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Abstract. We survey recent trends in practical algorithms for balanced graph partitioning, point to
applications and discuss future research directions.

1 Introduction

Graphs are frequently used by computer scientists as abstractions when modeling an appli-
cation problem. Cutting a graph into smaller pieces is one of the fundamental algorithmic
operations. Even if the final application concerns a different problem (such as traversal, find-
ing paths, trees, and flows), partitioning large graphs is often an important subproblem for
complexity reduction or parallelization. With the advent of ever larger instances in applica-
tions such as scientific simulation, social networks, or road networks, graph partitioning (GP)
therefore becomes more and more important, multifaceted, and challenging. The purpose of
this paper is to give a structured overview of the rich literature, with a clear emphasis on
explaining key ideas and discussing recent work that is missing in other overviews. For a
more detailed picture on how the field has evolved previously, we refer the interested reader
to a number of surveys. Bichot and Siarry [BS11] cover studies on GP within the area of
numerical analysis. This includes techniques for GP, hypergraph partitioning and parallel
methods. The book discusses studies from a combinatorial viewpoint as well as several ap-
plications of GP such as the air traffic control problem. Schloegel et al. [SKK03] focus on
fast graph partitioning techniques for scientific simulations. In their account of the state of
the art in this area around the turn of the millennium, they describe geometric, combinato-
rial, spectral, and multilevel methods and how to combine them for static partitioning. Load
balancing of dynamic simulations, parallel aspects, and problem formulations with multiple
objectives or constraints are also considered. Monien et al. [MPS07] discuss heuristics and
approximation algorithms used in the multilevel GP framework. In their description they
focus mostly on coarsening by matching and local search by node-swapping heuristics. Kim
et al. [KHKM11] cover genetic algorithms.

Our survey is structured as follows. First, Section 2 introduces the most important vari-
ants of the problem and their basic properties such as NP-hardness. Then Section 3 discusses
exemplary applications including parallel processing, road networks, image processing, VLSI
design, social networks, and bioinformatics. The core of this overview concerns the solution
methods explained in Sections 4–7. They involve a surprising variety of techniques. We begin
in Section 4 with basic, global methods that “directly” partition the graph. This ranges from
very simple algorithms based on breadth first search to sophisticated combinatorial optimiza-
tion methods that find exact solutions for small instances. Also methods from computational
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geometry and linear algebra are being used. Solutions obtained in this or another way can be
improved using a number of heuristics described in Section 5. Again, this ranges from simple-
minded but fast heuristics for moving individual nodes to global methods, e.g., using flow
or shortest path computations. The most successful approach to partitioning large graphs –
the multilevel method – is presented in Section 6. It successively contracts the graph to a
more manageable size, solves the base instance using one of the techniques from Section 4,
and – using techniques from Section 5 – improves the obtained partition when uncontracting
to the original input. Metaheuristics are also important. In Section 7 we describe evolution-
ary methods that can use multiple runs of other algorithms (e.g., multilevel) to obtain high
quality solutions. Thus, the best GP solvers orchestrate multiple approaches into an overall
system. Since all of this is very time consuming and since the partitions are often used for
parallel computing, parallel aspects of GP are very important. Their discussion in Section 8
includes parallel solvers, mapping onto a set of parallel processors, and migration minimiza-
tion when repartitioning a dynamic graph. Section 9.2 describes issues of implementation,
benchmarking, and experimentation. Finally, Section 10 points to future challenges.

2 Preliminaries

Given a number k ∈ N>1 and an undirected graph G = (V,E) with non-negative edge
weights, ω : E → R>0, the graph partitioning problem (GPP) asks for a partition Π of V
with blocks of nodes Π = (V1,. . . ,Vk):

1. V1 ∪ · · · ∪ Vk = V

2. Vi ∩ Vj = ∅ ∀i 6= j.

A balance constraint demands that all blocks have about equal weights. More precisely,
it requires that, ∀i ∈ {1, . . . , k} : |Vi| ≤ Lmax:= (1+ ε)d|V |/ke for some imbalance parameter
ε ∈ R≥0. In the case of ε = 0, one also uses the term perfectly balanced. Sometimes we also
use weighted nodes with node weights c : V → R>0. Weight functions on nodes and edges
are extended to sets of such objects by summing their weights. A block Vi is overloaded if
|Vi| > Lmax. A clustering is also a partition of the nodes. However, k is usually not given in
advance, and the balance constraint is removed. Note that a partition is also a clustering of
a graph. In both cases, the goal is to minimize or maximize a particular objective function.
We recall well-known objective functions for GPP in Section 2.1. A node v is a neighbor of
node u if there is an edge {u, v} ∈ E. If a node v ∈ Vi has a neighbor w ∈ Vj, i 6= j, then
it is called boundary node. An edge that runs between blocks is also called cut edge. The
set Eij:= {{u, v} ∈ E : u ∈ Vi, v ∈ Vj} is the set of cut edges between two blocks Vi and Vj.
An abstract view of the partitioned graph is the so called quotient graph or communication
graph, where nodes represent blocks, and edges are induced by connectivity between blocks.
There is an edge in the quotient graph between blocks Vi and Vj if and only if there is an
edge between a node in Vi and a node in Vj in the original, partitioned graph. The degree
d(v) of a node v is the number of its neighbors. An adjacency matrix of a graph is a |V |×|V |
matrix describing node connectivity. The element au,v of the matrix specifies the weight of
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the edge from node u to node v. It is set to zero if there is no edge between these nodes.
The Laplacian matrix of a graph G is defined as L = D−A, where D is the diagonal matrix
expressing node degrees, and A is the adjacency matrix. A cycle in a directed graph with
negative weight is also called negative cycle. A matching M ⊆ E is a set of edges that do
not share any common nodes, i. e., the graph (V,M) has maximum degree one.

2.1 Objective Functions

In practice, one often seeks to find a partition that minimizes (or maximizes) an objective.
Probably the most prominent objective function is to minimize the total cut∑

i<j

ω(Eij). (2.1)

Other formulations of GPP exist. For instance when GP is used in parallel computing to
map the graph nodes to different processors, the communication volume is often more ap-
propriate than the cut [HK00]. For a block Vi, the communication volume is defined as
comm(Vi) :=

∑
v∈Vi c(v)D(v), where D(v) denotes the number of different blocks in which

v has a neighbor node, excluding Vi. The maximum communication volume is then defined
as maxi comm(Vi), whereas the total communication volume is defined as

∑
i comm(Vi).

The maximum communication volume was used in one subchallenge of the 10th DIMACS
Challenge on Graph Partitioning and Graph Clustering [BMSW13]. Although some appli-
cations profit from other objective functions such as the communication volume or block
shape (formalized by the block’s aspect ratio [DPSW00a], minimizing the cut size has been
adopted as a kind of standard. One reason is that cut optimization seems to be easier in
practice. Another one is that for graphs with high structural locality the cut often correlates
with most other formulations but other objectives make it more difficult to use a multilevel
approach.

There are also GP formulations in which balance is not directly encoded in the problem
description but integrated into the objective function. For example, the expansion of a non-
trivial cut (V1, V2) is defined as ω(E12)/min(c(V1), c(V2)). Similarly, the conductance of such
a cut is defined as ω(E12)/min(vol(V1), vol(V2)), where vol(S) :=

∑
v∈S d(v) denotes the

volume of the set S.
As an extension to the problem, when the application graph changes over time, reparti-

tioning becomes necessary. Due to changes in the underlying application, a graph partition
may become gradually imbalanced due to the introduction of new nodes (and edges) and the
deletion of others. Once the imbalance exceeds a certain threshold, the application should
call the repartitioning routine. This routine is to compute a new partition Π ′ from the old
one, Π. In many applications it is favorable to keep the changes between Π and Π ′ small.
Minimizing these changes simultaneously to optimizing Π ′ with respect to the cut (or a sim-
ilar objective) leads to multiobjective optimization. To avoid the complexity of the latter, a
linear combination of both objectives seems feasible in practice [SKK00].
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2.2 Hypergraph Partitioning

A hypergraph H = (V,E) is a generalization of a graph in which an edge (usually called hy-
peredge or net) can connect any number of nodes. As with graphs, partitioning a hypergraph
also means to find an assignment of nodes to different blocks of (mostly) equal size. The
objective function, however, is usually expressed differently. A straightforward generaliza-
tion of the edge cut to hypergraphs is the hyperedge cut. It counts the number of hyperedges
that connect different blocks. In widespread use for hypergraph partitioning, however, is the
so-called (λ−1) metric, CV (H,Π) =

∑
e∈E(λ(e,Π)−1), where λ(e,Π) denotes the number

of distinct blocks connected by the hyperedge e and Π the partition of H’s vertex set.
One drawback of hypergraph partitioning compared to GP is the necessity of more com-

plex algorithms—in terms of implementation and running time, not necessarily in terms of
worst-case complexity. Paying this price seems only worthwhile if the underlying application
profits significantly from the difference between the graph and the hypergraph model.

To limit the scope, we focus in this paper on GP and forgo a more detailed treatment
of hypergraph partitioning. Many of the techniques we describe, however, can be or have
been transferred to hypergraph partitioning as well [CA01,PM07,CB+07,TK08,FB13]. One
important application area of hypergraph partitioning is VLSI design (see Section 3.5).

2.3 Hardness Results and Approximation

Partitioning a graph into k blocks of roughly equal size such that the cut metric is minimized
is NP-complete (as decision problem) [HR73,GJS74]. Andreev and Räcke [AR06] have shown
that there is no constant-factor approximation for the perfectly balanced version (ε = 0) of
this problem on general graphs. If ε ∈ (0, 1], then an O

(
log2 n

)
factor approximation can

be achieved. In case an even larger imbalance ε > 1 is allowed, an approximation ratio of
O(log n) is possible [ENRS99]. The minimum weight k-cut problem asks for a partition of
the nodes into k non-empty blocks without enforcing a balance constraint. Goldschmidt et
al. [GH94] proved that, for a fixed k, this problem can be solved optimally in O(nk

2
). The

problem is NP-complete [GH94] if k is not part of the input.
For the unweighted minimum bisection problem, Feige et al. [FK02] have shown that

there is an O
(
log1.5 n

)
approximation algorithm and an O(log n) approximation for mini-

mum bisection on planar graphs. The bisection problem is efficiently solvable if the balance
constraint is dropped – in this case it is the minimum cut problem. Wagner et al. [WW93]
have shown that the minimum bisection problem becomes harder the more the balance con-
straint is tightened towards the perfectly balanced case. More precisely, if the block weights
are bounded from below by a constant, i. e., |Vi| ≥ C, then the problem is solvable in poly-
nomial time. The problem is NP-hard if the block weights are constrained by |Vi| ≥ αnδ for
some α, δ > 0 or if |Vi| = n

2
. The case |Vi| ≥ α log n for some α > 0 is open. Note that the

case |Vi| ≥ αnδ also implies that the general GPP with similar lower bounds on the block
weights is NP-hard.

If the balance constraint of the problem is dropped and one uses a different objective
function such as sparsest cut, then there are better approximation algorithms. The sparsest
cut objective combines cut and balance into a single objective function. For general graphs
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and the sparsest cut metric, Arora et al. [ARV04,AHK10] achieve an approximation ratio of
O
(√

log n
)
in Õ(n2) time.

Being of high theoretical importance, most of the approximation algorithms are not
implemented, and the approaches that implement approximation algorithms are too slow to
be used for large graphs or are not able to compete with state-of-the-art GP solvers. Hence,
mostly heuristics are used in practice.

3 Applications of Graph Partitioning

We now describe some of the applications of GP. For brevity this list is not exhaustive.

3.1 Parallel Processing

Perhaps the canonical application of GP is the distribution of work to processors of a par-
allel machine. Scientific computing applications such as sparse direct and iterative solvers
extensively use GP to ensure load balance and minimize communication. When the prob-
lem domain does not change as the computation proceeds, GP can be applied once in the
beginning of the computation. This is known as static partitioning.

Periodic repartitioning, explained in Section 2.1, proved to be useful for scientific com-
puting applications with evolving computational domains such as Adaptive Mesh Refinement
(AMR) or volume rendering [ACFK07]. The graph model can be augmented with additional
edges and nodes to model the migration costs, as done for parallel direct volume rendering
of unstructured grids [ACFK07], an important problem in scientific visualization.

Parallel Graph Computations. GP is also used to partition graphs for parallel processing,
for problems such as graph eigenvalue computations [BDR13], breadth-first search [BM12],
triangle listing [CC11], PageRank and connected components [SW13]. In computationally in-
tensive graph problems, such as finding the eigenvectors and eigenvalues of graphs, multilevel
methods that are tailored to the characteristics of real graphs are suitable [ARK06].

Mesh Partitioning. A mesh or grid approximates a geometric domain by dividing it into
smaller subdomains. Hendrickson defines it as “the scaffolding upon which a function is de-
composed into smaller pieces” [Hen98]. Mesh partitioning involves mapping the subdomains
of the mesh to processors for parallel processing, with the objective of minimizing commu-
nication and load imbalance. A partial differential equation (PDE) that is discretized over a
certain grid can be solved by numerous methods such as the finite differences method or the
finite elements method. The discretization also defines a system of linear equations that can
be represented by a sparse matrix. While it is always possible to use that sparse matrix to do
the actual computation over the mesh or grid, sometimes this can be wasteful when the ma-
trix need not be formed explicitly. In the absence of an explicit sparse matrix, the GP solvers
first define a graph from the mesh. The right mesh entity to use as the nodes of the graph
can be ambiguous and application dependent. Common choices are mesh nodes, groups of
mesh nodes that need to stay together, and the dual of mesh nodes. Choosing groups of mesh
nodes (such as small regular meshes [FKS+12]) with appropriate weighting as graph nodes
makes GP cost effective for large problem sizes when the overhead for per-node partitioned
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graphs would be too big. Recent work by Zhou et al. [ZS+10] gives a thorough treatment
of extreme-scale mesh partitioning and dynamic repartitioning using graph models. A vari-
ety of solution methodologies described in Section 6, such as the multilevel and geometric
methods, has been successfully applied to mesh partitioning.

3.2 Complex Networks

In addition to the previously mentioned task of network data distribution across a cluster
of machines for fast parallel computations, complex networks introduced numerous further
applications of GPP. A common task in these applications is to identify groups of similar
entities whose similarity and connectivity is modeled by the respective networks. The quality
of the localizations is quantified with different domain-relevant objectives. Many of them are
based on the principle of finding groups of entities that are weakly connected to the rest
of the network. In many cases such connectivity also represents similarity. In the context of
optimization problems on graphs, by complex networks we mean weighted graphs with non-
trivial structural properties that were created by real-life or modelling processes [New10].
Often, models and real-life network generation processes are not well understood, so designing
optimization algorithms for such graphs exhibit a major bottleneck in many applications.

Power Grids. Disturbances and cascading failures are among the central problems in
power grid systems that can cause catastrophic blackouts. Splitting a power network area
into self-sufficient islands is an approach to prevent the propagation of cascading failures
[LRJL05]. Often the cut-based objectives of the partitioning are also combined with the load
shedding schemes that enhance the robustness of the system and minimize the impact of
cascading events [LL09]. Finding vulnerabilities of power systems by GPP has an additional
difficulty. In some applications, one may want to find more than one (nearly) minimum
partitioning because of the structural difference between the solutions. Spectral GP (see
Section 4.2) is also used to detect contingencies in power grid vulnerability analysis by
splitting the network into regions with excess generation and excess load [DLL+05].

Geographically Embedded Networks. Recent advances of location-aware devices (such as
GPS) stimulated a rapid growth of streaming spatial network data that has to be analyzed
by extremely fast algorithms. These networks model entities (nodes) tied to geographic
places and links that represent flows such as migrations, vehicle trajectories, and activities of
people [DG12]. In problems related to spatial data and geographical networks, the cut-based
objective of GP (and clustering) is often reinforced by the spatial contiguity constraints.

Biological Networks. Many complex biological systems can be modeled by graph-theoretic
representations. Examples include protein-protein interactions, and gene co-expression net-
works. In these networks nodes are biological entities (such as genes and proteins) and edges
correspond to their common participation in some biological process. Such processes can vary
from simple straightforward interactions (such as protein-protein interaction and gene-gene
co-expression) to more complex relationships in which more than two entities are involved.
Partitioning and clustering of such networks may have several goals. One of them is related
to data reduction given an assumption that clustered nodes behave biologically similarly to
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each other. Another one is the detection of some biological processes by finding clusters of
involved nodes. For details see [JS08,Mon10].

Social Networks. Identification of community structure is among the most popular topics
in social network science. In contrast to the traditional GPP, community detection problems
rarely specify the number of clusters a priori. Notwithstanding this difference, GP methods
contributed a lot of their techniques to the community detection algorithms [For09]. More-
over, GP solvers are often used as first approximations for them. We refer the reader to ex-
amples of methods where GP is used for solving the community detection problem [New13].

3.3 Road Networks

GP is a very useful technique to speed up route planning [Lau04,MSS+07,KLSV10,DGPW11,
LS12,DW13]. For example, edges could be road segments and nodes intersections.4

Lauther [Lau04] introduced the arc-flags algorithm, which uses a geometric partitioning
approach as a preprocessing step to reduce the search space of Dijkstra’s algorithm. Möhring
et al. [MSS+07] improved this method in several ways. Using high quality graph partitions
turns out to be one key improvement here since this reduces the preprocessing cost drastically.
One reason is that road networks can be partitioned using surprisingly small cuts but these
are not easy to find.

Schulz et al. [SWZ02] propose a multilevel algorithm for routing based on precomputing
connections between border nodes of a graph partition. This was one of the first success-
ful speedup technique for shortest paths. It was outclassed later by other hierarchy based
methods, and, somewhat surprisingly resurfaced after Delling et al. [DGPW11,DW13] did
thorough algorithm engineering for this approach. Again, a key improvement was to use
high quality graph partitions. Since the approach excels at fast recomputation of the pre-
processing information when the edge weights change, the method is now usually called
customizable route planning. Luxen and Schieferdecker [LS12] use GP to efficiently compute
candidate sets for alternative routes in road networks and Kieritz et al. [KLSV10] parallelize
shortest-path preprocessing and query algorithms. Maue et al. [MSM09] show how to use
precomputed distances between blocks of a partition to make the search goal directed. Here,
block diameter seems more relevant than cut size, however.

3.4 Image Processing

Image segmentation is a fundamental task in computer vision for which GP and clustering
methods have become among the most attractive solution techniques. The goal of image
segmentation is to partition the pixels of an image into groups that correspond to objects.
Since the computations preceding segmentation are often relatively cheap and since the com-
putations after segmentation work on a drastically compressed representation of the image
(objects rather than pixels), segmentation is often the computationally most demanding part
in an image processing pipeline. The image segmentation problem is not well-posed and can

4 Sometimes more complex models are used to model lanes, turn costs etc.
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usually imply more than one solution. During the last two decades, graph-based represen-
tations of an image became very popular and gave rise to many cut-based approaches for
several problems including image segmentation. In this representation each image pixel (or
in some cases groups of pixels) corresponds to a node in a graph. Two nodes are connected
by a weighted edge if some similarity exists between them. Usually, the criteria of similarity
is a small geodesic distance which can result in mesh-like graphs with four or more neighbors
for each node. The edge weights represent another measure of (dis)similarity between nodes
such as the difference in the intensity between the connected pixels (nodes).

