Skip to main content

Effective Monotone Knowledge Integration in Kernel Support Vector Machines

  • Conference paper
  • First Online:
  • 2513 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10086))

Abstract

In many machine learning applications there exists prior knowledge that the response variable should be increasing (or decreasing) in one or more of the features. This is the knowledge of ‘monotone’ relationships. This paper presents two new techniques for incorporating monotone knowledge into non-linear kernel support vector machine classifiers. Incorporating monotone knowledge is useful because it can improve predictive performance, and satisfy user requirements. While this is relatively straight forward for linear margin classifiers, for kernel SVM it is more challenging to achieve efficiently. We apply the new techniques to real datasets and investigate the impact of monotonicity and sample size on predictive accuracy. The results show that the proposed techniques can significantly improve accuracy when the unconstrained model is not already fully monotone, which often occurs at smaller sample sizes. In contrast, existing techniques demonstrate a significantly lower capacity to increase monotonicity or achieve the resulting accuracy improvements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/chriswbartley/PMSVM.

References

  1. Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17, 255–287 (2010)

    Google Scholar 

  2. Chen, C.C., Li, S.T.: Credit rating with a monotonicity-constrained support vector machine model. Expert Syst. Appl. 41(16), 7235–7247 (2014)

    Article  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Daniels, H., Kamp, B.: Application of MLP networks to bond rating and house pricing. Neural Comput. Appl. 8(3), 226–234 (1999)

    Article  Google Scholar 

  5. Duivesteijn, W., Feelders, A.: Nearest neighbour classification with monotonicity constraints. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 301–316. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87479-9_38

    Chapter  Google Scholar 

  6. Feelders, A., Pardoel, M.: Pruning for monotone classification trees. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 1–12. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45231-7_1

    Chapter  Google Scholar 

  7. Feelders, A.J.: Prior knowledge in economic applications of data mining. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 395–400. Springer, Heidelberg (2000). doi:10.1007/3-540-45372-5_42

    Chapter  Google Scholar 

  8. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Kamp, R., Feelders, A., Barile, N.: Isotonic classification trees. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 405–416. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03915-7_35

    Chapter  Google Scholar 

  10. Kotlowski, W.: Statistical approach to ordinal classification with monotonicity constraints. Ph.D. thesis, Pozna Univ of Techn Inst of Computing Science (2008)

    Google Scholar 

  11. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. pp. 481–492. University of California Press, Berkeley, Calif. (1951)

    Google Scholar 

  12. Lauer, F., Bloch, G.: Incorporating prior knowledge in support vector machines for classification: a review. Neurocomputing 71(7), 1578–1594 (2008)

    Article  Google Scholar 

  13. Li, S.T., Chen, C.C.: A regularized monotonic fuzzy support vector machine for data mining with prior knowledge. IEEE Trans. Fuzzy Syst. PP(99) (2014)

    Google Scholar 

  14. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  15. Mangasarian, O.L., Wild, E.W.: Nonlinear knowledge-based classification. IEEE Trans. Neural Netw. 19(10), 1826–1832 (2008)

    Article  Google Scholar 

  16. Marsala, C., Petturiti, D.: Rank discrimination measures for enforcing monotonicity in decision tree induction. Inf. Sci. 291, 143–171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Milstein, I., David, A.B., Potharst, R.: Generating noisy monotone ordinal datasets. Artif. Intell. Res. 3(1), p30 (2013)

    Article  Google Scholar 

  18. Pelckmans, K., Espinoza, M., De Brabanter, J., Suykens, J.A., De Moor, B.: Primal-dual monotone kernel regression. Neural Proc. Letters 22(2), 171–182 (2005)

    Article  Google Scholar 

  19. Potharst, R., Ben-David, A., van Wezel, M.: Two algorithms for generating structured and unstructured monotone ordinal data sets. Eng. App. Art. Intell. 22(4), 491–496 (2009)

    Article  Google Scholar 

  20. Potharst, R., Bioch, J.C.: Decision trees for ordinal classification. Intell. Data Anal. 4(2), 97–111 (2000)

    MATH  Google Scholar 

  21. Potharst, R., Feelders, A.J.: Classification trees for problems with monotonicity constraints. ACM SIGKDD Explor. Newsletter 4(1), 1–10 (2002)

    Article  Google Scholar 

  22. Tikhonov, A., Arsenin, V.: Solutions of ill-posed problems. Scripta series in mathematics, Winston (1977)

    Google Scholar 

  23. Velikova, M., Daniels, H.: Decision trees for monotone price models. CMS 1(3–4), 231–244 (2004)

    Article  MATH  Google Scholar 

  24. Wang, Y., Ni, H.: Multivariate convex support vector regression with semidefinite programming. Knowl.-Based Syst. 30, 87–94 (2012)

    Article  Google Scholar 

  25. Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Artif. Intell. 44(3), 257–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bartley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bartley, C., Liu, W., Reynolds, M. (2016). Effective Monotone Knowledge Integration in Kernel Support Vector Machines. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49586-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49585-9

  • Online ISBN: 978-3-319-49586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics