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Abstract. This paper focuses on the advancement of a monocular
sparse- SLAM algorithm via two techniques: Local feature maintenance
and descriptor-based sensor fusion. We present two techniques that main-
tain the descriptor of a local feature: Pooling and bestfit. The mainte-
nance procedure aims at defining more accurate descriptors, increasing
matching performance and thereby tracking accuracy. Moreover, sensors
besides the camera can be used to improve tracking robustness and accu-
racy via sensor fusion. State-of-the-art sensor fusion techniques can be
divided into two categories. They either use a Kalman filter that includes
sensor data in its state vector to conduct a posterior pose update, or they
create world-aligned image descriptors with the help of the gyroscope.
This paper is the first to compare and combine these two approaches.
We release a new evaluation dataset which comprises 21 scenes that
include a dense ground truth trajectory, IMU data, and camera data.
The results indicate that descriptor pooling significantly improves pose
accuracy. Furthermore, we show that descriptor-based sensor fusion out-
performs Kalman filter-based approaches (EKF and UKF).

1 Introduction

Handhelds are ubiquitous and are usually equipped with a video camera which
enables the integration of simultaneous localization and mapping (SLAM).
Handhelds also include additional sensors, the inertial measurement units
(IMUs), which can improve the SLAM accuracy [1].

The combination of the video capture and the additional sensor data requires
a multi-sensor fusion. This is commonly achieved by Kalman filters [2–4]. Besides
the Kalman filter approaches, a vision-based approach exists that improves the
image descriptor via the gyroscope data [5]. This work compares the sensor fusion
via an unscented Kalman filter (UKF) with the sensor fusion via gravity-aligned
feature descriptors (GAFD) [5]. Both approaches are integrated into the parallel
tracking and mapping (PTAM) algorithm [6].

Furthermore, we change the patch-based PTAM matching to a descriptor
based matching, e.g., SIFT [7]. Image feature detection aims at detecting salient
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positions in images at which descriptors are extracted that are robust in terms
of scale and rotation. This modification allows us to propose two new descriptor
maintenance techniques for an improved matching and tracking accuracy.

In summary, the contributions of this work are the following: (a) a new
dataset for the evaluation of SLAM algorithms, (b) a new descriptor maintenance
technique for higher pose accuracy, (c) a two-way sensor fusion technique by
combining UKF with GAFD.

2 Related Work

The PTAM [6] algorithm belongs to the keyframe-based monocular SLAM
methods. It differs from the filtering-based approaches [8]: The knowledge of
the system is not represented by a probability distribution but by a subset
of images (keyframes) and map points. The PTAM map constitutes a sparse
scene representation since only patches of salient image points are incorporated.
Sparse SLAM approaches usually allow for faster computation than dense SLAM
approaches. Recent works such as ORB-SLAM [9] show that sparse-SLAM tech-
niques can outperform semi-dense ones [10].

Direct visual odometry (VO) techniques utilize the full image information.
For instance, dense tracking and mapping (DTAM) [11] is able to reconstruct
the map in much more detail than the sparse SLAM techniques but the com-
putational complexity is still too demanding to achieve real-time performance
on handhelds. The so called semi-dense techniques [10,12] calculate dense depth
maps covering all image regions with non-negligible gradient. Optimized versions
of this technique [13] run in real time on handhelds.

Our work integrates IMU output into a sparse SLAM technique. Several
works already targeted the integration of inertial sensors into SLAM approaches
by using Kalman filters. For example, Omari et al. [14] reviewed an optical flow-
based visual system coupled with inertial measurement units. Their unscented
Kalman filter (UKF) considered gyroscope and accelerometer measurements.
Tiefenbacher et al. [1] used the IMU data as control input for the UKF. Further-
more, a motion model based on the a priori estimate of the UKF was presented.
Aksoy and Alatan [2] focused on the uncertainty modeling for a Kalman filter
which was combined with a tracking system similar to PTAM.

Besides the sensor fusion via Kalman filters, few works incorporated the IMU
data directly into the visual descriptors. Kurz and Benhimane [5] proposed the
gravity-aligned feature descriptors (GAFD) that align the orientations of local
feature descriptors, e.g., SIFT [7] and SURF [15], to the gravitational force
obtained from the gyroscope. They showed that GAFD increases the number of
successfully matched features since the descriptors become not just invariant to
orientation but, more importantly, distinguishable. Guan et al. [16] presented
gravity-aligned VLAD features [17] to incorporate the same advantages as in [5].
Our work is the first that combines and evaluates both ways of sensor fusion:
Filter- and feature-based fusion.
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3 Descriptor-Pooled PTAM with Sensor Fusion

PTAM separates tracking and mapping into two threads. After map initial-
ization, the positions of FAST [18] corners are used to extract patches. These
patches are saved into the map and successively tracked. In each new frame, a
motion model delivers a prior pose estimate. Then template matching between
new patches and the warped patches of the map is applied for those patches
which fulfill the epipolar constraint. A pyramid-based [19] matching approach
leads to a coarse-to-fine pose estimation and accelerates execution time. The
map is updated via keyframes in case of too few successful matches. The follow-
ing sections present the adaption of PTAM to descriptor-based matching and
the two main contributions: Local descriptor update strategies and sensor fusion
through adaption of local descriptors or a Kalman filter.

3.1 Tracking and Mapping

The matching over pixel intensities of warped patches is exchanged with scale-
and rotation-invariant keypoint descriptors. A guided nearest neighbor search
identifies the best keypoints for map initialization, tracking and the mapping
process. The number of pyramid levels have been reduced from four to three,
since the forth level is too blurred to detect meaningful corner-based (FAST)
keypoints. The two-stage coarse-to-fine tracking process is preserved. At the
lowest pyramid level, we extract at most 1850 keypoints.

The advanced map stores multiple keypoints, called map points, for every
keyframe. The map points hold the mapping to their descriptors. Multiple
descriptors for each map point are permitted. We implemented and evaluated
the descriptor-based PTAM using the prominent SIFT [7] and efficient ORB [20]
descriptors. The 128-/32-dimensional descriptors are matched via euclidean and
Hamming distances, respectively.

3.2 Descriptor Update

We investigate on three different descriptor maintenance strategies. The first and
most trivial strategy is to keep the descriptor d of a map point pm fixed to the
descriptor of its source keyframe ksource. The source keyframe is the keyframe
that initially creates the map point. The descriptor is given by

dpm
= dksource

. (1)

The second strategy computes the bestfit descriptor d of a map point pm. Since
multiple keyframes of the map may contain measurements of the same map
point, the best fitting descriptor minimizes the sum of the distances to all other
descriptors that are linked to this map point pm. It is given by

dpm
= min

i

∑

j,j �=i

‖di − dj‖L2 or Hamming; di,dj ∈ D (2)
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with D being the set of descriptors associated with the map point.
The third strategy computes temporally pooled descriptors. Pooling describes

the combination of feature descriptors at nearby locations with the goal
to achieve a joint feature representation “that preserves important informa-
tion (intrinsic variability) while discarding irrelevant details (nuisance variabil-
ity)” [21]. Dong and Soatto [22] showed that domain-size pooling of gradient his-
togram descriptors improves the matching performance significantly. However,
this benefit comes with higher computational cost since multiple descriptors with
different domain-sizes have to be computed for nearby locations.

We propose a pooling over time instead of nearby locations. Thus, a (median)
pooling occurs over all descriptors that are linked to one map point pm but
captured at different points in time, i.e., different keyframes. For that purpose,
we generate a sorted list for each entry of a descriptor and select the middle
value, which easily removes outliers.

The descriptor of a particular map point is updated whenever a new keyframe
is added that contains a measurement of the map point. In consequence, only
a small computational overhead is introduced by this new descriptor update
technique. Furthermore, the mapping process tries to refine map points in other
keyframes that have not been searched before or have been rated as a bad mea-
surement. If the mapping process is successful in this search, the descriptor of
the corresponding map point will be updated. The entire descriptor update is
handled by the mapping thread.

3.3 Sensor Fusion

Kalman Filter-Based Fusion. In order to project map points into the current
frame, a motion model has to predict a prior pose. The precision and stability
of the motion model has a direct influence on tracking performance. For our
experiments, we make use of the PTAM motion model (PMM) and the findings
in [1].

PMM consists of a decaying velocity model. It can be formalized using expo-
nential coordinates

Pi = exp(τi) · Pi−1 (3)

with the decaying linear and angular velocity being

τ i = 0.9 · (0.5 · τi−1 + 0.5 · ln(Pi−1 · P−1
i−2)). (4)

This motion model is used for both PTAM and the PTAM+ [1] variants. For the
latter, an unscented Kalman filter (UKF) additionally updates the final PTAM
pose leading to a posterior pose estimate (similar to [1]). The state vector is iden-
tical to [1]. It has 26 dimensions and contains, among others, the IMU-to-world
attitude, the position and velocity vectors as well as the gravity vector. The
employed UKF update was most stable in estimating the attitude [1], since the
UKF keeps track of the gravity vector. We do not make use of the accelerom-
eter measurements as those tend to corrupt the position estimate of SLAM
quadratically.
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Gravity-Aligned Feature Descriptors (GAFD). We utilize the IMU data
in the tracking and mapping process by aligning the descriptors to the gravity
vector [23] prior to matching. This creates distinguishable descriptors for con-
gruent features that would not be distinguishable with the basic algorithms,
e.g., SIFT. We track the gravity vector in the fixed world frame with a UKF.
For every frame, the gravity vector gC in the moving camera frame is updated via

gC = CRWgW (5)

with the gravity vector gW in the world frame and the world to camera rotation
matrix CRW . The gravity vector is projected onto the image plane by apply-
ing the camera model and the intrinsic camera calibration matrix K. Its 2D-
orientation in the image plane is computed with respect to the location of the
keypoint. The final 2D-projection of the gravity vector d = [du, dv, 0]T at a pixel
p = [u, v, 1]T is computed by

d = p
′ − p (6)

with
p

′
= [u

′
, v

′
, 1]T =

1
1 + gCz

(p + KgC). (7)

Finally, the orientation angle of the gravity-aligned descriptor is given by

θ = arctan
dv
du

. (8)

4 Dataset

Publicly available datasets lack either gyroscope and accelerometer data [24,25]
or a dense ground truth trajectory [26]. Hence, we recorded new scenes includ-
ing these data. Furthermore, we focused on recording fast movements and pure
rotations which are very challenging for most visual SLAM approaches. The new
dataset consists of 21 scenes that we make available at http://www.mmk.ei.tum.
de/sensorintegrationslam/. A professional external tracking system by ART pro-
vides the ground truth of 21 motion trajectories. The tracking system includes

Fig. 1. Camera capture of scene 1 (left), scene 15 (center) and scene 18 (right). These
captures are picked to illustrate the environment. The other scenes are recorded in the
same environment.

http://www.mmk.ei.tum.de/sensorintegrationslam/
http://www.mmk.ei.tum.de/sensorintegrationslam/


Sensor Fusion for Sparse SLAM with Descriptor Pooling 703

Table 1. Absolute values of each low-level feature for each scene and the corresponding
cluster assignment.

Transl. distance [m] Rot. distance [deg] Transl. vel. [m/s] Rot. vel. [deg/s]

Scene 1 23.823 (Low) 3948 (Mod.) 0.2362 39.1384

Scene 2 27.549 (Low) 6318 (High) 0.2908 66.7306

Scene 3 22.319 (Low) 4522 (Mod.) 0.2205 44.6794

Scene 4 46.718 (Mod.) 2967 (Low) 0.4590 29.1496

Scene 5 46.33 (Mod.) 4672 (Mod.) 0.5331 53.7486

Scene 6 59.747 (High) 2730 (Low) 0.6453 29.4867

Scene 7 56.13 (High) 2560 (Low) 0.6219 28.4292

Scene 8 54.74 (High) 6245 (High) 0.5968 68.0944

Scene 9 46.144 (Mod.) 4296 (Mod.) 0.6090 56.6942

Scene 10 63.447 (High) 4609 (Mod.) 0.7079 51.4246

Scene 11 33.078 (Low) 2235 (Low) 0.4229 28.5781

Scene 12 41.227 (Mod.) 2470 (Low) 0.4019 24.0790

Scene 13 46.492 (Mod.) 3748 (Mod.) 0.4795 38.6584

Scene 14 49.472 (Mod.) 4573 (Mod.) 0.5683 52.5257

Scene 15 18.942 (Low) 1662 (Low) 0.4083 35.8284

Scene 16 25.225 (Low) 3442 (Mod.) 0.3314 45.2329

Scene 17 39.73 (Mod.) 3379 (Mod.) 0.3496 29.7341

Scene 18 23.54 (Low) 1866 (Low) 0.3153 24.9886

Scene 19 10.534 (Low) 963.4 (Low) 0.2352 21.5068

Scene 20 38.262 (Mod.) 5101 (Mod.) 0.3475 46.3317

Scene 21 50.414 (Mod.) 5998 (High) 0.4563 54.2867

five high-resolution cameras that record the trajectories at a sampling rate of
60 Hz. The mobile device is equipped with passive markers. In order to validly
compare the SLAM-based tracking results with the external tracking system,
a hand-eye calibration between markers and the camera has been applied [27].
Besides the ground truth trajectory, each scene consists of a 20 Hz grayscale
camera capture with a resolution of 640 × 480 and 60 Hz IMU readings (gyro-
scope and accelerometer) obtained from a “Microsoft Surface 2 Pro”. Figure 1
illustrates camera captures of three different scenes.

In order to characterize each scene in more detail, we extract scene properties
of the provided ground truth motion trajectory. The first and last 10 % of the
frames are discarded for every scene, since they are either needed for the map
initialization or the tracking already failed. Then we perform k-means cluster-
ing on the euclidean distances of each scene property (1D) with three cluster
centers (low, moderate and high). The chosen scene properties are the overall
translation distance (TD) and the overall rotation distance (RD). The velocities
are proportional to the corresponding distances since each scene has a duration
of 100 to 120 s.
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Table 1 depicts the absolute values of the low-level features of each scene as
well as the corresponding clusters. It is important to note that the number of
scenes per cluster is not equally distributed. For instance, in RD only three of
the 21 scenes belong to the High cluster, while 8 scenes are matched to the Low
cluster. The cluster TD High starts at 54.74 m until 63.45 m, while the range of
the TD Low cluster lies between 10.53 m and 33.08 m. The average translation
velocities range from 0.22 m/s to 0.71 m/s, while the average rotation velocities
range from 21.51 deg/s to 68.08 deg/s.

5 Results

The evaluations consider the first 350 frames of every scene due to tracking
failures. The patch versus descriptor matching as well as the sensor fusion tech-
niques are only evaluated via the absolute trajectory error (ATE), since the
results are already very distinctive. Both ATE and rotation error are computed
for the descriptor update techniques. We calculate the quaternion-based rota-
tion error of Gramkow [28] for every frame. Afterwards, we averaged the rotation
error per scene. The clusters results displayed in the figures depict the median
of the averaged rotation errors. The ATE is computed via the publicly available
script of [25].

5.1 Patch Versus Descriptor Matching

In Fig. 2, we compare the ATE results of the scenes that were trackable by all
approaches. It can be seen that the patch-based PTAM performs similarly to
ORB-PTAM with a slight advantage in scene 14. The gravity-aligned (GA)-
ORB-PTAM performs better than the standard ORB-PTAM in 6 of 7 scenes.
Moreover, the gravity-aligned features mostly improve tracking in cases of pure
rotation trajectories (see RD High in Fig. 3). The SIFT-PTAM algorithm com-
pletely fails to track in those cases. That is why only this small subset could
be evaluated here. Furthermore, SIFT-PTAM leads to higher ATE than ORB-
PTAM in every tested scene.

Fig. 2. The ATE [m] of patch-based versus descriptor-based matching.
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5.2 Descriptor Update Techniques

For the evaluation of the descriptor update techniques, the original PTAM algo-
rithm is adapted to ORB-PTAM with GAFD and without. No Kalman filter
for a posterior update is used. Moreover, the size of set D of the associated
descriptors is not limited for pooling and bestfit (see Eq. (2)). Figure 3 consists
of 6 different trajectory clusters, however, the scenes 2, 7, 11, 15, 17, and 22
are excluded due to tracking errors in the source descriptor technique. It can
be seen that the ATEs do not differ much except for GAFD and non-GAFD
descriptor updates. GAFD produces the smallest error in every cluster. Consid-
ering only the GAFD versions, the pooling reaches slightly lower errors than the
other descriptor update strategies. Moreover, the new descriptor techniques per-
form only worse than the source technique for the RD High. For the non-GAFD
versions, there is no clear difference and source even performs best in RD Low.

Fig. 3. The ATE [m] of the descriptor maintenance techniques for GAFD and non-
GAFD extensions. Only the ORB descriptor is used for this comparison.

Figure 4 presents the rotational pose error (RPE). The rotational pose errors
differ more significantly between the techniques. Here, pooling leads to a rotation
error reduction compared to the bestfit and the source techniques except for RD
High. There, the bestfit technique produces a lower RPE than pooling, whereas
the pooling technique performs best in 5 of 6 cluster. In two clusters (TD Mod and
RD Low) the bestfit approach leads to worse results than the source technique.

The local descriptors without the GAFD extension never state the best
results. Additionally, the error variations between the descriptor maintenance
techniques are much larger without GAFD than with GAFD. This shows that
GAFD stabilizes the local features on the one hand, but on the other hand, out-
lines the importance of the descriptor maintenance technique, i.e., pooling, in
case of non-GAFD. There is no relation between the clusters and the descriptor
maintenance techniques.
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Fig. 4. Rotational pose errors (RPE) [deg] of the GAFD- and non-GAFD ORB features
for different descriptor maintenance techniques. Same color scheme applies as in Fig. 3.

5.3 Sensor Integration: GAFD Versus GAFD and Kalman Filter

In this section, we evaluate whether a combination of GAFD and a Kalman filter
can further improve the tracking accuracy. Every descriptor-based tracking algo-
rithm incorporates pooling as descriptor maintenance technique. Furthermore,
17 of 21 scenes have been used for the evaluation. The scenes 7, 11, 17, and
19 either failed to initialize the map or the tracking failed after a certain time.
SLAM algorithms that include a posterior pose update via UKF are marked
with a plus (+). Besides the original PTAM, also PTAM+ [1] as well as EKF-
SLAM [29] are included in our comparisons. Figure 5 illustrates the ATE of all
clusters and SLAM techniques.

Fig. 5. Absolute trajectory errors [m] of GAFD versus GAFD and UKF (+).

The EKF-SLAM algorithm achieves the worst performance in all clusters.
The GA(FD)-ORB-PTAM tracker shows the lowest error in 4 out of 6 clusters.
Thus, GA-ORB-PTAM is the best algorithm in this comparison. The additional
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UKF (+) for a posterior pose update does improve accuracy only for the clusters
TD High and RD Low, whereas the ATE increases in the cluster with large
rotations RD High. The GA-ORB-PTAM presents a recognizable smaller error
than GA-ORB-PTAM+, which might be caused due to the accumulation of the
error in the Kalman filter. This is expected since the gravity-aligned features
stabilize the matching in these cases, whereas algorithms such as PTAM and
also ORB-SLAM [9] struggle to identify the correct trajectories. The original
PTAM algorithm is outperformed in every cluster.

The SIFT descriptor produces higher trajectory errors than the ORB descrip-
tor, especially in RD Low. This is related to the fact that SIFT was unable to
detect enough keypoints, while FAST produced enough keypoints for the ORB
descriptor extraction and matching. It is of interest that for the GA-SIFT imple-
mentations an additional UKF (+) improved the tracking accuracy. Thus, a pos-
terior pose update based on the sensor data is more beneficial in case of larger
trajectory errors.

6 Computational Costs

The functional runtimes of every frame have been calculated and averaged over
all sets. Table 2 depicts the function runtimes of keypoint extraction (KE),
descriptor extraction (DE), tracking (T), relocalization (R) and motion model
(MM). The experiments have been carried out on an Intel Core i7-4600U (2 cores
@ 2.1 GHz).

Table 2. Mean runtimes of different PTAM approaches [ms].

PTAM PTAM+ ORB PTAM+ GA-ORB PTAM+ GA-SIFT PTAM+

KE 3.99 4.36 9.83 5.33 488.10

DE - - 26.11 16.78 646.08

T 18.21 19.10 13.37 10.07 7.03

R 1.18 1.69 2.17 0.72 2.19

MM 2.09 1.16 1.1 0.64 1.38

Total 25.47 26.30 52.60 33.54 1144.79

It can be seen that the descriptor-based versions perform slightly faster in the
tracking stage (T) than their patch-based counterparts. The patch-based PTAM
variants create warped patches on four pyramid levels, while the descriptor-
based PTAM considers only three pyramid levels. The descriptor-based versions
involve a computationally expensive descriptor extraction (DE) stage, which can
be completely omitted in the patch-based versions.

Interestingly, ORB-PTAM+ is more time consuming than GA-ORB-
PTAM+. The GAFD version allows to detect duplicated keypoints, which are
erased prior to the descriptor extraction, thus saving time. The SIFT versions
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have been parametrized with a smaller number of keypoints to extract (∼1000
keypoints), therefore, the matching process is faster in the tracking stage com-
pared to ORB. The total runtimes show that GAFD-ORB-PTAM is around 6 ms
slower than the original PTAM algorithm which runs the fastest (25.47 ms), but
GAFD-ORB-PTAM is still real-time capable (∼32 ms). The SIFT variant is not
of practical use even though the number of keypoints has been limited.

7 Conclusion

We proposed two new descriptor maintenance techniques, temporal pooling and
bestfit. The (median) pooling technique produced the highest rotational pose
accuracy and the lowest absolute trajectory error. Moreover, the new techniques
also increased tracking accuracy in combination with gravity-aligned (GA) fea-
tures, but were even more beneficial when GA features were missing as in cases
that lack gyroscope data. The local descriptors without gravity alignment varied
much more revealing potential for further improvements. For the sensor fusion,
we revealed that a posterior update with a UKF did not improve tracking accu-
racy if the sensor information is already included into the local features. While
still real-time capable, the GA-ORB-PTAM algorithm performed better than
the original PTAM, PTAM+ (UKF) as well as EKF-SLAM. Thus, we recom-
mend to use gravity-aligned descriptors instead of incorporating the gyroscope
data in a Kalman filter.

Future work should try to find even better maintenance techniques for the
feature descriptors. For example, the descriptors could be selected based on a
trade-off between the current velocity (motion blur) and viewing angle (texture
quality).
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