GP can be formulated with different objectives that can explicitly reflect different defi-
nitions of the segmented regions depending on the applications. The classical minimum cut
formulation of the GP objective (2.1) can lead in practice to finding too small segmented
objects. One popular modification of the objective that was adopted in image segmenta-
tion, called normalized cut, is given by ncut(A,B) = ω(EAB)/vol(A)+ω(EAB)/vol(B). This
objective is similar to the conductance objective described in Section 2.1. Many efficient
algorithms were proposed for solving GPP with the normalized cut objective. Among the
most successful are spectral and multilevel approaches. Another relevant formulation of the
partitioning objective which is useful for image segmentation is given by optimizing the
isoperimetric ratio for sets [GS06]. For more information on graph partitioning and image
segmentation see [PZZ13,CG12].

3.5 VLSI Physical Design

Physical design of digital circuits for very large-scale integration (VLSI) systems has a long
history of being one of the most important customers of graph and hypergraph partitioning,
often reinforced by several additional domain relevant constraints. The partitioning should
be accomplished in a reasonable computation time, even for circuits with millions of modules,
since it is one of the bottlenecks of the design process. The goal of the partitioning is to reduce
the VLSI design complexity by partitioning it into smaller components (that can range from
a small set of field-programmable gate arrays to fully functional integrated circuits) as well as
to keep the total length of all the wires short. The typical optimization objective (see (2.1))
is to minimize the total weight of connections between subcircuits (blocks), where nodes
are the cells, i.e., small logical or functional units of the circuit (such as gates), and edges
are the wires. Because the gates are connected with wires with more than two endpoints,
hypergraphs model the circuit more accurately. Examples of additional constraints for the
VLSI partitioning include information on the I/O of the circuit, sets of cells that must belong
to the same blocks, and maximum cut size between two blocks. For more information about
partitioning of VLSI circuits see [KLMH11,CS03].
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4 Global Algorithms

We begin our discussion of the wide spectrum of GP algorithms with methods that work
with the entire graph and compute a solution directly. These algorithms are often used for
smaller graphs or are applied as subroutines in more complex methods such as local search
or multilevel algorithms. Many of these methods are restricted to bipartitioning but can be
generalized to k-partitioning for example by recursion.

After discussing exact methods in Section 4.1 we turn to heuristic algorithms. Spectral
partitioning (Section 4.2) uses methods from linear algebra. Graph growing (Section 4.3) uses
breadth first search or similar ways to directly add nodes to a block. Flow computations are
discussed in Section 4.4. Section 4.5 summarizes a wide spectrum of geometric techniques.
Finally, Section 4.5 introduces streaming algorithms which work with a very limited memory
footprint.

4.1 Exact Algorithms

There is a large amount of literature on methods that solve GPP optimally. This includes
methods dedicated to the bipartitioning case [BCR97,KRC00,Fel05,SST03,Arm07,AFHM08,
DGRW12,DW12,FW11,HPZ13,HK99,LR03] and some methods that solve the general GPP
[FMDS+98,Sen01]. Most of the methods rely on the branch-and-bound framework [LD60].

Bounds are derived using various approaches: Karisch et al. [KRC00] and Armbruster
[Arm07] use semi-definite programming, and Sellman et al. [SST03] and Sensen [Sen01]
employ multi-commodity flows. Linear programming is used by Brunetta et al. [BCR97],
Ferreira et al. [FMDS+98], Lisser et al. [LR03] and by Armbruster et al. [AFHM08]. Hager
et al. [HPZ13,HK99] formulate GPP in form of a continuous quadratic program on which the
branch and bound technique is applied. The objective of the quadratic program is decom-
posed into convex and concave components. The more complicated concave component is
then tackled by an SDP relaxation. Felner et al. [Fel05] and Delling et al. [DGRW12,DW12]
utilize combinatorial bounds. Delling et al. [DGRW12,DW12] derive the bounds by comput-
ing minimum s-t cuts between partial assignments (A,B), i. e., A,B ⊆ V and A ∩ B = ∅.
The method can partition road networks with more than a million nodes, but its running
time highly depends on the bisection width of the graph.

In general, depending on the method used, two alternatives can be observed. Either the
bounds derived are very good and yield small branch-and-bound trees but are hard to com-
pute. Or the bounds are somewhat weaker and yield larger trees but are faster to compute.
The latter is the case when using combinatorial bounds. On finite connected subgraphs of
the two dimensional grid without holes, the bipartitioning problem can be solved optimally
in O(n4) time [FW11]. Recent work by Bevern et al. [vBFSS13] looks at the parameterized
complexity for computing balanced partitions in graphs.

All of these methods can typically solve only very small problems while having very large
running times, or if they can solve large bipartitioning instances using a moderate amount
of time [DGRW12,DW12], highly depend on the bisection width of the graph. Methods that
solve the general GPP [FMDS+98,Sen01] have immense running times for graphs with up to
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a few hundred nodes. Moreover, the experimental evaluation of these methods only considers
small block numbers k ≤ 4.

4.2 Spectral Partitioning

One of the first methods to split a graph into two blocks, spectral bisection, is still in use
today. Spectral techniques were first used by Donath and Hoffman [DH72,DH73] and Fiedler
[Fie75], and have been improved subsequently by others [Bop87,PSL90,Sim91,HL95b,BS93].
Spectral bisection infers global information of the connectivity of a graph by computing the
eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix L of
the graph. This eigenvector z2 is also known as Fiedler vector ; it is the solution of a relaxed
integer program for cut optimization. A partition is derived by determining the median value
m in z2 and assigning all nodes with an entry smaller or equal to m to V1 and all others to
V2.

The second eigenvector can be computed using a modified Lanczos algorithm [Lan50].
However, this method is expensive in terms of running time. Barnard and Simon [BS93]
use a multilevel method to obtain a fast approximation of the Fiedler vector. The algorith-
mic structure is similar to the multilevel method explained in Section 6, but their method
coarsens with independent node sets and performs local improvement with Rayleigh quo-
tient iteration. Hendrickson and Leland [HL95b] extend the spectral method to partition a
graph into more than two blocks by using multiple eigenvectors; these eigenvectors are com-
putationally inexpensive to obtain. The method produces better partitions than recursive
bisection, but is only useful for the partitioning of a graph into four or eight blocks. The
authors also extended the method to graphs with node and edge weights.

4.3 Graph Growing

A very simple approach for obtaining a bisection of a graph is called graph growing [KK98a,
GL81]. Most of its variants are based on breadth-first search. Its simplest version works as
follows. Starting from a random node v, the nodes are assigned to block V1 using a breadth-
first search (BFS) starting at v. The search is stopped after half of the original node weights
are assigned to this block and V2 is set to V \V1. This method can be combined with a local
search algorithm to improve the partition. Multiple restarts of the algorithm are important
to get a good solution. One can also try to find a good starting node by looking at a node
that has maximal distance from a random seed node [GL81]. Variations of the algorithm
always add the node to the block that results in the smallest increase in the cut [KK98a].
An extension to k > 2 blocks and with iterative improvement is described in Section 5.5.

4.4 Flows

The well-known max-flow min-cut theorem [FF56] can be used to separate two node sets
in a graph by computing a maximum flow and hence a minimum cut between them. This
approach completely ignores balance, and it is not obvious how to apply it to the balanced
GPP. However, at least for random regular graphs with small bisection width this can be
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done [BCLS87]. Maximum flows are also often used as a subroutine. Refer to Section 5.4
for applications to improve a partition and to Section 6.4 for coarsening in the context of
the multilevel framework. There are also applications of flow computations when quality is
measured by expansion or conductance [LR04,AL08].

4.5 Geometric Partitioning

Partitioning can utilize the coordinates of the graph nodes in space, if available. This is
especially useful in finite element models and other geometrically-defined graphs from tradi-
tional scientific computing. Here, geometrically “compact” regions often correspond to graph
blocks with small cut. Partitioning using nodal coordinates comes in many flavors, such as
recursive coordinate bisection (RCB) [Sim91] and inertial partitioning [Wil91,FL93]. In each
step of its recursion, RCB projects graph nodes onto the coordinate axis with the longest
expansion of the domain and bisects them through the median of their projections. The
bisecting plane is orthogonal to the coordinate axis, which can create partitions with large
separators in case of meshes with skewed dimensions. Inertial partitioning can be interpreted
as an improvement over RCB in terms of worst case performance because its bisecting plane
is orthogonal to a plane L that minimizes the moments of inertia of nodes. In other words,
the projection plane L is chosen such that it minimizes the sum of squared distances to all
nodes.

The random spheres algorithm of Miller et al. [MTV91,GMT98] generalizes the RCB algo-
rithm by stereographically projecting the d dimensional nodes to a random d+1 dimensional
sphere which is bisected by a plane through its center point. This method gives performance
guarantees for planar graphs, k-nearest neighbor graphs, and other “well-behaved” graphs.

Other representatives of geometry-based partitioning algorithms are space-filling curves [PB94,
HW02,Zum03,Bad13] which reduce d-dimensional partitioning to the one-dimensional case.
Space filling curves define a bijective mapping from V to {1, . . . , |V |}. This mapping aims at
the preservation of the nodes’ locality in space. The partitioning itself is simpler and cheaper
than RCB once the bijective mapping is constructed. A generalization of space-filling curves
to general graphs can be done by so-called graph-filling curves [SW04].

