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Abstract. The increasing use of mobile social networks has lately trans-
formed news media. Real-world events are nowadays reported in social
networks much faster than in traditional channels. As a result, the au-
tonomous detection of events from networks like Twitter has gained lot
of interest in both research and media groups. DBSCAN-like algorithms
constitute a well-known clustering approach to retrospective event de-
tection. However, scaling such algorithms to geographically large regions
and temporarily long periods present two major shortcomings. First, de-
tecting real-world events from the vast amount of tweets cannot be per-
formed anymore in a single machine. Second, the tweeting activity varies
a lot within these broad space-time regions limiting the use of global
parameters. Against this background, we propose to scale DBSCAN-
like event detection techniques by parallelizing and distributing them
through a novel density-aware MapReduce scheme. The proposed scheme
partitions tweet data as per its spatial and temporal features and tailors
local DBSCAN parameters to local tweet densities. We implement the
scheme in Apache Spark and evaluate its performance in a dataset com-
posed of geo-located tweets in the Iberian peninsula during the course of
several football matches. The results pointed out to the benefits of our
proposal against other state-of-the-art techniques in terms of speed-up
and detection accuracy.

Keywords: Event detection, parallel algorithm, data clustering, DB-
SCAN, MapReduce, Apache Spark, Twitter

1 Introduction

Event detection seeks to identify and characterize anomalous patterns in data
which are typically caused by some real-world phenomena [1]. For example, au-
thors in [2] aimed to detect space-time clusters in a dataset composed of brain
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cancer cases in Los Alamos, New Mexico during 1973 - 1991. From the discov-
ered clusters, their goal was to find whether these clusters occurred by chance
or due to some real-world cause such as the presence of Los Alamos National
Laboratory, a nuclear research and design facility.

Recently, the increasing use of social networks with location services has con-
verted social network users into actual sensors capable of ubiquitously reporting
real-world events [3]. These virtual communities enable the simultaneous identi-
fication of various types of events ranging from natural disasters [4] to geo-social
events [5]. Particularly, Twitter! has shown to be more effective and faster than
traditional media channels. For example, in reporting Osama Bin Laden death [6]
or Mumbai attacks [7].

However, event detection in Twitter poses a set of new challenges [8]. In
contrast to classical fields of application, Twitter contains tones of non-event
observations such as memes, user conversations or retweets, making it very hard
to uncover newsworthy events [9]. Hence, event detection techniques need to
explicitly distinguish between event and non-event tweets in order to uncover
these hidden patterns. Furthermore, more than 500 millions tweets are gener-
ated worldwide per day?, entailing a high computational cost to process this
huge amount of data in a single machine. Therefore, the parallelization and dis-
tribution of such algorithms plays a key role to design and implement practical
event detection systems on a national or worldwide scale.

A bottom-up approach to retrospectively detect events from spatio-temporal
data such as geo-located tweets is based on DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [10]. This clustering algorithm is well-
known for its noise resilience capability which enables to handle non-event ob-
servations in Twitter. Authors in [11,12] proposed to use the spatio-temporal
extension of DBSCAN called ST-DBSCAN [13] to detect specified events (i.e.
precipitation and dengue) from text-filtered tweets. Others [14] extended ST-
DBSCAN to also consider textual features through the cosine similarity of their
term vectors in order to discover various types of unspecified events. Lately,
Capdevila et al. [15,16] presented Tweet-SCAN which also considers text fea-
tures but it instead relies on the Jensen-Shannon distance over probabilistic topic
distributions [17] to search among text.

However, the above-mentioned DBSCAN-like techniques were not initially
designed to work in geographically large regions and temporarily long periods
with lots of observations. On the one hand, the large amount of tweets, n, di-
rectly affects the computational cost of DBSCAN which has an average time
complexity of O(nlogn). On the other hand, tweets are spread unevenly over
large space-time regions and DBSCAN fails to cluster uneven distributions of
tweets, compromising the overall detection accuracy of event detection systems.
This uneven distributions are due to the fact that spatial and temporal dis-
tributions of tweets are strongly correlated with the activity of the underlying
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population [18]. Thus, urban areas during peak hours are likely to generate much
more tweets than rural areas during off-peak hours.

In this work, we tackle the scaling of DBSCAN-like event detection algo-
rithms, such as Tweet-SCAN [15,16], for large spatio-temporal regions. Given
that the length of tweet messages is limited to 140-character by Twitter, we only
focus on the scaling of spatio-temporal dimensions, although we note that text
disambiguation is essential in event identification and future work should take
it into account. As a result of this, we propose a novel density-aware MapRe-
duce scheme implemented in Apache Spark [19] that parallelizes and distributes
DBSCAN-like algorithms to scale event detection in Twitter. In particular, we
propose an Octree-based method to partition tweets as per its space-time fea-
tures. Given that these partitions correspond to similarly dense regions, we in-
troduce a MapReduce scheme that computes local DBSCANs for each data
partition with its parameters tailored to the local tweet density. Furthermore,
our proposal includes a framework to setup these local DBSCAN parameters so
that the overall detection performance is optimized. Last, we provide empirical
evidence that this scheme scales well to large data sets and is able to detect
events in low and high density regions.

The structure of the remaining sections is as follows. In section 2, we intro-
duce the necessary background regarding DBSCAN algorithms and their paral-
lelization through MapReduce. In section 3, we propose the novel density-aware
MapReduce scheme to scale event detection on large datasets over large regions.
Then, we present in section 4 the empirical results of our proposal. Finally, we
list several conclusions from this work in section 5 and point out future work in
section 6.

2 Background

DBSCAN-like algorithms constitute a common bottom-up approach to the event
detection problem [1]. Within this approach, events are defined as groups of
points, a.k.a. clusters, whose point density is abnormally high. DBSCAN [10]
defines a greedy algorithm through which points are associated to events. Points
which are not assigned to any event are considered noise by DBSCAN. Moreover,
DBSCAN does not require to specify the number and shape of events. These
features make DBSCAN a suitable framework for event detection in contrast to
other popular clustering techniques, such as K-Means.

2.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [10]
clusters points that are closely together and marks as noise those that are in
low-density regions.

DBSCAN is formalized through the following definitions with respect to its
parameters (e and MinPts) and a dataset of points DB.
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Fig. 1: (left) ¢ is directly density-reachable from p, (middle) ¢ is
density-reachable from p and (right) ¢ is density-connected from p

— The e-neighborhood of a point p is the set of points whose distance to p is
less or equal than e (see e-circle in Fig. 1).

— A point p is a core point if the number of neighbors, in its e-neighborhood,
is greater or equal than MinPts (see left Fig. 1 for MinPts = 4).

— Given two points p and ¢, if p is a core point and g belongs to the neighbor-
hood of p, then q is directly density-reachable from p (see left Fig. 1).

— q is density-reachable from another point p if there is sequence of points
D,T1,T2, .., T, g such that each point (r;y1) is directly density-reachable from
the previous r; (see middle Fig. 1).

— p and q are density-connected if there is a point o such that both are density-
reachable from r (see right Fig. 1).

— A non-empty subset C' of DB is a cluster if satisfies: (Maximality) For any
point p € C from which ¢ is density-reachable, ¢ € C. (Connectivity) For
any set of point p,q € C, p is density-connected to q.

— A point n is a noise point if it does not belong to any cluster (see Fig. 1).

— A point ¢ is a border point if it belongs to a cluster but it is not a core
point (see left Fig. 1).

The greedy algorithm defined in DBSCAN uncovers clusters of points fol-
lowing on the above definitions. The heuristic starts with an arbitrary point p
and if p is determined to be a core point, the algorithm yields a cluster, which
at least will contain this point p and its e-neighborhood. The cluster is then
expanded to include other neighboring points (core or border) which are also
density-connected to p. When all density-connected points have been identified,
the procedure jumps to the next unvisited point until visiting the whole dataset.
Points that after completing this algorithm do not belong to any cluster are set
to noise.

2.2 DBSCAN-like Event Detection in Twitter

Most of the DBSCAN-like techniques that have been proposed for event detec-
tion in Twitter [11,12, 14, 15] are formulated on the basis of the Generalized DB-
CAN [20] algorithm, called GDBSCAN. This generalized version of DBSCAN
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enables to cluster any type of spatially extended object, such as geo-located
tweets.

Our approach, here, considers tweets as spatio-temporal points with a user
attribute component associated to them. Following [20], we generalize the -
neighborhood for two tweets ¢ and ¢/, N Pred(t,t'), and the core point condition
for a tweet t, MinWeight(t), through two different predicates.

The predicate for the e-neighborhood of a tweet ¢ w.r.t another tweet ¢’
combines the space-time features through two distinct €; €s spatio-temporal
parameters,

NPred(t,t') = dist(ty,t]) < e, dist(ta, th) < e (1)

where t; and t5 correspond to the spatial and temporal features, respectively. The
expression dist(t;,t;) refers to the distances between tweet features, which we
propose to be the haversine distance for the spatial dimension and the euclidean,
in the time axis.

As for the core point predicate, we impose two conditions. First, the num-
ber of neighboring tweets (e; e2-neighborhood) has to be at least MinPts, like
in DBSCAN. Additionally, users associated to the neighboring tweets must be
diverse by at least a u percentage. These two conditions are expressed as follows,

MinWeight(t) = |N Pred(t,t")| > MinPts, UDiv(NPred(t,t')) > u  (2)

where |[NPred(t,t')] is the cardinality of the predicate in Eq. (1), UDiv() is the
percentage of unique users with respect to MinPts. This means that a group of
tweets will be considered event if it contains at least MinPts tweets and their
users are at least unique in a fraction p with respect to MinPts.

These two predicates correspond to those used for Tweet-SCAN [15], except
that we here omitted the textual component. Nonetheless,the proposed density-
aware scheme could apply to any DBSCAN-like algorithm for event detection
that at least considers space-time features.

2.3 MapReduce DBSCAN

As we argued in the Introduction, performing event detection in social networks
like Twitter requires to paralellize and distribute existing techniques to scale with
current data volumes. Because of this, we propose to scale DBSCAN-like algo-
rithms in a shared-nothing environment through a MapReduce approach [21].

A MapReduce algorithm for DBSCAN, named MR-DBSCAN, was proposed
n [22]. This algorithm parallelizes all the critical sub-procedures of DBSCAN,
which has been presented in Section 2.1. The MR-DBSCAN workflow, shown in
Fig. 2, first partitions the full dataset, then performs local DBSCAN clustering
in each partition, and finally merges the local clusters into global ones, which
corresponds to events in our case.

An implementation of MR-DBSCAN in Apache Spark was proposed in [23]
and was named RDD-DBSCAN. The main difference both algorithms is that
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Fig. 2: Simplified MR-DBSCAN workflow

RDD-DBSCAN takes advantage of Resilient Distributed Datasets which brings
data into memory to speed up computation.

Next, we review each of the MR-DBSCAN stages and highlight the main
differences with respect to RDD-DBSCAN.

Partitioning MR-DBSCAN incorporates a Binary Space Partitioning (BSP)
procedure to split data and distribute computation as evenly as possible. More-
over, this approach takes into account the cost of accessing disk when searching
for neighboring points within the partition. On the contrary, RDD-DBSCAN
simply considers the number of points per partition as the cost function, since
points are already loaded into memory and the cost of accessing disk can be
ignored.

