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Abstract The last years have seen a steep rise in data generation world-
wide, with the development and widespread adoption of several software
projects targeting the Big Data paradigm. Many companies currently
engage in Big Data analytics as part of their core business activities,
nonetheless there are no tools and techniques to support the design of the
underlying hardware configuration backing such systems. In particular,
the focus in this report is set on Cloud deployed clusters, which repre-
sent a cost-effective alternative to on premises installations. We propose
a novel tool implementing a battery of optimization and prediction tech-
niques integrated so as to efficiently assess several alternative resource
configurations, in order to determine the minimum cost cluster deploy-
ment satisfying Quality of Service constraints. Further, the experimental
campaign conducted on real systems shows the validity and relevance of
the proposed method.

1 Introduction

Nowadays, the Big Data adoption has moved from experimental projects to
mission-critical, enterprise-wide deployments providing new insights, competitive
advantage, and business innovation [23]. IDC estimates that the Big Data market
grew from $3.2 billion in 2010 to $16.9 billion in 2015 with a compound annual
growth rate of 39.4%, about seven times the one of the overall ICT market [7].

From the technological perspective, the MapReduce programming model is
one of the most widely used solutions to support Big Data applications [27]. Its
open source implementation, Apache Hadoop, is able to manage large datasets
over either commodity clusters or high performance distributed topologies [45].
MapReduce has attracted the interest of both industry and academia, since
analyzing large amounts of unstructured data is a high priority task for many
companies and overtakes the scalability level that can be achieved by traditional
data warehouse and business intelligence technologies [27]. Moreover, thanks to a
wide set of performance enhancements (e.g., SSD support, caching, I/O barriers
elimination) implemented within Hadoop 2.x, nowadays MapReduce can support
both traditional batch and interactive data analysis applications [37].
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However, the adoption of Hadoop and other Big Data technologies is com-
plex. The deployment and setup of an implementation is time-consuming, ex-
pensive, and resource-intensive. Companies need an easy button to accelerate
the deployment of Big Data analytics [20]. For this reason, Cloud Computing is
also becoming a mainstream solution to provide very large clusters on a pay-per-
use basis. For example, Cloud storage provides an effective and cheap solution
for storing Big Data. The pay-per-use approach and the almost infinite capac-
ity of Cloud infrastructures can be used efficiently in supporting data intensive
computations. Many Cloud providers already include in their offering MapRe-
duce based platforms, among which Microsoft HDInsight [10] or Amazon Elastic
MapReduce [2]. IDC estimates that, by 2020, nearly 40% of Big Data analyses
will be supported by public Clouds [7], while Hadoop touched half of the world
data last year [24].

In the very beginning, MapReduce jobs were meant to run on dedicated
clusters to support batch analyses via a FIFO scheduler [35,36]. Nevertheless,
MapReduce applications have evolved and nowadays large queries, submitted
by different users, need to be performed on shared clusters, possibly with some
guarantees on their execution time [48,50].

In this context one of the main challenges [28,41] is that the execution time
of a MapReduce job is generally unknown in advance. In such systems, capacity
allocation becomes one of the most important aspects. Determining the optimal
number of nodes in a cluster shared among multiple users performing heteroge-
neous tasks is an important and difficult problem [41].

Our focus in this report is to provide a software tool able to support sys-
tem administrators and operators in the capacity planning process of shared
Hadoop 2.x Cloud clusters supporting both batch and interactive applications
with deadline guarantees. Having such information available at design-time en-
ables operators to make more informed decisions about the technology to use
and to fully exploit the potential offered by the Cloud infrastructure.

We formulate the capacity planning problem by means of a mathematical
model, with the aim of minimizing the cost of Cloud resources. The problem
considers multiple virtual machine (VM) types as candidates to support the ex-
ecution of Hadoop applications from multiple user classes. Cloud providers offer
VMs of different capacity and cost. Given the complexity of virtualized systems
and multiple bottleneck switches that occur during Big Data applications ex-
ecution, very often the largest VM available is not the best choice from either
the performance or performance/cost ratio perspective [49,19]. Through a search
space exploration, our approach determines the optimal VM type and instances
number, considering also specific Cloud provider pricing models (namely reserved
and spot instances [1]). The underlying optimization problem is NP-hard and it
is solved by a hill climbing heuristic able to determine the optimal configuration
for a cluster governed by the YARN Capacity Scheduler.