A recent work attempts to bring information on the graph structure into the geometry by
embedding arbitrary graphs into the coordinate space using a multilevel graph drawing algo-
rithm [KR13]. For a more detailed, albeit not very recent, treatment of geometric methods,
we refer the interested reader to Schloegel et al. [SKK03].

4.6 Streaming Graph Partitioning (SGP)

Streaming data models are among the most popular recent trends in big data processing. In
these models the input arrives in a data stream and has to be processed on the fly using much
less space than the overall input size. SGP algorithms are very fast. They are even faster
than multilevel algorithms but give lower solution quality. Nevertheless, many applications
that require extremely fast repartitioning methods (such as those that deal with dynamic
networks) can still greatly benefit from the SGP algorithms when an initial solution obtained
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by a stronger (static data) algorithm is supplied as an initial ordering. For details on SGP
we refer the reader to [SK12,TGRV00,NU13].

5 Iterative Improvement Heuristics

Most high quality GP solvers iteratively improve starting solutions. We outline a variety of
methods for this purpose, moving from very fine-grained localized approaches to more global
techniques.

5.1 Node-swapping Local Search

Local search is a simple and widely used metaheuristic for optimization that iteratively
changes a solution by choosing a new one from a neighborhood. Defining the neighborhood
and the selection strategy allows a wide variety of techniques. Having the improvement of
paging properties of computer programs in mind, Kernighan and Lin [KL70] were probably
the first to define GPP and to provide a local search method for this problem. The selection
strategy finds the swap of node assignments that yields the largest decrease in the total cut
size. Note that this “decrease” is also allowed to be negative. A round ends when all nodes
have been moved in this way. The solution is then reset to the best solution encountered in
this round. The algorithm terminates when a round has not found an improvement.

A major drawback of the KL method is that it is expensive in terms of asymptotic running
time. The implementation assumed in [KL70] takes time O(n2 log n) and can be improved to
O(mmax(log n,∆)) where ∆ denotes the maximum degree [Dut93]. A major breakthrough
is the modification by Fiduccia and Mattheyses [FM82]. Their carefully designed data struc-
tures and adaptations yield the KL/FM local search algorithm, whose asymptotic running
time is O(m). Bob Darrow was the first who implemented the KL/FM algorithm [FM82].

Karypis and Kumar [KK98b] further accelerated KL/FM by only allowing boundary
nodes to move and by stopping a round when the edge cut does not decrease after x node
moves. They improve quality by random tie breaking and by allowing additional rounds even
when no improvements have been found.

A highly localized version of KL/FM is considered in [OS10]. Here, the search spreads
from a single boundary node. The search stops when a stochastic model of the search predicts
that a further improvement has become unlikely. This strategy has a better chance to climb
out of local minima and yields improved cuts for the GP solvers KaSPar [OS10] and KaHIP
[SS11].

Rather than swapping nodes, Holtgrewe et al. move a single node at a time allowing more
flexible tradeoffs between reducing the cut or improving balance [HSS10].

Helpful Sets by Diekmann et al. [DMP95,MS04] introduce a more general neighborhood
relation in the bipartitioning case. These algorithms are inspired by a proof technique of
Hromkovič and Monien [HM91] for proving upper bounds on the bisection width of a graph.
Instead of migrating single nodes, whole sets of nodes are exchanged between the blocks to
improve the cut. The running time of the algorithm is comparable to the KL/FM algorithm,
while solution quality is often better than other methods [MS04].
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5.2 Extension to k-way Local Search

It has been shown by Simon and Teng [ST97] that, due to the lack of global knowledge,
recursive bisection can create partitions that are very far away from the optimal partition so
that there is a need for k-way local search algorithms. There are multiple ways of extending
the KL/FM algorithm to get a local search algorithm that can improve a k-partition.

One early extension of the KL/FM algorithm to k-way local search uses k(k− 1) priority
queues, one for each type of move (source block, target block) [San89,HL95a]. For a single
movement one chooses the node that maximizes the gain, breaking ties by the improvement
in balance.

Karypis and Kumar [KK98b] present a k-way version of the KL/FM algorithm that runs
in linear time O(m). They use a single global priority queue for all types of moves. The
priority used is the maximum local gain, i. e., the maximum reduction in the cut when the
node is moved to one of its neighboring blocks. The node that is selected for movement yields
the maximum improvement for the objective and maintains or improves upon the balance
constraint.

Most current local search algorithms exchange nodes between blocks of the partition
trying to decrease the cut size while also maintaining balance. This highly restricts the set
of possible improvements. Sanders and Schulz [SS13b, Sch13] relax the balance constraint
for node movements but globally maintain (or improve) balance by combining multiple local
searches. This is done by reducing the combination problem to finding negative cycles in a
graph, exploiting the existence of efficient algorithms for this problem.

5.3 Tabu Search

A more expensive k-way local search algorithm is based on tabu search [Glo89,Glo90], which
has been applied to GP by [RPG96, BH11b, BH10, BH11a,GBF11]. We briefly outline the
method reported by Galinier et al. [GBF11]. Instead of moving a node exactly once per
round, as in the traditional versions of the KL/FM algorithms, specific types of moves are
excluded only for a number of iterations. The number of iterations that a move (v, block)
is excluded depends on an aperiodic function f and the current iteration i. The algorithm
always moves a non-excluded node with the highest gain. If the node is in block A, then the
move (v,A) is excluded for f(i) iterations after the node is moved to the block yielding the
highest gain, i. e., the node cannot be put back to block A for f(i) iterations.

5.4 Flow Based Improvement

Sanders and Schulz [SS11,SS13a] introduce a max-flow min-cut based technique to improve
the edge cut of a given bipartition (and generalize this to k-partitioning by successively
looking at pairs of blocks that are adjacent in the quotient graph). The algorithm constructs
an s-t flow problem by growing an area around the given boundary nodes/cut edges. The
area is chosen such that each s-t cut in this area corresponds to a feasible bipartition of the
original graph, i. e., a bipartition that fulfills the balance constraint. One can then apply a
max-flow min-cut algorithm to obtain a min-cut in this area and hence a nondecreased cut

13



between the blocks. There are multiple improvements to extend this method, for example,
by iteratively applying the method, searching in larger areas for feasible cuts, or applying a
heuristic to output better balanced minimum cuts by using the given max-flow.

5.5 Bubble Framework

Diekmann et al. [DPSW00b] extend graph growing and previous ideas [WCE95] to obtain
an iterative procedure called Bubble framework, which is capable of partitioning into k > 2
well-shaped blocks. Some applications profit from good geometric block shapes, e. g., the
convergence rate of certain iterative linear solvers.

Graph growing is extended first by carefully selecting k seed nodes that are evenly dis-
tributed over the graph. The key property for obtaining a good quality, however, is an
iterative improvement within the second and the third step – analogous to Lloyd’s k-means
algorithm [Llo82]. Starting from the k seed nodes, k breadth-first searches grow the blocks
analogous to Section 4.3, only that the breadth-first searches are scheduled such that the
smallest block receives the next node. Local search algorithms are further used within this
step to balance the load of the blocks and to improve the cut of the resulting partition, which
may result in unconnected blocks. The final step of one iteration computes new seed nodes
for the next round. The new center of a block is defined as the node that minimizes the sum
of the distances to all other nodes within its block. To avoid their expensive computation,
approximations are used. The second and the third step of the algorithm are iterated until
either the seed nodes stop changing or no improved partition was found for more than 10 it-
erations. Figure 5.1 illustrates the three steps of the algorithm. A drawback of the algorithm
is its computational complexity O(km).

Subsequently, this approach has been improved by using distance measures that better
reflect the graph structure [Sch04,MS05,MMS06]. For example, Schamberger [Sch04] intro-
duced the usage of diffusion as a growing mechanism around the initial seeds and extended
the method to weighted graphs. More sophisticated diffusion schemes, some of which have
been employed within the Bubble framework, are discussed in Section 5.6.

Fig. 5.1: The three steps of the Bubble framework. Black nodes indicate the seed nodes. On the left hand side, seed
nodes are found. In the middle, a partition is found by performing breadth-first searches around the seed nodes and
on the right hand side new seed nodes are found.
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5.6 Random Walks and Diffusion

A random walk on a graph starts on a node v and then chooses randomly the next node to
visit from the set of neighbors (possibly including v itself) based on transition probabilities.
The latter can for instance reflect the importance of an edge. This iterative process can be
repeated an arbitrary number of times. It is governed by the so-called transition matrix P,
whose entries denote the edges’ transition probabilities. More details can be found in Lovasz’s
random walk survey [Lov93].

Diffusion, in turn, is a natural process describing a substance’s desire to distribute evenly
in space. In a discrete setting on graphs, diffusion is an iterative process which exchanges
splittable entities between neighboring nodes, usually until all nodes have the same amount.
Diffusion is a special random walk; thus, both can be used to identify dense graph regions:
Once a random walk reaches a dense region, it is likely to stay there for a long time, before
leaving it via one of the relatively few outgoing edges. The relative size of Pt

u,v, the probability
of a random walk that starts in u to be located on v after t steps, can be exploited for
assigning u and v to the same or different clusters. This fact is used by many authors for
graph clustering, cf. Schaeffer’s survey [Sch07].