The BSP partitioning in MR-DBSCAN is performed recursively in each di-
mension until reaching a maximum cost per partition, maxCost, or a minimum
partition size, MinSize. The former condition enables to balance load among
partitions while the latter is set to 2¢ to ensure the proper functioning of DB-
SCAN algorithm. Given this latter restriction, the scheme divides the whole
region into non-overlapped cells with side length 2¢. This enables to reduce the
search of candidates splits among all vertical and horizontal lines aligned to
cell boundaries. RDD-DBSCAN follows the same approach but it uses instead a
maximum number of points per partition, maxPts. This variable must be set,
at most, to the maximum number of points that can fit into the memory of the
machine with the smallest memory available.

The partitioned regions are then enlarged by e in each dimension. In this
way, each partition can independently determine its core points by considering
points in its e-outer margin. Moreover, the overlap between partitions eases the
merging stage to find proper DBSCAN clusters.

Local DBSCAN A MapReduce job performs this task. First, the mapper emits
a partition ID for each point in the dataset based on the partitioning results.
Second, the reducer computes the local DBSCAN for each partition as described
in Section 2.1. RDD-DBSCAN performs this stage entirely in memory given that
the partitioning phase has split data so that it fits in memory.

Merging This is a two-step process in which cluster merging is first computed
in parallel for pairs of overlapping partitions and point types are later relabeled
accordingly.
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Pairs of overlapped partitions are processed parallelly to identify points that
are core in both partitions or core and border respectively in each partition.
These are the points whose clusters are merged and global identifiers are gener-
ated for them.

Relabeling replaces local cluster IDs into global ones and it assigns final
point types (core, border, noise) to each point. Since points within the margins
might be associated to different types, the relabeling strategy is to keep the more
restrictive type, being the list of restrictions Core > Border > Noise.

3 Density-aware MapReduce Scheme

In the following section, we describe a novel density-aware MapReduce scheme
to detect events from tweets. Although the scheme follows the MR-DBSCAN
workflow from Fig. 2, individual stages have been modified according to the
peculiarities of event detection in Twitter that imposes the DBSCAN-like algo-
rithm introduced in Section 2.2.

3.1 Octree-based Partitioning

Partitioning tweet data as per its spatio-temporal features requires a three di-
mensional scheme to deal with the geo-location and timestamp metadata of
tweets.

Although the cost-based Binary Space Partitioning (BSP) scheme proposed
in [22] might be convenient for environments such as Hadoop, the cost of access-
ing disk becomes irrelevant in Apache Spark given that point search is entirely
performed in memory, as we have seen for RDD-DBSCAN [23]. Moreover, both
approaches rely on binary splits of data to balance the load among workers.
These processes become very costly specially when increasing feature dimen-
sionality (e.g. from 2D to 3D).

Because of this, we propose a naive but effective partitioning scheme based on
Octree [24]. Similar to [22, 23], our proposal divides the whole space into cubes
of side length 2¢; in the spatial and length 2es in temporal dimension, which
determine the minimum partition size, MinSize. Following [23], we consider
here a maximum number of points per partition maxzPts instead of a cost per
partition, given that our scheme is implemented in Apache Spark.

The Octree-based partitioning is exemplified in Fig. 3 and works as follows.
The spatio-temporal region containing all tweets is divided in eight equal-sized
cubes and each sub-cube is recursively split as long as the MinSize or the
mazxPts conditions have not yet been achieved. The final leaves of the tree
corresponds to the data partitions. As in [22, 23], partitions are then enlarged €;
and €5 in the space and time dimension, respectively.

With this partitioning scheme, we avoid the computation of the best possible
split, but we might generate more partitions than necessary. Consequently, the
subsequent stages might need to process and merge extra partitions increasing
the execution time of these stages. However, we expect that the gain in the
partitioning phase pays off the extra time in local DBSCAN and merging phases.
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Fig. 3: Example of Octree Partitioning in spatio-temporal dimensions

3.2 Density-aware Local DBSCAN

As we mentioned earlier, one of the main limitations of DBSCAN is that fails
to cluster datasets with points unevenly distributed, since DBSCAN parameters
(MinPts, €) are fixed and cannot be chosen appropriately for each sub-region.