Our work is one of the first contributions facing the problem of optimal sizing
of Hadoop 2.x Cloud systems adopting the Capacity Scheduler [8]. Job execution



times are estimated by relying on queueing network (QN) models, which are also
a novel contribution of this report.

We validate the accuracy of our solutions on real systems by performing ex-
periments based on the TPC-DS industry benchmark for business intelligence
data warehouse applications [11]. Amazon EC2 and the CINECA Italian su-
percomputing center have been considered as target deployments. QN model
simulation results and experiments performed on real systems have shown that
the accuracy we can achieve is within 30% of the measurements in the worst
case, with an average error around 12%.

This report is organized as follows. Section 2 presents in detail the prob-
lem addressed in the report. In Section 3 we focus on the formulation of the
optimization problem and on the design-time exploration algorithm to solve it
implemented by our D-SPACE4Cloud tool. In Section 4 we evaluate our ap-
proach by considering first the accuracy that can be achieved by our QN models
and then the overall effectiveness of the optimization method. Finally, in Sec-
tion 5 we compare our work with other proposals available in the literature and
draw the conclusions in Section 6.

2 Problem Statement

In this section we aim at introducing some important details on the problem
addressed in this work. We envision the following scenario, wherein a company
needs to set up a cluster to carry out efficiently a set of interactive Big Data
queries. A Hadoop 2.x cluster featuring the YARN Capacity Scheduler and run-
ning on a public Cloud TaaS is considered a fitting technological solution for the
requirements of the company.

In particular, the cluster must support the parallel execution of Big Data
applications in the form of Hadoop jobs or Hive/Pig queries. Different classes
C = {i|t = 1,...,n} gather applications that show a similar behavior. The
cluster composition and size, in terms of type and number of VMs, must be
decided in such a way that, for every application class i, H; jobs are guaranteed
to execute concurrently and complete before a prearranged deadline D;.

Moreover, YARN is configured in a way that all available cores can be dy-
namically assigned to either Map or Reduce tasks. Finally, in order to limit the
risk of data corruption and according to the practices suggested by major Cloud
vendors [2,10], the datasets reside on an external storage infrastructure [3,9]
accessible at quasi-constant time.

As, in general, Infrastructure as a Service providers feature a limited, but
possibly large, catalog of VM configurations V = {j|j = 1,...,m} that dif-
fer in capacity (CPU speed, number of cores, available memory, etc.) and cost,
making the right design-time decision poses a challenge that can lead to impor-
tant savings throughout the cluster life-cycle. We denote with 7; the VM type j
used to support jobs of class ¢ and with v; the number of VMs of such a kind
allocated to class 4. In this scenario, we consider a pricing model derived from
Amazon EC2 [1]. The provider offers: 1) reserved VMs, for which it adopts a



one-time payment policy that grants access to a certain number of them for the
contract duration; and 2) spot VMs, for which customers bid and compete for
unused datacenter capacity, yielding very competitive hourly fees. In order to
obtain the most cost-effective configuration, we rely on reserved VMs (R;) for
the bulk of computational needs and complement them with spot VMs (s;). Let
o, be the unit cost for spot VMs of type 7;, whilst 7, is the effective hourly
cost for one reserved VM: it is the unit upfront payment normalized over the
contract duration. Overall, the cluster hourly renting out costs can be calculated
as follows:

cost = Z (or;8i + 77, Ri) (1)
iccC
Let v; = R; + s;: as the reliability of spot VMs depends on market fluc-
tuations, to keep a high Quality of Service (QoS) the number of spot VMs is
bounded not to be greater than a fraction n; of v; for each class i.
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Figure 1. Reference system

Reducing the operating costs of the cluster by using efficiently the leased
virtual resources is in the interest of the company. This translates into a Resource
Provisioning problem where the renting out costs must be minimized subject to
the fulfillment of QoS requirements, namely H; per-class concurrency level given
certain deadlines D;. In the following we assume that the system supports H;
users for each class and that users work interactively with the system and run
another job after a think time exponentially distributed with mean Z;, i.e., the
system is represented as a closed model [26]. In order to rigorously model and
solve this problem, it is crucial to predict with fair confidence the execution
times of each application class under different conditions: level of concurrency,



cluster size, and composition. Following the approach presented in [41] it is
possible to derive from the Hadoop logs a job profile, that is a concise behavior
characterization for each class. Following the notation brought forth in [41,30],
given a certain VM of type j, the job profile P;; for application class 7 aggregates
the following information: 1) n and nf, respectively the total number of Map
and Reduce tasks per job; 2) Mper Rper, ST, and S;ppts, the maximum
duration of a single Map, Reduce, and Shuffle task (notice that the first Shuffle
wave of a given job is distinguished from all the subsequent ones); 3) M?fg ,
R;?, and S; 9. i.e., the average duration of Map, Reduce, and Shuffle tasks,
respectively.