Due to the difficulty of enforcing balance constraints, works employing these approaches
for partitioning are less numerous. Meyerhenke et al. [MMS09b] present a similarity measure
based on diffusion that is employed within the Bubble framework. This diffusive approach
bears some conceptual resemblance to spectral partitioning, but with advantages in qual-
ity [MS12]. Balancing is enforced by two different procedures that are only loosely coupled
to the actual partitioning process. The first one is an iterative procedure that tries to adapt
the amount of diffusion load in each block by multiplying it with a suitable scalar. Under-
loaded blocks receive more load, overloaded ones less. It is then easier for underloaded blocks
to “flood” other graph areas as well. In case the search for suitable scalars is unsuccessful,
the authors employ a second approach that extends previous work [WCE97]. It computes a
migrating flow on the quotient graph of the partition. The flow value fij between blocks i
and j specifies how many nodes have to be migrated from i to j in order to balance the par-
tition. As a key and novel property for obtaining good solutions, to determine which nodes
should be migrated in which order, the diffusive similarity values computed before within
the Bubble framework are used [MMS09b,Mey08].

Diffusion-based partitioning has been subsequently improved by Pellegrini [Pel07a], who
combines KL/FM and diffusion for bipartitioning in the tool Scotch. He speeds up previous
approaches by using band graphs that replace unimportant graph areas by a single node. An
extension of these results to k-way partitioning with further adaptations has been realized
within the tools DibaP [MMS09a] and PDibaP for repartitioning [Mey12]. Integrated into a
multilevel method, diffusive partitioning is able to compute high-quality solutions, in par-
ticular with respect to communication volume and block shape. It remains further work to
devise a faster implementation of the diffusive approach without running time dependence
on k.
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6 Multilevel Graph Partitioning

Clearly the most successful heuristic for partitioning large graphs is the multilevel graph par-
titioning approach. It consists of the three main phases outlined in Figure 6.1: coarsening,
initial partitioning, and uncoarsening. The main goal of the coarsening (in many multi-
level approaches implemented as contraction) phase is to gradually approximate the original
problem and the input graph with fewer degrees of freedom. In multilevel GP solvers this
is achieved by creating a hierarchy of successively coarsened graphs with decreasing sizes in
such a way that cuts in the coarse graphs reflect cuts in the fine graph. There are multiple
possibilities to create graph hierarchies. Most methods used today contract sets of nodes
on the fine level. Contracting U ⊂ V amounts to replacing it with a single node u with
c(u) :=

∑
w∈U c(w). Contraction (and other types of coarsening) might produce parallel

edges which are replaced by a single edge whose weight accumulates the weights of the par-
allel edges (see Figure 6.2). This implies that balanced partitions on the coarse level represent
balanced partitions on the fine level with the same cut value.

Coarsening is usually stopped when the graph is sufficiently small to be initially parti-
tioned using some (possibly expensive) algorithm. Any of the basic algorithms from Section 4
can be used for initial partitioning as long as they are able to handle general node and edge
weights. The high quality of more expensive methods that can be applied at the coarsest
level does not necessarily translate into quality at the finest level, and some GP multilevel
solvers rather run several faster but diverse methods repeatedly with different random tie
breaking instead of applying expensive global optimization techniques.

Uncoarsening consists of two stages. First, the solution obtained on the coarse level graph
is mapped to the fine level graph. Then the partition is improved, typically by using some
variants of the improvement methods described in Section 5. This process of uncoarsening
and local improvement is carried on until the finest hierarchy level has been processed. One
run of this simple coarsening-uncoarsening scheme is also called a V-cycle (see Figure 6.1).

There are at least three intuitive reasons why the multilevel approach works so well: First,
at the coarse levels we can afford to perform a lot of work per node without increasing the
overall execution time by a lot. Furthermore, a single node move at a coarse level corresponds
to a big change in the final solution. Hence, we might be able to find improvements easily
that would be difficult to find on the finest level. Finally, fine level local improvements are
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Fig. 6.1: The multilevel approach to GP. The left figure shows a two-level contraction-based scheme. The right figure
shows different chains of coarsening-uncoarsening in the multilevel frameworks.
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expected to run fast since they already start from a good solution inherited from the coarse
level. Also multilevel methods can benefit from their iterative application (such as chains of
V-cycles) when the previous iteration’s solution is used to improve the quality of coarsening.
Moreover, (following the analogy to multigrid schemes) the inter-hierarchical coarsening-
uncoarsening iteration can also be reconstructed in such way that more work will be done
at the coarser levels (see F-, and W-cycles in Figure 6.1, and [Wal04,SS11]). An important
technical advantage of multilevel approaches is related to parallelization. Because multilevel
approaches achieve a global solution by local processing only (though applied at different
levels of coarseness) they are naturally parallelization-schemes friendly.

6.1 Contracting a Single Edge

A minimalistic approach to coarsening is to contract only two nodes connected by a single
edge in the graph. Since this leads to a hierarchy with (almost) n levels, this method is called
n-level GP [OS10]. Together with a k-way variant of the highly localized local search from
Section 5.1, this leads to a very simple way to achieve high quality partitions. Compared to
other techniques, n-level partitioning has some overhead for coarsening, mainly because it
needs a priority queue and a dynamic graph data structure. On the other hand, for graphs
with enough locality (e.g. from scientific computing), the n-level method empirically needs
only sublinear work for local improvement.

6.2 Contracting a Matching

The most widely used contraction strategy contracts (large) matchings, i. e., the contracted
sets are pairs of nodes connected by edges and these edges are not allowed to be incident
to each other. The idea is that this leads to a geometrically decreasing size of the graph
and hence a logarithmic number of levels, while subsequent levels are “similar” so that local

a+b

A+B

a b

A B

Fig. 6.2: An example matching and
contraction of the matched edges.

improvement can quickly find good solutions. Assum-
ing linear-time algorithms on all levels, one then gets
linear overall execution time. Conventional wisdom
is that a good matching contains many high weight
edges since this decreases the weight of the edges in
the coarse graph and will eventually lead to small
cuts. However, one also wants a certain uniformity
in the node weights so that it is not quite clear what
should be the objective of the matching algorithm. A
successful recent approach is to delegate this tradeoff
between edge weights and uniformity to an edge rating function [ARK06,HSS10]. For exam-
ple, the function f(u, v) = ω({u,v})

c(v)c(u)
works very well [HSS10,SS11] (also for n-level partition-

ing [OS10]). The concept of algebraic distance yields further improved edge ratings [SSS12].
The weighted matching problem itself has attracted a lot of interest motivated to a large

extent by its application for coarsening. Although the maximum weight matching problem
can be solved optimally in polynomial time, optimal algorithms are too slow in practice.
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There are very fast heuristic algorithms like (Sorted) Heavy Edge Matching, Light Edge
Matching, Random Matching, etc. [KK98a,SKK03] that do not give any quality guarantees
however. On the other hand, there are (near) linear time matching algorithms that are
slightly more expensive but give approximation guarantees and also seem to be more robust
in practice. For example, a greedy algorithm considering the edges in order of descending
edge weight guarantees half of the optimal edge weight. Preis’ algorithm [Pre99] and the
Path Growing Algorithm [DH03] have a similar flavor but avoid sorting and thus achieve
linear running time for arbitrary edge weights. The Global Path Algorithm (GPA) [MS07]
is a synthesis of Greedy and Path Growing achieving somewhat higher quality in practice
and is not a performance bottleneck in many cases. GPA is therefore used in KaHIP [SS11,
SS,SS13b]. Linear time algorithms with better approximation guarantee are available [PS04,
DH05,MS07,DPS11] and the simplest of them seem practical [MS07]. However, it has not
been tried yet whether they are worth the additional effort for GP.

6.3 Coarsening for Scale-free Graphs

Matching-based graph coarsening methods are well-suited for coarsening graphs arising in
scientific computing. On the other hand, matching-based approaches can fail to create good
hierarchies for graphs with irregular structure. Consider the extreme example that the input
graph is a star. In this case, a matching algorithm can contract only one edge per level,
which leads to a number of levels that is undesirable in most cases.

Abou-Rjeili and Karypis [ARK06] modify a large set of matching algorithms such that
an unmatched node can potentially be matched with one of its neighbors even if it is already
matched. Informally speaking, instead of matchings, whole groups of nodes are contracted
to create the graph hierarchies. These approaches significantly improve partition quality on
graphs having a power-law degree distribution.

Another approach has been presented by Fagginger Auer and Bisseling [AB13]. The
authors create graph hierarchies for social networks by allowing pairwise merges of nodes that
have the same neighbors and by merging multiple nodes, i. e., collapsing multiple neighbors
of a high degree node with this node.

Meyerhenke et al. [MSS14,MSS15] presented an approach that uses a modification of
the original label propagation algorithm [RAK07] to compute size-constrained clusterings
which are then contracted to compute good multilevel hierarchies for such graphs. The same
algorithm is used as a very simple greedy local search algorithm.

Glantz et al. [GMS14] introduce an edge rating based on how often an edge appears in
relatively balanced light cuts induced by spanning trees. Intriguingly, this cut-based approach
yields partitions with very low communication volume for scale-free graphs.

6.4 Flow Based Coarsening

Using max-flow computations, Delling et al. [DG+11] find “natural cuts” separating heuristi-
cally determined regions from the remainder of the graph. Components cut by none of these
cuts are then contracted reducing the graph size by up to two orders of magnitude. They
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use this as the basis of a two-level GP solver that quickly gives very good solutions for road
networks.

6.5 Coarsening with Weighted Aggregation

Aggregation-based coarsening identifies nodes on the fine level that survive in the coarsened
graph. All other nodes are assigned to these coarse nodes. In the general case of weighted
aggregation, nodes on a fine level belong to nodes on the coarse level with some probability.
This approach is derived from a class of hierarchical linear solvers called Algebraic Multigrid
(AMG) methods [CS09,MMS06]. First results on the bipartitioning problem were obtained
by Ron et al. in [RWSB05]. As AMG linear solvers have shown, weighted aggregation is
important in order to express the likelihood of nodes to belong together. The accumulated
likelihoods “smooth the solution space” by eliminating from it local minima that will be
detected instanteneously by the local processing at the uncoarsening phase. This enables a
relaxed formulation of coarser levels and avoids making hardened local decisions, such as
edge contractions, before accumulating relevant global information about the graph.

