and pose

candidate subset with ground truth depth (PSGTD). The rows correspond to different camera

views.

sistently favors the set of ground truth poses. However, this is not the case for the both

the pixel category probability and object overlap components, where the set of poses

where ground truth poses are not available outperforms the other two. This suggests

that discrepancy between the generic models and actual objects may be significant. The

probability component results from similarity between local depth features in the scene

and local depth features on the pose candidates, which suggests that the algorithm is

better able to match these features by using poses other than the ground truth poses,

and given the categorization results (see Table 2) other categories entirely. The object

overlap component supports this interpretation as the ground truth pose set all have

significant overlap. Object overlap may cause difficulty for a human annotator, as the

annotator is concerned with visible discrepancies, while object overlaps are not obvious

to the eye.

In this context, improvements to the DF stage are likely to provide the greatest

improvement to general algorithm performance. However, the discrepancy between

generic object models and actual objects would continue to affect performance. A po-

tential solution would be to randomly locally perturb the geometry of the generic object

models when generating synthetic training data to increase variety. The use of a tech-

nique such as deformable models [15] and a priori statistical information of category

shape variation would allow this to be performed in a more principled manner. Alter-

natively, additional generic models from an external source could be included in the

training process. The integration of a physics engine into the synthetic training data

generation process would allow the production of a wider variety of physically consis-

tent pose sets, which may also increase performance.
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Scene Energy function Depth component Probability component Overlap component

10 (1) 1.4007, 1.3973, 1.3944 0.6199, 0.6094, 0.5994 0.7798, 0.7877, 0.7901 0.0011, 0.0002, 0.0050

10 (2) 1.3611, 1.3558, 1.3559 0.5835, 0.5799, 0.5744 0.7751, 0.7751, 0.7799 0.0025, 0.0008, 0.0015

10 (3) 1.3772, 1.3586, 1.3550 0.6000, 0.5702, 0.5670 0.7768, 0.7852, 0.7838 0.0003, 0.0032, 0.0042

10 (4) 1.3417, 1.3321, 1.2913 0.5588, 0.5360, 0.5124 0.7749, 0.7822, 0.7789 0.0080, 0.0139, 0.0000

10 (5) 1.3919, 1.3795, 1.3842 0.6025, 0.5787, 0.5827 0.7876, 0.7988, 0.7976 0.0017, 0.0020, 0.0039

20 (1) 1.3598, 1.3392, 1.3348 0.5961, 0.5503, 0.5236 0.7637, 0.7820, 0.7906 0.0000, 0.0069, 0.0207

20 (2) 1.3562, 1.3399, 1.3875 0.5663, 0.5411, 0.5207 0.7899, 0.7971, 0.8053 0.0000, 0.0018, 0.0615

20 (3) 1.3777, 1.3354, 1.3459 0.5976, 0.5347, 0.5341 0.7801, 0.7968, 0.8023 0.0000, 0.0039, 0.0094

20 (4) 1.3664, 1.3289, 1.3320 0.5902, 0.5453, 0.5298 0.7759, 0.7741, 0.7835 0.0004, 0.0095, 0.0186

Table 4. Energy function values for chosen subsets. Each triple of numbers is in the order: the

best subset without the option to choose ground truth poses, the best subset with the option to

choose ground truth poses, and the set consisting of all ground truth poses. In all cases, lower

values indicate a better solution, and the number in bold is the best of the triple.

An alternative direction which could be pursued in addition to adding shape variety

would be to include additional sources of information. For example, the jug is difficult

to image because its translucency results in different systematic error in each view.

However, the 2D silhouette of the object is unaffected, and could be used. Additionally

physical contacts could be included, but this would also be affected by generic model

inaccuracy.

7 Conclusion

In this work we have demonstrated that it is possible to an extent to categorize sets

of objects and estimate poses in scenes with occlusion where there are no annotated

images and only generic object models are available. This was performed by estimating

pixel category probabilities using local depth features and generating a large number of

pose candidates according to those probabilities. The set of pose candidates was then

reduced to a final subset that was consistent with the measured depth and pixel category

probabilities, and contained a minimum of overlap between objects. However, there

is much room for improvement. Future work would include incorporation of physical

contacts into the joint parsing algorithm, and improvements to the DF technique to

generate superior initial pose candidates. Replacement of the DF with a Hough Forest

[28,29] or CNN may be appropriate. Further, ideally the two stages of the algorithm

would be combined to simultaneously optimize categorizations, poses, and pose sets.
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