Given the amount and type of resources allocated, the concurrency level,
and the job profile, the estimated execution time can generically be expressed

as in (2):

ﬂ = T(Pi,‘ri,l/i; Hia Zl) ’ Vi € C (2)

What is worthwhile to note is that the previous formula represents a general
relation describing either closed form results, as those presented in [30], or the
average execution times derived via simulation, the approach adopted in this
report. Since the execution of jobs on a suboptimal VM type might give rise to
performance disruptions, it is critical to avoid assigning tasks belonging to class i
to the wrong VM type j # 7;. Indeed, YARN allows for specifying Node Labels
and partitioning nodes in the cluster according to these labels, then it is possible
to enforce this separation. Our configuration statically splits different VM types
with this mechanism and adopts within each partition either a further static
separation in classes or a work conserving scheduling mode, where idle resources
can be assigned to jobs requiring the same VM type. The assumption on the
scheduling policy governing the exploitation of idle resources is not critical: it
only affects the interpretation of results, where the former case leads to sharp
predictions, while in the latter the outcomes of the optimization algorithm are
upper bounds, with possible performance improvements due to a better cluster
utilization. Equations (2) can be used to formulate the deadline constraints as:

T, < D;, Viec. (3)

In light of the above, we can say that the ultimate goal of the proposed
approach is to determine the optimal VM type selection 7; and number and
pricing models of VMs v; = R; + s; for each class i such that the sum of costs is
minimized, while the deadlines and concurrency levels are met.

The reader is referred to Figure 1 for a graphical overview of the main ele-
ments of the considered resource provisioning problem. Furthermore, in Table 1 a
complete list of the parameters used in the models presented in the next sections
is reported, whilst Table 2 summarizes the decision variables.



Table 1. Model parameters

Parameter Definition

C Set of application classes
1% Set of VM types
H,

i Number of concurrent users for class %
Z; Class i think time [ms]
D; Deadline associated to applications of class 7 [ms]
i Maximum percentage of spot VMs allowed to class 4

oj Unit hourly cost for spot VMs of type j [€/h]
;i Effective hourly price for reserved VMs of type j [€/h]
Pij Job profile of class ¢ with respect to VM type j

Table 2. Decision variables

Variable Definition

Vi Number of VMs assigned for the execution of applications from class 4

R;  Number of reserved VMs booked for the execution of applications from class 4
Si Number of spot VMs assigned for the execution of applications from class ¢
xzi;  Binary variable equal to 1 if class ¢ is hosted on VM type j

3 Problem Formulation and Solution

In the following we present the optimization model and techniques exploited
by the D-SPACE4Cloud tool in order to determine the optimal VM mix given
the profiles characterizing the applications under study and the possible Cloud
providers to host the virtual cluster, as well as the QN models used to obtain
an accurate assessment of the execution times given the resource configuration.
Further, we describe the heuristic algorithm adopted to efficiently tackle the
resource provisioning problem by exploiting the presented models.

3.1 Optimization and Performance Models

Basic building blocks for this tool are the models of the system under study.
First of all, we need a quick, although rough, method to estimate completion
times and operational costs: to this end, we exploit a mathematical program-
ming formulation. In this way, it is possible to swiftly explore several possible
configurations and point out the most cost-effective among the feasible ones.
Afterwards, the required resource configuration can be fine-tuned using more
accurate, even if more time consuming and computationally demanding, QN
simulations, reaching a precise prediction of the expected response time.
According to the previous considerations, the first step in the optimization
procedure consists in determining the most cost-effective resource type, based
on their price and the expected performance. This will be done by exploiting a
set of logical variables x;;: we will enforce that only x; ,, = 1, thus determining



the optimal VM type 7; for application class i. We address this issue proposing
the following mathematical programming formulation:

Jhin Z (or;8i + mr, Ri) (Pla)
i€C
subject to:
D miy=1, viec (P1b)
JjeV
Piqr = ZPij:cij, Viel (PIC)
jev
JT«L = Zo'jl‘ij7 V’L (S C (Pld)
JEV
T, = Z?zjij, VieC (Ple)
JEV
zi; € {0,1}, VieC,VjeV (P1f)
(v,s,R) € arg minz (or;8i + mr, Ri) (Plg)
i€C
subject to:
si<—I R, ViecC (P1h)
1-— i
Vi :Ri—FSZ‘, Viel (Pll)
T(pi,ri,l/i;Hi,Zi) <D;, VieC (Plj)
vi €N, VielC (P1k)
R;eN, VieC (P11)
si €N, Viel (P1m)

Problem (P1) is a bilevel resource allocation problem where the outer objec-
tive function (Pla) considers running costs. The first set of constraints, (P1b),
associates each class ¢ with only one VM type j, hence the following constraints,
ranging from (Plc) to (Ple), pick the values for the inner problem parameters.

The inner objective function (P1lg) has the same expression as (Pla), but in
this case the prices o, and 7, are fixed, as they have been chosen at the upper
level. The following constraints, (P1h), enforce that spot instances do not exceed
a fraction 7; of the total assigned VMs and constraints (P1i) add all the VMs
available for class i, irrespective of the pricing model. Further, constraints (P1j)
mandate to respect the deadlines D;, as stated in the Service Level Agreement
contracts. In the end, all the remaining decision variables are taken from the
natural numbers set, according to their interpretation.



The presented formulation of Problem (P1) is particularly difficult to tackle,
as it is a bilevel mixed integer nonlinear programming (MINLP) problem, pos-
sibly nonconvex, depending on 7. According to the literature about complexity
theory [18], integer programming problems belong to the NP-hard class, hence
the same applies to (P1). However, since there is no constraint linking variables
belonging to different application classes, we can split this general formulation
into several smaller and independent problems, one per class .
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Figure 2. Queueing network model

We still have the problem of computing the average completion time 7. In
this work, we exploit a QN model for MapReduce jobs, assuming that the YARN
Capacity Scheduler is used. In the following, we do not make any assumptions
on the configuration of the Capacity Scheduler, according to the considerations
presented in Section 2. The model can be applied to both statically partitioned
and work conserving mode clusters, but care should be taken in the interpretation
of results. In the former case, our model provides the mean completion time
for every job class. On the other hand, if the scheduler is configured in work
conserving mode, then the completion time we obtain is an upper bound, due to
possible performance gains when resources are exploited by other classes instead
of lying idle. Exploiting the node labeling mechanism, we enforce that jobs run
on their optimal VM type 7; in any case, so as to avoid cases where some tasks
running on improper nodes become bottlenecks and disrupt both the lender and
borrower class performance.

The performance model is depicted in Figure 2. It is a closed QN model
where the number of concurrent users is given by H; and they start off in the
delay center characterized by Z;. When a user submits their job, this is forked
into as many Map task requests as stated in the job profile P; ;,, which then
enter the finite capacity region (FCR) [15]. FCRs model situations where several
service centers access resources belonging to a single limited pool, competing
to use them. Hence, the FCR enforces an upper bound on the total number of
requests served at the same time within itself, allowing tasks in based on a FIFO
queue and supporting prioritization of different classes. The FCR includes two
multi-service queues that model the Map and Reduce execution stages. FCR and
multi-service queues capacities are equal to the total number of cores available to



class i. In this way, we can model the dynamic assignment of YARN containers
to Map and Reduce tasks whenever they are ready.

Map tasks are executed by the first multi-service queue and synchronize
after completion by joining back to a single job request. The Reduce phase is
modeled analogously, while between the phases there are class switches to enforce
that Reduce tasks waiting for resources obtain them with priority. Indeed, the
YARN Capacity Scheduler implements a FIFO scheduling within the same queue
and containers are allocated to the next job only when all Reduce tasks have
obtained enough resources. Reduce tasks have a higher priority than Map tasks
to enforce this behavior. Note that the Map join is external to the FCR in order
to model that when Map tasks complete they release container cores, which can
be assigned to tasks ready in the FCR FIFO queue. Moreover, the Reduce fork
is also external to the FCR to model correctly applications characterized by a
number of Reducers larger than the total number of cores. Note that the model
in Figure 2 is rather general and can be easily extended to consider also Tez or
Spark applications, where a Tez directed acyclic graph (DAG) node or Spark
stage is associated to a corresponding multi-server queue.

3.2 Solution Techniques

The aim of this section is to provide a brief description of the optimization
approach embedded in D-SPACE4Cloud. The tool implements an optimization
mechanism that efficiently explores the space of possible configurations.

Figure 3 depicts the main elements of the D-SPACE4Cloud architecture that
come into play in the optimization scenario. The tool takes as input a description
of the considered problem, consisting in a set of applications, a set of suitable
VMs for each application along with the respective job profiles for each machine,
and QoS constraints expressed in terms of deadlines for each considered appli-
cation. Specifically, all these parameters are collected in a JSON file provided as
input to the tool. The Initial Solution Builder generates a starting solution for
the problem using a MINLP formulation where the time expression T appearing
in constraint (P1j) is a convex function: then the inner level of (P1) is a convex
nonlinear problem and we exploit the Karush-Kuhn-Tucker conditions to speed
up the solution process. For more details the reader is referred to [29]. It must
be highlighted, at this point, that the quality of the returned solution can still
be improved: this because the MINLP relies on an approximate representation
of the Application-Cluster liaison. For this reason the QN model presented in
the previous section is exploited to get a more accurate execution time assess-
ment. The increased accuracy leaves room for further cost reduction; however,
since QNs are time consuming tools, the space of possible cluster configurations
has to be explored in the most efficient way, avoiding to evaluate unpromising
configurations.

In the light of such considerations, a heuristic approach has been adopted and
a component called Parallel Local Search Optimizer has been devised. Internally,
it implements a parallel hill climbing (HC) technique to optimize the number
of replicas of the assigned resource for each application; the goal is to find the



minimum number of resources to fulfill the QoS requirements. This procedure is
applied independently, and in parallel, on all application classes and terminates
when a further reduction in the number of replicas would lead to an infeasible
solution. As soon as all the classes reach convergence, it is possible to retrieve
from the D-SPACE4Cloud tool a JSON file listing the results of the overall op-
timization procedure. In particular, HC is a local-search-based procedure that
operates on the current solution performing a change (more often referred to as
move) in the structure of the solution in such a way that the newly generated
solution could possibly show an improved objective value. If the move is success-
ful it is applied again on the new solution and the process is repeated until no
further improvement is possible. The HC algorithm stops when a local optimum
is found; however, if the objective to optimize is convex, HC is able to find the
global optimum. This is the case of the considered cost function (1), which is
linear in the number of VMs in the cluster, since VM prices are fixed at the first
level. Hence, every feasible instance of the inner problem can be heuristically
solved to optimality through HC.

Algorithm 1 is reported here for clarity purposes. The initial solution S, ob-
tained from the MINLP solution, is evaluated using the QN model and each one
of its parts is optimized separately and in parallel (line 2). If the partial solution
S, is infeasible the size of its personal cluster is increased by one unit (line 5)
until it reaches feasibility. Otherwise, the procedure attempts to decrease the
cost function by reducing the cluster size (line 10). Finally, it is worth pointing
out that every time the total number of machines in a cluster is incremented or
decremented the best mix of pricing models (i.e., R;, s;) is computed so as to
minimize the renting out costs of that configuration.
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Figure 3. D-SPACE4Cloud architecture



Algorithm 1 Hill climbing algorithm
Require: S = {S;|i€C}

1: Ewvaluate (S)

2: for all i € C do < Parallel for
3: if S; is infeasible then

4: while S; is infeasible do

2 g;’z’;zz;nzgl;t ster (5:) Pursuit of feasibility
7 end while

8: else

9: while S; is feasible do

}(1) Zsz;zz:’zsguswr (S:) Cost optimization
12: end while

13: IncrementCluster (S;)

14: end if

15: end for

16: return S

4 Experimental Analysis

In this section we show the results of several experiments performed to vali-
date the proposed approach. All these experiments have been performed on two
Ubuntu 14.04 VMs hosted on an Intel Xeon E5530 2.40 GHz equipped server.
The first VM ran the D-SPACE4Cloud web service and KNITRO 10.0 [6], a
solver for the mathematical programming language AMPL [4], which was used
to solve the optimization problem presented in Section 3.1 (see [29] for further
details), determining an initial solution to our HC algorithm. The second one,
instead, ran JMT 0.9.3 [15], a collection of free software performance evaluation
programs including a QN simulator.