The octree-based partitioning scheme creates spatio-temporal partitions with
different density levels. These partitions correspond to different regions in space
(e.g. low-density partitions are likely to be rural or deserted areas) and in time
(e.g. high-density partitions are prone be at peak hours).

Moreover, the spatio-temporal properties of an event do not vary much from
one place to another, or within different time periods; but the number of tweets
per event certainly changes as per the user activity. Because of this, we propose to
adjust the local MinPts parameter based on the tweet density in each partition
in such a way that the denser the partition is, the more tweets are needed to
identify such event.

For a fixed set of ¢; parameters, we define the optimal MinPts per event
as the MinPts value that enables to individually identify each event. We claim
that there is a relationship between the optimal MinPts value per event and
the local density of tweets in the partition that the event belongs. As we show in
Fig. 4, each event, represented by a dot, can be identified individually through
an optimal MinPts value that is correlated with the partition tweet density. In
what follows, we explicitly assume a linear relationship (slope m, intercept b)
between the local density of tweets and the MinPts value.

The fitting of this linear model could be done by performing simple linear re-
gression between the partition tweet density and the individual optimal MinPts.
However, this approach would not necessarily optimize the overall detection ac-
curacy. Therefore, our proposal estimates these parameters (m and b) through
an optimization framework in which detection accuracy is maximized, as we will
show in Section 4.4.

Introducing the density-aware parameters requires minimal changes on the
local DBSCAN stage given that partition densities can be computed in the
partitioning phase. Therefore, the local process simply calculates the proper
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Fig. 4: Relation between the optimal MinPts value per event and its partition
density obtained from “La Liga” dataset in section 4.2

MinPts value through the linear model (m and b) and it performs clustering with
that local value through the DBSCAN-like algorithm presented in Section 2.2

3.3 Merging

The merging stage follows a two-step process as MR-DBSCAN [22] and RDD-
DBSCAN [23]. Although cluster merging is performed exactly as in these algo-
rithms, we note that the resulting clusters might be different, given that we here
merge clusters from partitions with different MinPts value.

On the relabeling step, we must take into account that points in the overlap-
ping margins, which are clustered by different partitions, might be tagged with
distinct point types by each partition. In contrast to MR-DBSCAN and RDD-
DBSCAN, we must consider here that partitions might have different density
levels. Our criteria is that the partition with higher or equal tweet density than
the partition that contains the tweet will determine the point type according to
the order of significance (Core > Border > Noise).

Relabeling details are shown in Algorithm 1. This algorithm takes as input a
tweet or point p together with the density of its partition, and a list of labelings
made by each overlapping partitions about this tweet. Note that a tweet belongs
to a single partition with density DensPartBelongs, but it might be labeled
by several partitions. For each tweet, the algorithm iterates over all possible
labelings, Values. For a given labeling we know the cluster to which the tweet
was clustered, item.p.CluterID, the density of its partition, item.Density Part,
and the flag that the tweet was associated with it, item.p. flag. The algorithm
then checks whether the density of the partition in the given labeling is greater
or equal to the density of the point’s partition. If that is the case, relabeling is
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Algorithm 1: Relabel Points

Input : Key: (p,DensPartBelongs), Values: list of
(p.ClusterID,DensityPart,p.flag)
Output: Key: p, Value:(ClusterID,flag)

1 ClusterID + NULL;

2 Flag < Noise;

3 foreach item € Values do

4 if value. DensityPart > DensPartBelongs then
5 if item.p.flag == Border then
6

7

8

9

ClusterID < item.p.ClusterID;
flag «+ Border;

else if item.p.flag == Core then
ClusterID < item.p.ClusterID;

10 flag < Core;

11 break;

12 return (p,(ClusterID,flag))

done as in MR-DBSCAN. Otherwise, relabeling is performed according to the
partition that the tweet belongs.

4 Experimentation

4.1 Infrastructure

We conduct the experiments on a shared-nothing non-dedicated cluster with four
physical machines. The cluster is managed by OpenNebula, a cloud comput-
ing platform for heterogeneous distributed data center infrastructures, through
which we configured four Ubuntu virtual machines with 4 cores, 6 GB of main
memory and 60 GB of hard disk space per machine. Machines are connected
through a Gigabit Ethernet and Apache Spark Standalone is installed on top of
them.

4.2 Datasets

For assessing the performance of the density-aware MapReduce scheme we have
chosen two types of datasets: synthetic and real.

Synthetic Datasets Synthetic datasets are generated in order to test the pro-
posed partitioning scheme under different workloads. In particular, we are in-
terested in measuring the execution time for the Octree-based partitioning and
compare against RDD-DBSCAN when increasing the dataset size.

These datasets are created using the Scikit-learn’s tool samples generator
utility [25]. A Python script generates datasets of points distributed according
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to a Gaussian mixture model in a three dimensional euclidean space. The script
requires as input the number of clusters, the number of observations and the
standard deviation of each clusters to the centroid.

Since the experiment will consist in measuring execution time for different
sizes of synthetic data, we created five datasets increasing in 100.000 the number
of points from one to another, with a starting number of 300.000. Each synthetic
data was created with twelve clusters and 1.6 of standard deviation each one.

“La Liga” Dataset A real Twitter dataset was assembled in order to validate
the proposed scheme for the task of event detection. In particular, we have
established a long standing connection to the Twitter Streaming API which
filtered all geo-located tweets within the bounding box of the Iberian peninsula.
The long standing connection was set during four days of the Spanish football
league (“La Liga”) April 207, 23t 30" and May 8" of 2016.

The aforementioned scenario provides a suitable testbed to measure the de-
tection performance of the proposed event detection scheme. For each day, we
have considered as event-related tweets all observations located in the nearby
stadium area during the course of the match plus a safety period of 15 min be-
fore and after the match. Note that the space-time features for all football games
will be very similar, but the number of tweets per event will directly depend on
the attendance and the surrounding tweet density. In addition, we have excluded
those matches that had less than 5 tweets per event and those that were outliers
in terms of the relation of tweet density within the partition versus points per
event.

Taking this into account, we ended with 15 events and 91.447 geo-located
tweets, which we further split between training and testing following an approx-
imated ratio of 70%/30%. In particular, we considered as training events, those
ranging from April 20** to 30*", and testing events, those from May 8! as shown
in Table 1. This split also resulted in 65.231 tweets in training and 26.216 tweets
in testing.

4.3 Event Detection Metrics

To evaluate the detection accuracy of our proposal, we use extrinsic clustering
metrics [26]. Among all extrinsic measures, F-measure is a popular metric for
this task, given that mitigates drawbacks from Purity and Inverse Purity.

The F-measure is defined as follows per each event F; and cluster C},
Recall(E;, C;) - Precision(E;, C;) 3)
Recall(E;, C;) + Precision(E;, C;)

where precision is the proportion of tweets from cluster C; that are tagged as
event F;. Oppositely, recall is the proportion of tweet from event F; that are
clustered as C;. The following expressions formally define precision and recall
per each pair of event and cluster.

_|CjﬂEi| _|Eiij|

Precision(Cj, E;) = |07| Recall(C}, E;) = W (4)
j 7

F(E;,Cj)=2




12 Joan Capdevila, Gonzalo Pericacho, Jordi Torres, Jestis Cerquides

Table 1: Training and testing football events

Event ‘ Stadium ‘ Event date ‘ Start time | Points
1 Riazor 20 April 19:45 17
2 San Mames 20 April 20:30 16
3 Bernabeu 20 April 21:45 66
4 Mestalla 20 April 20:30 15
5 Rosaleda 20 April 20:30 6
6 Calderon 23 April 18:00 16
7 Camp Nou 23 April 20:15 69
8 Calderon 30 April 18:00 27
9 Benito Villamarin 30 April 20:15 16
10 Anoeta 30 April 15:45 7
11 Los Carmenes 30 April 21:50 7
12 Camp Nou 8 May 16:45 93
13 Ciudad de Valencia 8 May 16:45 9
14 Séanchez Pizjuan 8 May 16:45 24
15 Balaidos 8 May 16:45 15

Finally, the F-measures from Eq. (3) are combined through a weighted av-
erage scheme across all events. For each event, the maximum F-measure with
respect to all clusters is considered for averaging.