Weighted aggregation can lead to significantly denser coarse graphs. Hence, only the most
efficient AMG approaches can be adapted to graph partitioning successfully. Furthermore
one has to avoid unbalanced node weights. In [SSS12] algebraic distance [CS11] is used as a
measure of connectivity between nodes to obtain sparse and balanced coarse levels of high
quality. These principles and their relevance to AMG are summarized in [RSB11].

Lafon and Lee [LL06] present a related coarsening framework whose goal is to retain
the spectral properties of the graph. They use matrix-based arguments using random walks
(for partitioning methods based on random walks see Section 5.6) to derive approximation
guarantees on the eigenvectors of the coarse graph. The disadvantage of this approach is the
rather expensive computation of eigenvectors.

7 Evolutionary Methods and Further Metaheuristics

In recent years a number of metaheuristics have been applied to GPP. Some of these works
use concepts that have already been very popular in other application domains such as ge-
netic or evolutionary algorithms. For a general overview of genetic/evolutionary algorithms
tackling GPP, we refer the reader to the overview paper by Kim et al. [KHKM11]. In this
section we focus on the description of hybrid evolutionary approaches that combine evolu-
tionary ideas with the multilevel GP framework [SWC04,BH10,BH11a]. Other well-known
metaheuristics such as multi-agent and ant-colony optimization [KSR04, CS06], and simu-
lated annealing [JS98] are not covered here. Neither do we discuss the recently proposed
metaheuristics PROBE by Chardaire et al. [CBM07] (a genetic algorithm without selection)
and Fusion-Fission by Bichot [Bic07] (inspired by nuclear processes) in detail. Most of these
algorithms are able to produce solutions of a very high quality, but only if they are allowed
to run for a very long time. Hybrid evolutionary algorithms are usually able to compute
partitions with considerably better quality than those that can be found by using a single
execution of a multilevel algorithm.
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The first approach that combined evolutionary ideas with a multilevel GP solver was by
Soper et al. [SWC04]. The authors define two main operations, a combine and a mutation
operation. Both operations modify the edge weights of the graph depending on the input
partitions and then use the multilevel partitioner Jostle, which uses the modified edge weights
to obtain a new partition of the original graph. The combine operation first computes node
weight biases based on the two input partitions/parents of the population and then uses
those to compute random perturbations of the edge weights which help to mimic the input
partitions. While producing partitions of very high quality, the authors report running times
of up to one week. A similar approach based on edge weight perturbations is used by Delling
et al. [DG+11].

A multilevel memetic algorithm for the perfectly balanced graph partition problem, i. e.,
ε = 0, was proposed by Benlic and Hao [BH10,BH11a]. The main idea of their algorithm is
that among high quality solutions a large number of nodes will always be grouped together.
In their work the partitions represent the individuals. We briefly sketch the combination
operator for the case that two partitions are combined. First the algorithm selects two
individuals/partitions from the population using a λ-tournament selection rule, i. e., choose
λ random individuals from the population and select the best among those if it has not been
selected previously. Let the selected partitions be P1 = (V1, . . . , Vk) and P2 = (W1, . . . ,Wk).
Then sets of nodes that are grouped together, i. e.,

U :=
{
{V1 ∩Wσ(1)}, . . . , {Vk ∩Wσ(k)}

}
are computed. This is done such that the number of nodes that are grouped together,i. e.,∑k

j=1 |Vj∩Wσ(j)|, is maximum among all permutations σ of {1, . . . , k}. An offspring is created
as follows. Sets of nodes in U will be grouped within a block of the offspring. That means if
a node is in on of the sets of U , then it is assigned to the same block to which it was assigned
to in P1. Otherwise, it is assigned to a random block, such that the balance constraint
remains fulfilled. Local search is then used to improve the computed offspring before it is
inserted into the population. Benlic and Hao [BH11a] combine their approach with tabu
search. Their algorithms produce partitions of very high quality, but cannot guarantee that
the output partition fulfills the desired balance constraint.

Sanders and Schulz introduced a distributed evolutionary algorithm, KaFFPaE (KaFF-
PaEvolutionary) [SS12]. They present a general combine operator framework, which means
that a partition P can be combined with another partition or an arbitrary clustering of the
graph, as well as multiple mutation operators to ensure diversity in the population. The com-
bine operation uses a modified version of the multilevel GP solver within KaHIP [SS11] that
will not contract edges that are cut in one of the input partitions/clusterings. In contrast to
the other approaches, the combine operation can ensure that the resulting offspring/partition
is at least as good as the input partition P . The algorithm is equipped with a scalable com-
munication protocol similar to randomized rumor spreading and has been able to improve
the best known partitions for many inputs.
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8 Parallel Aspects of Graph Partitioning

In the era of stalling CPU clock speeds, exploiting parallelism is probably the most important
way to accelerate computer programs from a hardware perspective. When executing parallel
graph algorithms without shared memory, a good distribution of the graph onto the PEs
is very important. Since parallel computing is a major purpose for GP, we discuss in this
section several techniques beneficial for parallel scenarios. (i) Parallel GP algorithms are often
necessary due to memory constraints: Partitioning a huge distributed graph on a single PE
is often infeasible. (ii) When different PEs communicate with different speeds with each
other, techniques for mapping the blocks communication-efficiently onto the PEs become
important. (iii) When the graph changes over time (as in dynamic simulations), so does its
partition. Once the imbalance becomes too large, one should find a new partition that unifies
three criteria for this purpose: balance, low communication, and low migration.

8.1 Parallel Algorithms

Parallel GP algorithms are becoming more and more important since parallel hardware is
now ubiquitous and networks grow. If the underlying application is in parallel processing,
finding the partitions in parallel is even more compelling. The difficulty of parallelization very
much depends on the circumstances. It is relatively easy to run sequential GP solvers multiple
times with randomized tie breaking in all available decisions. Completely independent runs
quickly lead to a point of diminishing return but are a useful strategy for very simple initial
partitioners as the one described in Section 4.3. Evolutionary GP solvers are more effective
(thanks to very good combination operators) and scale very well, even on loosely coupled
distributed machines [SS12].

Most of the geometry-based algorithms from Section 4.5 are parallelizable and perhaps
this is one of the main reasons for using them. In particular, one can use them to find an
initial distribution of nodes to processors in order to improve the locality of a subsequent
graph based parallel method [HSS10]. If such a “reasonable” distribution of a large graph
over the local memories is available, distributed memory multilevel partitioners using MPI
can be made to scale [KK96,WC00, CP08, HSS10]. However, loss of quality compared to
the sequential algorithms is a constant concern. A recent parallel matching algorithm allows
high quality coarsening, though [BOS+13]. If k coincides with the number of processors,
one can use parallel edge coloring of the quotient graph to do pairwise refinement between
neighboring blocks. At least for mesh-like graphs this scales fairly well [HSS10] and gives
quality comparable to sequential solvers. This comparable solution quality also holds for
parallel Jostle as described by Walshaw and Cross [WC02].

Parallelizing local search algorithms like KL/FM is much more difficult since local search
is inherently sequential and since recent results indicate that it achieves best quality when
performed in a highly localized way [OS10,SS11]. When restricting local search to improving
moves, parallelization is possible, though [KK99b,LK13,MSS15,ASS15]. In a shared memory
context, one can also use speculative parallelism [SNBP11]. The diffusion-based improvement
methods described in Section 5.6 are also parallelizable without loss of quality since they are
formulated in a naturally data parallel way [Mey12,Pel12].
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8.2 Mapping Techniques

Fundamentals. Parallel computing on graphs is one major application area of GP, see Sec-
tion 3.1. A partition with a small communication volume translates directly into an efficient
application if the underlying hardware provides uniform communication speed between each
pair of processing elements (PEs). Most of today’s leading parallel systems, however, are
built as a hierarchy of PEs, memory systems, and network connections [MSSD13]. Commu-
nicating data between PEs close to each other is thus usually less expensive than between
PEs with a high distance. On such architectures it is important to extend GPP by a flexible
assignment of blocks to PEs [TBFS00].

Combining partitioning and mapping to PEs is often done in two different ways. In the
first one, which we term architecture-aware partitioning, the cost of communicating data
between a pair of PEs is directly incorporated into the objective function during the par-
titioning process. As an example, assuming that block (or process) i is run on PE i, the
communication-aware edge cut function is

∑
i<j ω(Eij) · ωp(i, j), where ωp(i, j) specifies the

cost of communicating a unit item from PE i to PE j [WC01]. This approach uses a network
cost matrix (NCM) to store the distance function ωp [WC01, p. 603ff.]. Since the entries are
queried frequently during partitioning, a recomputation of the matrix would be too costly.
For large systems one must find a way around storing the full NCM on each PE, as the
storage size scales quadratically with the number of PEs. A similar approach with emphasis
on modeling heterogeneous communication costs in grid-based systems is undertaken by the
software PaGrid [HAB06]. Moulitsas and Karypis [MK08] perform architecture-aware parti-
tioning in two phases. Their so-called predictor-corrector approach concentrates in the first
phase only on the resources of each PE and computes an according partition. In the second
phase the method corrects previous decisions by modifying the partition according to the
interconnection network characteristics, including heterogeneity.

An even stronger decoupling takes place for the second problem formulation, which we
refer to as the mapping problem. Let Gc = (Vc, Ec, ωc) be the communication graph that
models the application’s communication, where (u, v) ∈ Ec denotes how much data process u
sends to process v. Let furthermoreGp = (Vp, Ep, ωp) be the processor graph, where (i, j) ∈ Ep
specifies the bandwidth (or the latency) between PE i and PE j. We now assume that a
partition has already been computed, inducing a communication graph Gc. The task after
partitioning is then to find a communication-optimal mapping π : Vc 7→ Vp.

Different objective functions have been proposed for this mapping problem. Since it is
difficult to capture the deciding hardware characteristics, most authors concentrate on sim-
plified cost functions – similar to the simplification of the edge cut for graph partitioning.
Apparently small variations in the cost functions rarely lead to drastic variations in applica-
tion running time. For details we refer to Pellegrini’s survey on static mapping [Pel11] (which
we wish to update with this section, not to replace) and the references therein. Global sum
type cost functions do not have the drawback of requiring global updates. Moreover, discon-
tinuities in their search space, which may inhibit metaheuristics to be effective, are usually
less pronounced than for maximum-based cost functions. Commonly used is the sum, for
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all edges of Gc, of their weight multiplied by the cost of a unit-weight communication in
Gp [Pel11]: f(Gc, Gp, π) :=

∑
(u,v)∈Ec

ωc(u, v) · ωp(π(u), π(v)).
The accuracy of the distance function ωp depends on several factors, one of them being the

routing algorithm, which determines the paths a message takes. The maximum length over
all these paths is called the dilation of the embedding π. One simplifying assumption can be
that the routing algorithm is oblivious [HS11] and, for example, uses always shortest paths.
When multiple messages are exchanged at the same time, the same communication link may
be requested by multiple messages. This congestion of edges in Gp can therefore be another
important factor to consider and whose maximum (or average) over all edges should be
minimized. Minimizing the maximum congestion is NP-hard, cf. Garey and Johnson [GJ79]
or more recent work [HS11,KL91].

Algorithms. Due to the problem’s complexity, exact mapping methods are only prac-
tical in special cases. Leighton’s book [Lei92] discusses embeddings between arrays, trees,
and hypercubic topologies. One can apply a wide range of optimization techniques to the
mapping problem, also multilevel algorithms. Their general structure is very similar to that
described in Section 6. The precise differences of the single stages are beyond our scope.
Instead we focus on very recent results – some of which also use hierarchical approaches. For
pointers to additional methods we refer the reader to Pellegrini [Pel11] and Aubanel’s short
summary [Aub09] on resource-aware load balancing.

Greedy approaches such as the one by Brandfass et al. [BAG13] map the node vc of Gc

with the highest total communication cost w. r. t. to the already mapped nodes onto the
node vp of Gp with the smallest total distance w. r. t. to the already mapped nodes. Some
variations exist that improve this generic approach in certain settings [HS11,GMN15].

Hoefler and Snir [HS11] employ the reverse Cuthill-McKee (RCM) algorithm as a mapping
heuristic. Originally, RCM has been conceived for the problem of minimizing the bandwidth
of a sparse matrix [GL81]. In case both Gc and Gp are sparse, the simultaneous optimization
of both graph layouts can lead to reasonable mapping results, also cf. Pellegrini [Pel07b].

Many metaheuristics have been used to solve the mapping problem. Uçar et al. [UAKI06]
implement a large variety of methods within a clustering approach, among them genetic
algorithms, simulated annealing, tabu search, and particle swarm optimization. Brandfass
et al. [BAG13] present local search and evolutionary algorithms. Their experiments confirm
that metaheuristics are significantly slower than problem-specific heuristics, but obtain high-
quality solutions [BAG13,UAKI06].

Another common approach is to partition Gc – or the application graph itself – simulta-
neously together with Gp into the same number of blocks k′. This is for example done in
Scotch [Pel94]. For this approach k′ is chosen small enough so that it is easy to test which
block in Gc is mapped onto which block in Gp. Since this often implies k′ < k, the partitioning
is repeated recursively. When the number of nodes in each block is small enough, the mapping
within each block is computed by brute force. If k′ = 2 and the two graphs to be partitioned
are the application graph and Gp, the method is called dual recursive bipartitioning. Recently,
schemes that model the processor graph as a tree have emerged [CLA12] in this algorithmic
context and in similar ones [JMT13].
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Hoefler and Snir [HS11] compare the greedy, RCM, and dual recursive (bi)partitioning
mapping techniques experimentally. On a 3D torus and two other real architectures, their
results do not show a clear winner. However, they confirm previous studies [Pel11] in that
performing mapping at all is worthwhile. Bhatele et al. [BJGK11] discuss topology-aware
mappings of different communication patterns to the physical topology in the context of
MPI on emerging architectures. Better mappings avoid communication hot spots and reduce
communication times significantly. Geometric information can also be helpful for finding
good mappings on regular architectures such as tori [BK11].

8.3 Migration Minimization during Repartitioning

Repartitioning involves a tradeoff between the quality of the new partition and the migration
volume. Larger changes between the old partition Π and the new one Π ′, necessary to
obtain a small communication volume in Π ′, result in a higher migration volume. Different
strategies have been explored in the literature to address this tradeoff. Two simple ones and
their limitations are described by Schloegel et al. [SKK97]. One approach is to compute a
new partition Π ′ from scratch and determine a migration-minimal mapping between Π and
Π ′. This approach delivers good partitions, but the migration volume is often very high.
Another strategy simply migrates nodes from overloaded blocks to underloaded ones, until
a new balanced partition is reached. While this leads to optimal migration costs, it often
delivers poor partition quality. To improve these simple schemes, Schloegel et al. [SKK00]
combine the two and get the best of both in their tool ParMetis.

Migration minimization with virtual nodes has been used in the repartitioning case by,
among others, Hendrickson et al. [HLD96]. For each block, an additional node is added,
which may not change its affiliation. It is connected to each node v of the block by an edge
whose weight is proportional to the migration cost for v. Thus, one can account for migration
costs and partition quality at the same time. A detailed discussion of this general technique
was made by Walshaw [Wal10]. Recently, this technique has been extended to heterogeneous
architectures by Fourestier and Pellegrini [FP11].

Diffusion-based partitioning algorithms are particularly strong for repartitioning. PDibaP
yields about 30−50% edge cut improvement compared to ParMetis and about 15% improve-
ment on parallel Jostle with a comparable migration volume [Mey12] (a short description
of these tools can be found in Section 9.3). Hypergraph-based repartitioning is particularly
important when the underlying problem has a rather irregular structure [CB+07].

9 Implementation and Evaluation Aspects

The two major factors that make up successful GP algorithms are speed and quality. It
depends on the application if one of them is favored over the other and what quality means.
Speed requires an appropriate implementation, for which we discuss the most common graph
data structures in practice first in this section. Then, we discuss GP benchmarks to assess
different algorithms and implementations, some widely used, others with potential. Finally,
relevant software tools for GP are presented.
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9.1 Sparse Graph Data Structures

The graph data structure used by most partitioning software is the Compressed Sparse Rows
(CSR) format, also known as adjacency arrays. CSR is a cache and storage efficient data
structure for representing static graphs. The CSR representation of a graph can be composed
of two, three, or four arrays, depending upon whether edges or nodes are weighted. The node
array (V) is of size n+ 1 and holds the node pointers. The edge array and the edge weights
array, if present, are of size m each. Each entry in the edge array (E) holds the node id of the
target node, while the corresponding entry in the edge weights array (W) holds the weight of
the edge. The node array holds the offsets to the edge array, meaning that the target nodes
of the outgoing edges of the ith node are accessible from E(V(i)) to E(V(i+1)− 1) and their
respective weights are accessible from W(V(i)) to W(V(i + 1) − 1). Both Metis and Scotch
use a CSR-like data structure. Since nodes can also be weighted in graph partitioning, an
additional vector of size n is often used to store node weights in that case. The CSR format
can further be improved and reinforced by rearranging the nodes with one of the cache-
oblivious layouts such as the minimum logarithmic arrangement [ST11,CKL+09].

Among distributed-memory GP solvers, ParMetis and PT-Scotch use a 1D node distri-
bution where each processor owns approximately n/p nodes and their corresponding edges.
By contrast, Zoltan uses a 2D edge distribution that has lower communication requirements
in theory.

9.2 Benchmarking

The Walshaw benchmark5 was created in 2000 by Soper, Walshaw and Cross [SWC04].
This public domain archive, maintained by Chris Walshaw, contains 34 real-world graphs
stemming from applications such as finite element computations, matrix computations, VLSI
Design and shortest path computations. More importantly, it also contains for each graph the
partitions with the smallest cuts found so far. Submissions are sought that achieve improved
cut values for k ∈ {2, 4, 8, 16, 32, 64} and balance parameters ε ∈ {0, 0.01, 0.03, 0.05}, while
running time is not an issue. Currently, solutions of over 40 algorithms have been submitted
to the archive. It is the most popular GP benchmark in the literature.

There are many other very valuable sources of graphs for experimental evaluations: the
10th DIMACS Implementation Challenge [BMS+ar, BMSW13], the Florida Sparse Matrix
Collection [Dav], the Laboratory of Web Algorithms [LoWA], the Koblenz Network Collection
[Kun13], and the Stanford Large Network Dataset Collection [Les]. Many of the graphs are
available at the website of the 10th DIMACS Implementation Challenge [BMS+ar,BMSW13]
in the graph format that is used by many GP software tools.

Aubanel et al. [GSAG08] present a different kind of partitioning benchmark. Instead
of measuring the edge cut of the partitions, the authors evaluate the execution time of
a parallel PDE solver to benchmark the partitions produced by different GP solvers. The
crucial module of the benchmark is parallel matrix-vector multiplication, which is meaningful
for other numerical routines as well.
5 http://staffweb.cms.gre.ac.uk/~wc06/partition/

25



Many fast methods for GPP are based on approaches in which finding a global solution
is done by local operations only. Testing if such methods are robust against falling into
local optima obtained by the local processing is a very important task. In [SSS12] a simple
strategy for checking the quality of such methods was presented. To construct a potentially
hard instance, one may consider a mixture of graphs with very different structures that are
weakly connected with each other. For example, in multilevel algorithms these graphs can
force the algorithm to contract incorrect edges that lead to uneven coarsening; also, they
can attract a “too strong” refinement to reach a local optimum, which can contradict better
optima at finer levels. Examples of real graphs that contain such mixtures of structures
include multi-mode networks [TLZN08] and logistics multi-stage system networks [Sto06].
Hardness of particular structures for GP solvers is confirmed by generating graphs that are
similar to the given ones at both coarse and/or fine resolutions [GMS12].

9.3 Software Tools

There are a number of software packages that implement the described algorithms. One
of the first publicly available software packages called Chaco is due to Hendrickson and
Leland [Hen]. As most of the publicly available software packages, Chaco implements the
multilevel approach outlined in Section 6 and basic local search algorithms. Moreover, they
implement spectral partitioning techniques. Probably the fastest and best known system is
the Metis family by Karypis and Kumar [KK98a, KK98b]. kMetis [KK98b] is focused on
partitioning speed and hMetis [KK99a], which is a hypergraph partitioner, aims at parti-
tion quality. PaToH [cA11] is also a widely used hypergraph partitioner that produces high
quality partitions. ParMetis is a widely used parallel implementation of the Metis GP algo-
rithm [KK96]. Scotch [Pel, CP06,CP08] is a GP framework by Pellegrini. It uses recursive
multilevel bisection and includes sequential as well as parallel partitioning techniques. Jos-
tle [WC07,WC00] is a well-known sequential and parallel GP solver developed by Chris
Walshaw. The commercialised version of this partitioner is known as NetWorks. It has been
able to hold most of the records in the Walshaw Benchmark for a long period of time. If a
model of the communication network is available, then Jostle and Scotch are able to take
this model into account for the partitioning process. Party [DPSW00b,MS04] implements the
Bubble/shape-optimized framework and the Helpful Sets algorithm. The software packages
DibaP and its MPI-parallel variant PDibaP by Meyerhenke [MMS09a,Mey12] implement
the Bubble framework using diffusion; DibaP also uses AMG-based techniques for coars-
ening and solving linear systems arising in the diffusive approach. Recently, Sanders and
Schulz [SS, SS13b] released the GP package KaHIP (Karlsruhe High Quality Partitioning)
which implements for example flow-based methods, more-localized local searches and several
parallel and sequential meta-heuristics. KaHIP scored most of the points in the GP subchal-
lenge of the 10th DIMACS Implementation Challenge [BMSW13] and currently holds most
of the entries in the Walshaw Benchmark.

To address the load balancing problem in parallel applications, distributed versions of the
established sequential partitioners Metis, Jostle and Scotch [SKK02,WC07,Pel12] have been
developed. The tools Parkway by Trifunovic and Knottenbelt [TK08] as well as Zoltan by
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Devine et al. [DBH+06] focus on hypergraph partitioning. Recent results of the 10th DIMACS
Implementation Challenge [BMSW13] suggest that scaling current hypergraph partitioners
to very large systems is even more challenging than graph partitioners.

10 Future Challenges

It is an interesting question to what extent the multitude of results sketched above have
reached a state of maturity where future improvements become less and less likely. On the
one hand, if you consider the Walshaw benchmark with its moderately sized static graphs
with mostly regular structure, the quality obtained using the best current systems is very
good and unlikely to improve much in the future. One can already get very good quality with
a careful application of decade old techniques like KL/FM local search and the multilevel
approach. On the other hand, as soon as you widen your view in some direction, there are
plenty of important open problems.

Bridging Gaps Between Theory and Practice. We are far from understanding why (or
when) the heuristic methods used in practice produce solutions very close to optimal. This
is particularly striking for bipartitioning, where recent exact results suggest that heuristics
often find the optimal solution. In contrast, theoretical results state that we cannot even find
constant-factor approximations in polynomial time. On the other hand, the sophisticated
theoretical methods developed to obtain approximation guarantees are currently not used in
the most successful solvers. It would be interesting to see to what extent these techniques can
yield a practical contribution. There is a similar problem for exact solvers, which have made
rapid progress for the case k = 2. However, it remains unclear how to use them productively
for larger graphs or in case k > 2, for example as initial partitioners in a multilevel system or
for pair-wise local improvement of subgraphs. What is surprisingly successful, is the use of
solvers with performance guarantees for subproblems that are easier than partitioning. For
example, KaHIP [SS] uses weighted matching, spanning trees, edge coloring, BFS, shortest
paths, diffusion, maximum flows, and strongly connected components. Further research into
this direction looks promising.

Difficult Instances. The new “complex network” applications described in Section 3.2
result in graphs that are not only very large but also difficult to handle for current graph
partitioners. This difficulty results from an uneven degree distribution and much less locality
than observed in traditional inputs. Here, improved techniques within known frameworks
(e.g., better coarsening schemes) and even entirely different approaches can give substantial
improvements in speed or quality.

Another area where large significant quality improvements are possible are for large k.
Already for the largest value of k considered in the Walshaw benchmark (64), the spread
between different approaches is considerable. Considering graphs with billions of nodes and
parallel machines reaching millions of processors, k ≤ 64 increasingly appears like a special
case. The multilevel method loses some of its attractiveness for large k since even initial
partitioning must solve quite large instances. Hence new ideas are required.

Multilevel Approach. While the multilevel paradigm has been extremely successful for
GP, there are still many algorithmic challenges ahead. The variety of continuous systems mul-
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tilevel algorithms (such as various types of multigrid) turned into a separate field of applied
mathematics, and optimization. Yet, multilevel algorithms for GPP still consist in practice
of a very limited number of multilevel techniques. The situation with other combinatorial
optimization problems is not significantly different. One very promising direction is bridging
the gaps between the theory and practice of multiscale computing and multilevel GP such
as introducing nonlinear coarsening schemes. For example, a novel multilevel approach for
the minimum vertex separator problem was recently proposed using the continuous bilin-
ear quadratic program formulation [HHS14], and a hybrid of the geometric multigrid, and
full approximation scheme for continuous problem was used for graph drawing, and VLSI
placement problems [RSB10,CS03]. Development of more sophisticated coarsening schemes,
edge ratings, and metrics of nodes’ similarity that can be propagated throughout the hierar-
chies are among the future challenges for graph partitioning as well as any attempt of their
rigorous analysis.

Parallelism and Other Hardware Issues. Scalable high quality GP (with quality com-
parable to sequential partitioners) remains an open problem. With the advent of exascale
machines with millions of processors and possibly billions of threads, the situation is further
aggravated. Traditional “flat” partitions of graphs for processing on such machines implies a
huge number of blocks. It is unclear how even sequential partitioners perform for such in-
stances. Resorting to recursive partitioning brings down k and also addresses the hierarchical
nature of such machines. However, this means that we need parallel partitioners where the
number of available processors is much bigger than k. It is unclear how to do this with high
quality. Approaches like the band graphs from PT-Scotch are interesting but likely to fail
for complex networks.

Efficient implementation is also a big issue since complex memory hierarchies and hetero-
geneity (e.g., GPUs or FPGAs) make the implementation complicated. In particular, there
is a mismatch between the fine-grained discrete computations predominant in the best se-
quential graph partitioners and the massive data parallelism (SIMD-instructions, GPUs,. . . )
in high performance computing which better fits highly regular numeric computations. It is
therefore likely that high quality GP will only be used for the higher levels of the machine
hierarchy, e.g., down to cluster nodes or CPU sockets. At lower levels of the architectural
hierarchy, we may use geometric partitioning or even regular grids with dummy values for
non-existing cells (e.g. [FKS+12]).

While exascale computing is a challenge for high-end applications, many more applica-
tions can profit from GP in cloud computing and using tools for high productivity such as
Map/Reduce [DG04], Pregel [MAB+10], GraphLab [LGK+12], Combinatorial BLAS [BG11],
or Parallel Boost Graph Library [GL05]. Currently, none of these systems uses sophisticated
GP software.

These changes in architecture also imply that we are no longer interested in algorithms
with little computations but rather in data access with high locality and good energy effi-
ciency.

Beyond Balanced k-partitioning with Cut Minimization. We have intentionally fixed our
basic model assumptions above to demonstrate that even the classical setting has a lot of
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open problems. However, these assumption become less and less warranted in the context of
modern massively parallel hardware and huge graphs with complex structure. For example,
it looks like the assumptions that low total cut is highly correlated with low bottleneck cut
or communication volume (see Section 2.1) is less warranted for complex network [BM12].
Eventually, we would like a dynamic partition that adapts to the communication require-
ments of a computation such as PageRank or BFS with changing sets of active nodes and
edges. Also, the fixed value for k becomes questionable when we want to tolerate processor
failures or achieve “malleable” computations that adapt their resource usage to the overall
situation, e.g., to the arrival or departure of high priority jobs. Techniques like overpartition-
ing, repartitioning (with changed k), and (re)mapping will therefore become more important.
Even running time as the bottom-line performance goal might be replaced by energy con-
sumption [SDM11].
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