4.1 Experimental Setup and Design of Experiments

In order to obtain job profiles, we chose a set of SQL queries, shown in Fig-
ure 4, from the industry standard benchmark TPC-DS [11]. We then generated
synthetic data compliant with the specifications and executed the queries on
Apache Hive [5]. Notice that we generated data at several scale factors ranging
from 250 GB to 1 TB. Since profiles collect statistical information about jobs,
we repeated the profiling runs at least twenty times per query. Properly parsing
the logs allows to extract all the parameters composing every query profile, for
example average and maximum task execution times, number of tasks, etc. Pro-
filing has been performed on Amazon EC2, by considering m4.xlarge instances,
and on PICO!, the Big Data cluster offered by CINECA, the Italian supercom-
puting center. The cluster rented on EC2 was composed of 30 computational

! http://www.hpc.cineca.it/hardware/pico



select avg(ws_quantity),
avg(ws_ext_sales_price),
avg(ws_ext__wholesale_cost),
sum(ws_ext__wholesale_ cost)
from web_sales
where (web_sales.ws_sales_price between 100.00 and 150.00) or (web_sales.
ws_net_ profit
between 100 and 200)
group by ws_web__page_sk
limit 100;

(a) Q1

select inv_item_sk,inv_ warehouse_sk

from inventory where inv_ quantity_on_hand > 10
group by inv_item_sk,inv_warehouse_sk

having sum(inv__quantity_on_hand) >20

limit 100;

(b) Q2

select avg(ss_quantity), avg(ss_net_profit)
from store_sales

where ss__quantity > 10 and ss_net_profit > 0
group by ss_store_sk

having avg(ss_quantity) > 20

limit 100;

(c) Q3

select cs_item_sk, avg(cs_quantity) as aq
from catalog_sales

where cs__quantity > 2

group by cs_item_sk;

(d) Q4

select inv_warehouse_sk, sum(inv_quantity_on_hand)
from inventory

group by inv_warehouse_sk

having sum(inv_quantity_on_hand) > 5

limit 100;

(e) Q5

Figure 4. Queries




nodes, for a total of 120 vCPUs hosting 240 containers, whilst on PICO we used
up to 120 cores configured to host one container per core. In the first case every
container had 2 GB RAM and in the second 6 GB. Along with profiles, we also
collected lists of task execution times to feed into the replayer in JMT service
centers. In the end, we recorded the different VM types characteristics.

4.2 Queueing Network Validation

To start off with, we show results for the validation of the QN model shown in
Figure 2. We feed the model with parameters evaluated on the real systems we
took into account and compare the measured performance metrics with the ones
obtained via simulation. Specifically, we consider as a quality index the accuracy
on the prediction of response times, defined as follows:

=T
0="7 (4)

where 7 is the simulated response time, whilst T" is the average measured one.
Such a definition allows not only to quantify the relative error on response times,
but also to identify cases where the predicted time is smaller than the actual one,
thus leading to possible deadline misses. Indeed, if ¥ < 0 then the prediction is
not conservative.

Among these experiments, we considered both single user scenarios, where
one query has been run repeatedly on dedicated cluster, interleaving a 10 s aver-
age think time between completions and subsequent submissions, and multiple
user scenarios, with several users concurrently interacting with the cluster in a
similar way.

Table 3. Queueing network model validation

Query Users Cores Dataset [GB] n™  nf T [ms] 7 [ms] 9 [%)]
Q1 1 240 250 500 1 55,410 50,240.96 —9.33
Q1 5 40 250 144 151 637,888 808,330.61 26.72
Q2 1 240 250 65 5 36, 881 28,022.81 —24.02
Q2 3 20 250 4 4 95,403 92,581.74 —2.96
Q3 1 240 250 750 1 76, 806 77,719.30  1.19
Q4 1 240 250 524 384 92,197  76,956.52 —16.53
Q1 1 60 500 287 300 378,127  411,940.93  8.94
Q3 1 100 500 757 793 401,827  524,759.36  30.59
Q3 1 120 750 1,148 1,009 661,214 759,230.77 14.82
Q4 1 60 750 868 910 808,490 844,700.85  4.48
Q3 1 80 1,000 1,560 1,009 1,019,973 1,053,829.78 —1.00
Q5 1 80 1,000 64 68 39, 206 36,598.32 —6.65

Table 3 shows the results of the QN model validation. In the worst case, the
relative error can reach up to 30.59%, which is perfectly in line with the expected



accuracy on response time prediction [26]. Instead, overall the average relative
error settles at 12.27%.

4.3 Scenario-based Experiments

The optimization approach described in Section 3 needs to be validated, ensuring
that it is capable of catching realistic behaviors we expect of the system under
analysis. We test this property with a set of assessment runs where we fix all
the problem parameters but one and verify that the solutions follow an intuitive
evolution.

The main axes governing performance in Hadoop clusters hosted on public
Clouds are the level of concurrency and the deadlines. In the first case, increasing
H,; and fixing all the remaining parameters, we expect a need for more VMs to
support the rising workload, thus leading to an increase of renting out costs.
On the other hand, if at fixed parameters we tighten the deadlines D;, again we
should observe increased costs: the system will require a higher parallelism to
shrink response times, hence more computational nodes to support it.
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Figure 5. Query R1, 10 concurrent users

For the sake of clarity, we performed single-class experiments: considering
only one class per experiment allows for an easier interpretation of the results.
Figures 5, 6 and 7 report the solutions obtained with the 250 GB dataset profiles.



R3 — HI10
2.5 ?‘ - 1
= ot
o \
w ' ‘
- G & o090 ‘
©- 3! ' } < m4.xlarge
1 O
R SOEEEEE EEEEEEE Qmmmmmmmmmmeaen <
booon | |
05 R ,',T,-,f.,_.,-,.,,.,,
B S L <
0 Il L Il L L
0 5e+06 le+07  1.5e+07 2e4+07  2.5e+07  3e+07
Deadline [ms]
Figure 6. Query R3, 10 concurrent users
R1 — H20
2 ; ‘
oo
¢ : :
0 : :
= 5
~— ll‘ .
W, u : ‘
" o | |
O i A : < m4.xlargd
LR LS TELEEEED SRREEEED R R LEEESEEEEEE <
S S |
\“*} ----------------- ©
0 i i i i i
0 5e+06  1le+07 1.5e+07 2e+407

2.5e+07  3e+07
Deadline [ms]

Figure 7. Query R1, 20 concurrent users



The average running time for these experiments is about two hours. All the
mentioned figures show the cost in €/h plotted against decreasing deadlines in
ms for both the real VM types considered: CINECA is the 20-core node available
on PICO, whilst m4.xlarge is the 4-core instance rented on Amazon AWS. In
Figures 5 and 6 the expected cost increase due to tightening deadlines is apparent
for both query R1 and R3, considering 10 concurrent users. Further, in both cases
it is cheaper to provision a Cloud cluster consisting of the smaller Amazon-offered
instances, independently of the deadlines. It is then interesting to observe that
R1 shows a different behavior if the required concurrency level increases. Figure 7
shows that, as the deadlines become tighter and tighter, it is possible to identify
a region where executing the workload on larger VMs becomes more economic.

5 Related Work

Capacity planning and architecture design space exploration are important prob-
lems analyzed in the literature [12,16]. High level models and tools to support
software architects (see, e.g., Palladio Component Model and its Palladio Bench
and PerOptirex design environment [14,25], or stochastic process algebra and
the PEPA Eclipse plugin [40,33]) have been proposed for identifying the best
configuration given a set of QoS requirements for enterprise web-based systems,
but unfortunately they do not support Cloud-specific abstractions or do not di-
rectly address the problem of deriving an optimized Cloud and Big Data cluster
configuration. On the other side, capacity management and cluster sizing for Big
Data applications has received also a widespread interest by both academia and
industry.

The starting point is the consideration that Hadoop often requires an intense
tuning phase in order to exhibit its full potential. For this reason, Starfish, a self-
tuning system for analytics on Hadoop, has been proposed [22]. In particular,
Starfish collects some key runtime information about the applications execution
with the aim of generating meaningful application profiles; such profiles are in
turn the basic elements to be exploited for Hadoop automatic configuration
processes. Furthermore, also the cluster sizing problem has been tackled and
successfully solved exploiting the same tool [21].

The resource provisioning problem, instead, has been faced by Tian and
Chen [39]. The goal is the minimization of the execution cost for a single appli-
cation. They present a cost model that depends on the dataset size and on some
characteristics of the considered application. A regression-based analysis tech-
nique has been used to profile the application and to estimate model parameters.
The problem of job profiling and execution time estimation represents a com-
mon issue in the Big Data literature. Verma et al. [42] proposed a framework for
the profiling and duration prediction of applications running on heterogeneous
resources. An approach to this problem based on closed queueing networks is
presented in [13]. This work is noteworthy as it explicitly considers contention
and parallelism on compute nodes to evaluate the execution time of a MapRe-
duce application. However, the weak spot of this approach is that it contemplates



the Map phase alone. Vianna et al. [43] worked on a similar solution; however
the validation phase has been carried out considering a cluster dedicated to the
execution of a single application at a time.

Both Map and Reduce phases are considered in [38]. In this work the Map
phase is modeled as an M/G/1 queue, whereas for the Reduce phase a multi-
server queue have been used. Note, however, that this approach has been es-
pecially tailored for Reduce-intensive applications. As far as queue models are
concerned, the case of Lin et al. [28] deserves to be cited; the authors propose
to model the execution of the application by means of a tandem queue with
overlapping phases. In the same work, efficient runtime scheduling solutions for
the joint optimization of the Map and copy/shuffle phases are provided. The
authors demonstrated the effectiveness of their approach comparing it with the
offline-generated optimal schedule.

Castiglione et al. [17] introduce a novel modeling approach based on mean
field analysis and provide fast approximate methods to predict the performance
of Big Data systems.

Deadlines for MapReduce jobs are considered in [34]. The authors recognize
the inadequacy of Hadoop schedulers released at the date to properly handle
completion time requirements. The work proposes to adapt to the problem some
classical multiprocessor scheduling policies; in particular, two versions of the
Earliest Deadline First heuristic are presented and proved to outperform off-
the-shelf schedulers. A similar approach is presented in [46], where the authors
present a solution to manage clusters shared among Hadoop application and
more traditional Web systems.

The problem of progress estimation of multiple parallel queries is addressed
in [32]. To this aim, the authors present Parallax, a tool able to predict the
completion time of MapReduce jobs. The tool has been implemented over Pig,
while the PigMix benchmark has been used for the evaluation. ParaTimer [31],
an extension of Parallax, features support to multiple parallel queries expressed

as DAGs.

Zhang et al. [47] investigate the performance of MapReduce applications on
homogeneous and heterogeneous Hadoop clusters in the Cloud. They consider
a problem similar to ours and provide a simulation-based framework for min-
imizing cluster infrastructural costs. Nonetheless, a single class of workload is
optimized. The work in [44] faced the problem of optimization of mixed inter-
active and batch applications in system-on-a-chip solutions with heterogeneous
cores.

In [41] the ARIA framework is presented. This work is the closest to our
contribution and focuses on clusters dedicated to single user classes handled by
the FIFO scheduler. The framework addresses the problem of calculating the
most suitable number of resources to allocate to Map and Reduce tasks in order
to meet a user-defined due date for a certain application; the aim is to avoid as
much as possible costs due to resource over-provisioning. We borrow from this
work the compact job profile definition, used there to calculate a lower bound,
an upper bound, and an estimation of an application execution time. Finally,



a performance model is presented, and eventually improved in [50], and then
validated through a simulation study and an experimental campaign on a 66-
node Hadoop cluster. The same authors, in a more recent work [48], provided a
solution for optimizing the execution of a workload specified as a set of DAGs
under the constraints of a global deadline or budget. Heterogeneous clusters with
possible faulty nodes are considered as well.

6 Conclusions

In this report we have proposed a novel approach to provisioning Cloud clusters
to support data intensive applications, specifically SQL queries executed with
Hive over Hadoop YARN managed clusters. Building upon a performance model
available in the technical literature, we have developed a MINLP formulation and
a QN model to assess the overall performance of Big Data systems, knowing the
involved applications job profiles and the resource configuration of the underlying
cluster. In order to achieve a favorable trade-off between prediction accuracy and
running times, we have adopted a heuristic approach that exploits the fast solvers
available for mathematical programming problems for the initial exploration of
the solution space and then relies on the precise, if slower, QN techniques, thus
getting the best of both worlds.

Moreover, our experimental validation shows how our tool is a valuable con-
tribution towards supporting different application classes over heterogeneous
VM types, since we have highlighted situations where sticking to small instances
and scaling out proves to be less economic than switching to better equipped
VMs that allow for a smaller number of replicas: the decreased replication factor
compensates the increased unit price in a not obvious way.

Moving from the presented results, an interesting research direction for our
future work lies in the characterization of complex workflows expressed as DAGs,
e.g., Tez or Spark jobs. Another relevant aspect to investigate is the usage of more
sophisticated techniques for the heuristic exploration of the solution space, in
order to attain further speedup and, possibly, extend our method to the runtime
cluster management scenario.
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