E;
F = Z%maxj F(Ei,Cj) (5)

where N is the total number of tweets.

Purity and Inverse Purity are defined similarly as the weighted average across
clusters and events, respectively. While Purity considers the maximum precision
w.r.t events, Inverse Purity uses the maximum recall w.r.t. clusters. However,
both figures by themselves fail to measure proper clustering. On the one hand,
Purity penalizes the noise in a cluster, but it does not reward grouping tweets
from the same event together. For example, if we simply make one cluster per
observation, we reach trivially a maximum purity value. On the other hand,
Inverse Purity rewards grouping tweets together, but it does not penalize mixing
items from different events. Here, we can reach maximum Inverse Purity by
making a single cluster with all tweets.

Therefore, we consider the F-measure from Eq. (5) for assessing the event
detection performance.

4.4 Evaluation

Execution Times To validate the goodness of the proposed Octree-based par-
titioning scheme, we compare its execution time against BSP-based partitioning
in different-sized synthetic datasets.
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For both schemes, we set algorithm parameters so that all clusters could be
discovered at every experiment. Therefore, €1, €2 was set to 0.01, maxPoints
to 5000 and MinPts to 75. For each experiment, we collected the partitioning
time, the clustering and merging time and the total execution time.

Results, Table 2 and Fig. 5, show that the total execution time of the
Octree-based approach overcomes the BSP-based approach proposed in RDD-
DBSCAN [23]. This improvement is clearly achieved in the partitioning phase
due to the fact that Octree partitioning is less expensive than BSP partitioning
in computation terms. As expected, the gain in the partitioning phase comes at
the expense of an increase at the clustering and merging phase.

600 T T

BSP Partitioning

B BSP Clustering & Merging
500 | EEEE Octree Partitioning

I Octree Clustering & Merging

400

300

Seconds

200

100

500k
Amount of points

Fig. 5: Execution times for BSP-based and Octree-based MapReduce DBSCAN

Table 2: Execution times for BSP-based and Octree-based MapReduce DBSCAN

Phase/Data | 300k | 400k | 500k | 600k | 700k
BSP Partitioning 234.28 | 310.17 | 456.55 | 509.46 | 513.75
Octree Partitioning 3.17 5.16 7.13 8.40 10.55
BSP Clustering and Merging 39.97 48.08 46.45 51.04 58.00
Octree Clustering and Merging 47.23 57.14 68.87 73.10 81.35
BSP total execution 274.25 | 358.25 | 503.00 | 560.50 | 571.75
Octree total execution 50.40 62.30 76.00 81.50 91.90
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Detection Performance To validate the detection accuracy of the proposed
density-aware scheme, we compare the best performing DBSCAN-like model
against the density-aware scheme in “La Liga” dataset.

Given that all labeled events shared similar space-time properties (tweets
were located nearby stadiums and during the course of football matches), €; and
€2 parameters were out of the optimization scope and they were assumed known
and constant for all experiments. In particular, we found out that an e; = 500m
and es = lhour performed reasonably well in this dataset.

Therefore, we aimed to find the best performing configurations of both mod-
els by optimizing the MinPts parameter for the DBSCAN-like model and the
linear parameters (m, b) for the density-aware scheme. The optimizations were
performed in “La Liga” training dataset, while the test dataset was used to vali-
date the values found. A greater F-measure value of the density-aware scheme in
the training and testing datasets would indicate that our proposal outperforms
the basic DBSCAN-like approach.

0.64

0.62

0.60

0.58

0.56

F-measure

0.54+

052

0.50+

0.481

0.46

1 23 45 6 7 8 9 1011121314 1516 17 18 19 20
MinPts

Fig. 6: MinPts optimization for DBSCAN-like algorithm

Fig. 6 shows the optimization of the MinPts parameter for a DBSCAN-like
algorithm in terms of F-measure in the training set. As it is depicted, the global
maximum is achieved for a MinPts of 12 with a overall F-measure value of
0.628.

Fig. 7 shows the optimization of the linear parameters (m, b) in terms of
F-measure for the density-aware scheme. The left figure plots the optimization
results in a suitable view to understand the variation of the slope m. The right
figure plots the same optimization results in a different angle of view to un-
derstand the intercept b. In both axis, a global optimum seems to exist given
that extremely high or low slope and intercept values will end up with lower
F-measure values. Therefore, the best performing linear model for the density-
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Fig. 7: Linear (m, b) optimization for density-aware scheme

aware scheme consist of a slope m = 300 and a intercept b = 8, which results in
a F-measure of 0.683.

With this optimal values we now compare the performance of both algorithms
in the testing dataset. Results shown in Fig. 8 sustain that the detection per-
formance obtained in the density-aware scheme are higher than the ones of the
the basic DBSCAN-like algorithm in both training and testing datasets. In both
cases, the percentage of improvement is around 5%, being a promising value for
future work in the field. In addition, the global purity and inverse purity values
computed for both algorithms and datasets reveal that our proposal is increas-
ing both measures with respect to the traditional algorithm, not prioritising one
over the other.

EZA F-measure [0 Purity 70 Inverse Purityl l- F-measure [0 Purity 7 Inverse Purity
10

0.8

Value
Value

Density Aware DBSCAN Density Aware DBSCAN

(a) Training dataset (b) Testing dataset

Fig. 8: F-measure, Purity and Inverse Purity values.
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5 Conclusions

In this paper, we identified two major shortcomings when scaling DBSCAN-
like algorithms for event detection systems in Twitter. First, the large amount
of tweets hampers the use of event detection techniques that run into a single
machine. Second, the geographical or temporal scaling of these systems has to
explicitly consider that tweeting activity varies in space and time.

To tackle both shortcomings, we proposed a density-aware MapReduce scheme
which benefits from local DBSCAN computations to tune its local parameters
to the neighboring tweet densities. The rationale for using density-aware param-
eters is that events in highly dense regions are likely to contain more tweets,
while those in low-density regions will contain less.

The assessment of the proposed scheme is performed in a dataset of geo-
located tweets in the Iberian peninsula during the course of several football
matches. Tweets nearby the stadium during the football game are manually
identified as event-related tweets. The evaluation shows that our proposal to in-
corporate density awareness outperforms classical DBSCAN techniques. More-
over, we also show that the overall execution time improves with respect to
RDD-DBSCAN by using a naive but effective Octree-based partitioning scheme.

6 Future Work

The proposed density-aware MapReduce scheme for event detection has been
evaluated in a dataset of events which all shared similar spatio-temporal features.
Future work should address the evaluation in datasets of heterogeneous events.
For example, events that last many hours but are located within a narrow area
or events that last few hours but are geographically very spread.

Similarly, we have observed that some clusters detected by our event detec-
tion approach did not correspond to real-world events, but to popular places
known as landmarks, such as the city centre. In order to avoid detecting these
clusters, a textual component could be added in the neighborhood search for
selecting tweets which are similar in meaning, as in [14,16]. However, search-
ing for textual objects will cause extra computational cost that might not be
disregarded by future research.

As in RDD-DBSCAN, the need to load the complete data set for a given
partition into memory still remains open. Future work should focus on this given
that the use of disk and memory will bring new ideas to scale up event detection
in Apache Spark. For example, we might need to rethink the proposed Octree-
based partitioning scheme so that it takes into account the extra-cost to now
load data from disk.
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