Skip to main content

Low-Rank Feature Reduction and Sample Selection for Multi-output Regression

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10086))

Abstract

There are always varieties of inherent relational structures in the observations, which is crucial to perform multi-output regression task for high-dimensional data. Therefore, this paper proposes a new multi-output regression method, simultaneously taking into account three kinds of relational structures, \(i.e. \), the relationships between output and output, feature and output, sample and sample. Specially, the paper seeks the correlation of output variables by using a low-rank constraint, finds the correlation between features and outputs by imposing an \(\ell _{2,1}\)-norm regularization on coefficient matrix to conduct feature selection, and discovers the correlation of samples by designing the \(\ell _{2,1}\)-norm on the loss function to conduct sample selection. Furthermore, an effective iterative optimization algorithm is proposed to settle the convex objective function but not smooth problem. Finally, experimental results on many real datasets showed the proposed method outperforms all comparison algorithms in aspect of aCC and aRMSE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, T.W.: Estimating linear restrictions on regression coefficients for multivariate normal distributions. Ann. Math. Stat. 22, 327–351 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)

    Article  Google Scholar 

  3. Bache, K., Lichman, M.: Uci machine learning repository (2015)

    Google Scholar 

  4. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 5(5), 216–233 (2015)

    Article  Google Scholar 

  5. Cai, X., Ding, C., Nie, F., Huang, H.: On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1124–1132 (2013)

    Google Scholar 

  6. Cai, X., Nie, F., Cai, W., Huang, H.: New graph structured sparsity model for multi-label image annotations, pp. 801–808 (2013)

    Google Scholar 

  7. Cands, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cao, J., Wu, Z., Wu, J.: Scaling up cosine interesting pattern discovery: a depth-first method. Inf. Sci. 266(5), 31–46 (2014)

    Article  Google Scholar 

  9. Cao, J., Wu, Z., Wu, J., Xiong, H.: Sail: Summation-based incremental learning for information-theoretic text clustering. IEEE Trans. Cybern. 43(2), 570–584 (2013)

    Article  Google Scholar 

  10. Chang, X., Nie, F., Yang, Y., Huang, H.: A convex formulation for semi-supervised multi-label feature selection. In: AAAI Conference on Artificial Intelligence, pp. 1171–1177 (2014)

    Google Scholar 

  11. Cheng, B., Liu, G., Wang, J., Huang, Z., Yan, S.: Multi-task low-rank affinity pursuit for image segmentation. In: International Conference on Computer Vision, pp. 2439–2446 (2011)

    Google Scholar 

  12. Džeroski, S., Demšar, D., Grbović, J.: Predicting chemical parameters of river water quality from bioindicator data. Appl. Intell. 13(1), 7–17 (2000)

    Article  Google Scholar 

  13. Gao, L., Song, J., Nie, F., Yan, Y.: Optimal graph learning with partial tags and multiple features for image and video annotation. In: CVPR (2015)

    Google Scholar 

  14. Gao, L., Song, J., Shao, J., Zhu, X., Shen, H.: Zero-shot image categorization by image correlation exploration. In: ICMR, pp. 487–490 (2015)

    Google Scholar 

  15. Gower, J.C., Dijksterhuis, G.B.: Procrustes problems. Oxford University Press (2004)

    Google Scholar 

  16. Izenman, A.J.: Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5(2), 248–264 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karali, A., Bratko, I.: First order regression. Mach. Learn. 26(26), 147–176 (1997)

    Article  MATH  Google Scholar 

  18. Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint l2,1-norms minimization. In: Conference on Neural Information Processing Systems 2010, pp. 1813–1821 (2010)

    Google Scholar 

  19. Qin, Y., Zhang, S., Zhu, X., Zhang, J., Zhang, C.: Semi-parametric optimization for missing data imputation. Appl. Intell. 27(1), 79–88 (2007)

    Article  MATH  Google Scholar 

  20. Rai, P., Kumar, A., Iii, H.D.: Simultaneously leveraging output and task structures for multiple-output regression. In: Advances in Neural Information Processing Systems, pp. 3185–3193 (2012)

    Google Scholar 

  21. Rothman, A.J., Ji, Z.: Sparse multivariate regression with covariance estimation. J. Comput. Graphical Stat. 19(4), 947–962 (2010)

    Article  MathSciNet  Google Scholar 

  22. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-label classification methods for multi-target regression. Computer Science (2014)

    Google Scholar 

  23. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn., 1–44 (2016)

    Google Scholar 

  24. Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L.: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: IEEE International Conference on Computer Vision, pp. 557–562 (2010)

    Google Scholar 

  25. Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. (TOIS) 22(3), 381–405 (2004)

    Article  Google Scholar 

  26. Wu, X., Zhang, C., Zhang, S.: Database classification for multi-database mining. Inf. Syst. 30(1), 71–88 (2005)

    Article  MATH  Google Scholar 

  27. Wu, X., Zhang, S.: Synthesizing high-frequency rules from different data sources. IEEE Trans. Knowl. Data Eng. 15(2), 353–367 (2003)

    Article  Google Scholar 

  28. Zhang, C., Qin, Y., Zhu, X., Zhang, J., Zhang, S.: Clustering-based missing value imputation for data preprocessing. In: IEEE International Conference on Industrial Informatics, pp. 1081–1086 (2006)

    Google Scholar 

  29. Zhang, S., Cheng, D., Zong, M., Gao, L.: Self-representation nearest neighbor search for classification. Neurocomputing 195, 137–142 (2016)

    Article  Google Scholar 

  30. Zhang, S., Li, X., Zong, M., Cheng, D., Gao, L.: Learning k for knn classification. ACM Trans. Intell. Syst. Technol. (2016, Accepted)

    Google Scholar 

  31. Zhang, S., Qin, Z., Ling, C.X., Sheng, S.: “missing is useful”: Missing values in cost-sensitive decision trees. IEEE Trans. Knowl. Data Eng. 17(12), 1689–1693 (2005)

    Article  Google Scholar 

  32. Zhang, S., Wu, X., Zhang, C.: Multi-database mining. IEEE Comput. Intell. Bull. 2(1), 5–13 (2003)

    Google Scholar 

  33. Zhang, S., Zhang, C., Yang, Q.: Data preparation for data mining. Appl. Artif. Intell. 17(5–6), 375–381 (2003)

    Article  Google Scholar 

  34. Zhang, S., Zhang, J., Zhang, C.: Edua: an efficient algorithm for dynamic database mining. Inf. Sci. 177(13), 2756–2767 (2007)

    Article  Google Scholar 

  35. Zhu, X., Huang, Z., Cheng, H., Cui, J., Shen, H.T.: Sparse hashing for fast multimedia search. ACM Trans. Inf. Syst. (TOIS) 31(2), 9 (2013)

    Article  Google Scholar 

  36. Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J.: Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn. 46(1), 215–229 (2013)

    Article  MATH  Google Scholar 

  37. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46(2), 450–461 (2016)

    Article  Google Scholar 

  38. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst., 1–13 (2016)

    Google Scholar 

  39. Zhu, X., Wu, X., Ding, W., Zhang, S.: Feature selection by joint graph sparse coding. In: Proceedings of the 2013 Siam International Conference on Data Mining, pp. 803–811. SIAM (2013)

    Google Scholar 

  40. Zhu, X., Zhang, J., Zhang, S.: Mixed-norm regression for visual classification. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8346, pp. 265–276. Springer, Heidelberg (2013). doi:10.1007/978-3-642-53914-5_23

    Chapter  Google Scholar 

  41. Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z.: Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2011)

    Article  Google Scholar 

  42. Zhu, X., Zhang, S., Zhang, J., Zhang, C.: Cost-sensitive imputing missing values with ordering. AAAI Press 2, 1922–1923 (2007)

    Google Scholar 

  43. Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 529–540 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the China “1000-Plan” National Distinguished Professorship; the National Natural Science Foundation of China (Grants No: 61263035, 61573270, and 61672177); the China 973 Program (Grant No: 2013CB329404); the China Key Research Program (Grant No: 2016YFB1000905); the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011); the Innovation Project of Guangxi Graduate Education (Grants No: YCSZ2016046 and YCSZ2016045); the Guangxi Higher Institutions Program of Introducing 100 High-Level Overseas Talents; the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; and the Guangxi Bagui Scholar Teams for Innovation and Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhang, S., Yang, L., Li, Y., Luo, Y., Zhu, X. (2016). Low-Rank Feature Reduction and Sample Selection for Multi-output Regression. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49586-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49585-9

  • Online ISBN: 978-3-319-49586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics