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Abstract.—The selective visual attention mechanism in  human visual system 

helps human to act efficiently when dealing with massive visual information. 

Over the last two decades, biologically inspired attention model has drawn lots 

of research attention and many models have been proposed. However, the top-

down cues in human brain are still not fully understood, which makes top-down 

models not biologically plausible. This paper proposes an attention model con-

taining both the bottom-up stage and top-down stage for the target detection from 

SAR (Synthetic Aperture Radar) images. The bottom-up stage is based on the 

biologically-inspired Itti model and is modified by taking fully into account the 

characteristic of SAR images. The top-down stage contains a novel learning strat-

egy to make the full use of prior information. It is an extension of the bottom-up 

process and more biologically plausible. The experiments in this research aim to 

detect vehicles in different scenes to validate the proposed model by comparing 

with the well-known CFAR(constant false alarm rate) algorithm. 

Keywords: Visual attention model, object detection, learning strategy, syn-

thetic aperture radar (SAR) images. 

1 Introduction 

Human visual system possesses the astonishing ability to perceive the inputs from 

visual scenes. Whatever a visual scene is simple or complicated, humans can efficiently 

pick the most interesting part (weather it is free viewing or under the condition of a 

specific task), which is far beyond the development of the field of computer vision. 

Research has shown there are massive visual data (108-109 bits) entering the eyes every 

second [1].Without the help of any effective mechanism, the real-time processing 

seems impossible. Luckily, there exists a localization ability called visual attention or 



selective attention which enables human to act effectively and precisely in complex 

environment. When dealing with a complex visual scene, humans tend to turn their 

attention to one or few more salient objects or areas, while ignoring those which are not 

salient enough. Talking about whether an object or a region is salient, we need to con-

sider it from a biological perception. In the retina, the photoreceptor cells are connected 

with ganglion cells which have unique receptive fields. The circular-shaped receptive 

field has a center area and a surrounding area. On the receptive field there exist on-

center cells which are activated by stimuli, and off-center cells inhibited to stimuli. In 

terms of different stimuli, the receptive fields have different functions. Some are sensi-

tive to intensity-contrast of the light, some are sensitive to color-contrast, while some 

are sensitive to motion, and et.al. Thus a flat region is not able to activate the receptive 

field. On the contrary, a region or an object with bright colors or anything else that are 

different from its surrounding can cause the sensitivity. As a result, attention or focus 

is led to the object which is assumed salient. 

As the human visual system has so much potentials, researchers began to model it 

into a mathematically computational system. Almost all the attention models can be 

dated back to the feature integration theory (FIT) proposed by Treisman and Gelade in 

1980 [2].This theory claims  the visual input is first decomposed into a set of topo-

graphic feature maps and then feed in a bottom-up manner into a master map which 

depicts the local conspicuity of a visual scene. Koch and Ullman [3]then proposed a 

purely bottom-up model to combine the features and introduced the concept of saliency 

map [1]. But until 1998, the first fully implementation based on [3] was formally pro-

posed by Itti and Koch [4]. The Itti model is believed  to be biologically inspired be-

cause it imitates the early stages of human visual system [4].Since then, this field has 

drawn lots of attention and various models have emerged. However, most of the exist-

ing visual attention models follow a basic framework of Itti’s to generate a topological 

saliency map. Indeed, attention is not merely caused by the visual scene’s conspicuity, 

but other factors  like knowledge, expectations, rewards and current goals also play 

important roles in the visual search, which is considered as a task-dependent top-down 

process [1]. Based on this phenomena, a lot of models combining both bottom-up cues 

and top-down cues have been proposed in recent years with specific application like 

car detection, face and pedestrian recognition and et al.  

Top-down cues.  

Neurobiological and psychophysical evidences have shown that the top-down mech-

anisms exist in the human brain for visual processing [5, 6]. Although the top-down 

attention is essential and inevitable, the computational models for top-down attention 

are fewer than the bottom-up ones, because how prior knowledge influence attention is 

still not fully understood. The existing top-down models can be classified into two cat-

egories. One is related to combine the low-level features in a top-down manner. The 

revised guided search structure (GS2 model) is believed to be the earliest computational 

model proposed by Wolfe in 1996 [6, 7]. Itti and Koch presented four strategies for 

combining the bottom-up cues in their original work: (1) Simple summation after scal-

ing to a fixed dynamic range; (2) linear combination with weights learned; (3) nonlinear 

combination; (4) local nonlinear iterative competition between salient locations [8]. 

The second one is validated as the best one but needs a supervised additive training. By 

maximizing the signal-to-noise ratio of the target versus the background, Navalpakkam 



and Itti [9] derived an optimal integration of bottom-up cues when detecting targets. 

Frintrop [10] proposed the VOCUS model with a top-down extension which includes 

a learning mode and a search mode. Armmanfard et al. [11] proposed a feature fusion 

technique which applied a weighted feature summation block whose weights are opti-

mized by the genetic algorithm, instead of both across scale combination and normali-

zation and linear combination block. In [12], Han et al. proposed a saliency map gen-

erated from the weighted features where the rough sets are used to assign the weights 

for every feature. But, the problem in the aforementioned work is that they don’t make 

the full use of prior information, which matters a lot in the human brain. The other one 

involves the representation of  the top-down cues using tools like conditional random 

field (CRF), fuzzy theory and et al. Tsotsos et al. proposed a hierarchical system and a 

new winner-takes-all (WTA) updating rule to match the current related knowledge [13]. 

In [14] there’s a top-down model considering the visual memory which adopts a fuzzy 

adaptive resonance theory neural network with the learning function. Borji et al. [15] 

used evolutionary algorithms to search some parameters inside the basic saliency model 

as the top-down priors. Ban et al. [16] proposed a growing fuzzy topology adaptive 

resonance theory (GFTART) with two roles: one is to form the bottom-up features of 

arbitrary objects, and the other is to generate the top-down bias. Yang et al. [17] pro-

posed a top-down saliency model that jointly learns a conditional random field (CRF) 

and a visual dictionary. The model has a three-layered structure from the bottom to the 

top: CRF, sparse coding, and a visual dictionary. Obviously, those methods are more 

mathematical rather than biologically plausible. 

Application of visual attention.  

It is said that the visual information is interpreted in a need-manner in the brain to 

serve the task demands [18]. A lot of attention models can be put into one category of 

computer vision. Usually, these models are applied to detect or recognize targets like 

faces, cars, pedestrians and so on [1, 19-23]in the context of real-life visual scenes. But 

we want to address the application in the area of remote sensing in this work. As the 

remote sensing images, for example, SAR images are quite different from the optical 

images due to the completely different mechanisms of imaging, it is not proper to di-

rectly apply the attention model to the SAR images. As a result, there is few research 

on understanding the remote sensing images using attention model.  

In our paper, we propose a visual attention model specifically for the application of 

the vehicle targets detection from SAR images by integrating a bottom-up stage and a 

top-down stage. The bottom-up stage follows the procedure of the Itti model but with 

some simplification and modification in some aspects. The top-down stage also gener-

ates a saliency map similar to that in the bottom-up stage. During the top-down stage, 

two weighting parameters are learned from the training set to instruct how the feature 

maps are combined. A training set is used for two reasons: one is to get the best 

weighting coefficients for two conspicuity maps; the other one is to get targets’ average 

length or size used as thresholds. The global saliency maps is then generated through 

the linear combination of bottom-up and top-down saliency maps. Finally, the detection 

result is acquired from the global saliency through binarization and thresholding pro-

cesses. 



2 Proposed Method 

The proposed method has both the bottom-up and top-down computational process 

to mimic the human visual system. Our proposed method is based on the saliency map, 

which means that the computational process is restricted to generate saliency maps in-

cluding a bottom-up saliency map, a top-down saliency map and a combined one. The 

framework of the proposed method is depicted in Fig. 1.  The input is first processed 

by the bottom-up stage to generate a BU saliency map. Then after learning the optimal 

weights in the top-down stage, a TD saliency map is generated. At the decision stage, 

two saliency maps are combined into a single global map, and prior information are 

used as thresholds. The bottom-up saliency map is a modified version of Itti’s and spe-

cifically tuned for SAR images. As for the top-down saliency map, it is generated from 

the intermediate e bottom-up stage by applying a learning strategy. Then, the global 

map is computed from the two former saliency maps. 

2.1 Bottom-up attention 

The bottom-up process in this paper is based on the well-known Itti model with some 

modifications in consideration of the characteristics of SAR images. For SAR images, 

there’s no color information thus color channel in the Itti model can be ignored. Inten-

sity and orientation channels are consistent with those in the Itti model, but possess 

some specific modifications. As can be seen from the flowchart, the bottom-up saliency 

consists of a feature extraction stage, a weighting operation and a saliency map gener-

ating process. The detailed bottom-up saliency is described down below. 

Feature extraction.  

Intensity channel.  

For an intensity SAR image I , a five-scaled Gaussian pyramid is first created by 

applying a Gaussian filter and sub-sampling. The Gaussian image pyramid with five 

scales 
0s -

4s  is further transformed into the feature maps by applying a center-surround 

operation. Unlike Itti’s 9 scales, the image pyramid in our method has only 5 scales 

with almost the same function.  

In Itti’ model, the center-surround operation is implemented as the difference be-

tween the fine and coarse scales: the center is represented as scales  2,3,4c , while 

the corresponding surround is at the scales s c   , where  3,4  . The across-scale 

difference is obtained by interpolating the coarse scale to the finer one and then point 

by point subtraction. However, we find that the operation has another alternative. The 

detailed implantations are presented down below. 

Step 1: Create five-scaled Gaussian pyramid I , where  0..4   is the scale. The 

Gaussian low-pass filter is: 
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where x, y denote the coordinate of an arbitrary pixel and =3 . 



Step 2: Represent the surround of an arbitrary pixel.  

For each pixel  
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where  2,3,4c is the center,  4,8  is the length of the side of neighborhood. 

Step 3: Apply the center-surround operation and yield 6 feature maps
,

''

c
I


. 

The feature maps are defined as:  
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Through these steps, 6 intensity maps are acquired and wait to be further processed.  

Orientation channel.  

In SAR images, the targets for example vehicles are usually small, therefore the ori-

entation information seems to matter only a little but still be indispensable. We accept 

the operation in [10] where only 5 scales are needed. The absence of the center-sur-

round operation in orientation extraction is because the oriented center-surround differ-

ence is already determined implicitly by the Gabor filter [10], and it can also prevent 

the images from getting blurred due to the center-surround mechanism. The oriented 

Gabor pyramid  
,

'' ,O x y
 

is acquired by: 
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where  2,3,4  is the scale and  0 ,45 ,90 ,135  is the angle. 

Eventually, 12 raw orientation feature maps are yielded.  

Weighting and normalization.  

After acquiring all the 6 intensity and 12 orientation feature maps, the feature maps 

should be normalized to the same scale and fused to form two conspicuity maps. In 

human visual systems, the fusion mechanism is quite complicated which is not clearly 

figured out even in a bottom up way let alone the high-level neural activity. Different 

features contribute differently to perceptual saliency [24] and the relevant feature fusion 

or weighting approaches are influenced by tasks, goals expectations et al. If the feature 

maps are combined in a purely straightforward way, they contribute equally [10]. To 

prevent this effect, we have to determine the most important maps and raise their influ-

ence. Therefore, a brand new weighting function is designed in this paper and somehow 

tested faithful. The weighting function is defined as: 
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where M is the global maxima within a feature map, m  is the expectation of local 

maxima,  is the standard deviation of the feature map, r  is the expectation of the 

rest of the feature map when taking out the local maxima.  
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where  indicates the point by point addition. 

Bottom up saliency map.  

After acquiring the conspicuity map for each channel, the bottom-up saliency map 

is then computed by fusing the conspicuity maps together. 

    ' '

BUS W I W O    (8) 

Actually, saliency map is a topographic map which indicates the saliency or con-

spicuity of an area within the map. 

2.2 Top-down attention 

In SAR image with vehicle targets, even for human, it is very difficult to determine 

whether an object is a vehicle or not. Due to the mechanism of SAR imaging, the vehi-

cles in SAR images are completely different with those in optical images, let alone the 

low-resolution of SAR images compared to optical images. But if observers are offered 

to watch some targets in advance, it then becomes very easy for observers to recognize 

it in a SAR scene. Apart from the vehicle’s low-level characteristic like intensity and 

orientation which raise the attention even before we know it is a target, the information 

like size, outline, texture play an important role in human’s understanding process. So 

the use of this prior information provides a promising way to help detect vehicle targets. 

In our proposed method, the top-down process is also based on the saliency map, but 

needs a learning process first. 

Learning strategy.  

In the previous bottom-up saliency, two conspicuity maps are weighted and fused to 

generate the saliency map. But how can we know the weights computed from (5) are 

the perfect weights to generate the most accurate saliency map, what if there’re other 

weights that outperform the former ones? The learning process is designed to make sure 

that the perfect weights are selected. Therefore, we need the following learning strat-

egy. 

The general process of the learning strategy is depicted in the middle of Fig. 1. A set 

of image slices with targets therein, is needed. For slice
iX , (i is the number of slices), 

two corresponding conspicuity maps
iI and

iO are computed with the aforementioned 

bottom-up stage. Instead of using the weighting function  W  to form the saliency 

map, we obtain the most accurate weights by benchmarking the saliency maps gener-

ated from different weights. The F-measure is adopted to benchmark the most salient 

one. Below is the detailed steps. 

Step 1: For each slice, compute the bottom-up weights of conspicuity maps:

 '_I i iw W I ,  '_O i iw W O ; 



Step 2: Determine the intervals of top-down weights
_ min _ max,I Iw w    and

_ min _ max,O Ow w   . The interval is defined as: 
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_ min _min( )O O i Ow w     (11) 
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where
I and

O  are the standard deviation of
_I iw and

_O iw , respectively. 

Step 3: Select 10 weights from every interval at a regular distance and compute 100 

saliency maps for each target slice. 

Step 4: Benchmark the 100 saliency maps and find the best one with its correspond-

ing weights '

_I iw  and '

_O iw . Here we use the Precision ( P ), Recall ( R ) and F-measure 

( F ) as the benchmarks, defined as follows: 
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where S is the saliency map, A is the segmentation map. Operator is the point by 

point multiplication. 

Step 5: The final weights are the means of the two set of weights. 

 '

_( )I I iw mean w   (16) 

 '

_( )O O iw mean w   (17) 

Top-down saliency map.  

After learning the weights, the top-down saliency map is generated from the two 

bottom-up conspicuity maps and the top-down weights. 

 ' 'TD I OS w I w O      (18) 

It should be noticed that, here we only compute the weights for the conspicuity maps. 

Actually, this approach is also suited to compute the weight for each raw feature map, 

but takes a lot of computing resource apparently. 

2.3 Global saliency map 

The global saliency map is then generated from the combination of the bottom-up 

and top-down maps. Parameter t  determines how much the top-down process contrib-

ute to the global saliency map. 
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2.4 Decision 

Apart from the top-down weights learned from the target slices, the size and length 

of a specific type of vehicle also play important roles. In our model, the size represented 

by the number of pixels a vehicle possesses and the length used as two thresholds for 

the final decision stage. But first, we need to transform the saliency map to a binary 

map. Here we use the Ohtsu [25] method to create the threshold. 
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For an arbitrary region in the binary map, it is determined whether it’s a target or not 

by the size and length of the target. 
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where 
iR  is the suspicious areas, 1 for target, 0 for not. The confidence intervals [a, 

b], [c, d] are computed from the segmentation maps in the learning stage. 

3 Experiment 

In this section, the experiments on both the proposed method and the constant false 

alarm rate (CFAR) which is well an acknowledged method for SAR image detection in 

the literature are carried out. The result of the proposed method with only the bottom-

up process is also presented to demonstrate the effectiveness of our top-down strategy. 

We picked up a heavy cluttered image from the spotlight SAR images of ground 

vehicles in the moving and stationary target acquisition and recognition (MSTAR) da-

tabase with the size of 1478×1784 pixels. The images is added with 20 vehicles targets. 

One image has little distracters, whereas the other has much more. The image with the 

added targets is depicted in Fig. 2. 

There are plenty of benchmarks to quantitatively evaluate the effectiveness of a de-

tection algorithm, among them the probability of detection (Pd) and probability of false 

alarm (Pf) are often used, thereby they are included in the experiments. Pd and Pf are 

defined as: 
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Besides, the Precision, Recall and F-measure are fundamental measures in statistics, 

therefore they are also included in our experiments. In our cases, R has the same defi-

nition as Pd. P and F-measure are defined as: 
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Because of the learning strategy in the proposed method, a training set is needed. 

We selected 100 vehicle target slices from the MSTAR database as the training set. The 

training set is also used to determine the confidence interval mentioned in (21), calcu-

lated as [35.15, 46.40] and [420.30, 484.34] using (26). The interval [a, b] and [c, d] 

are defined as: 
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where
s and

l are the expectations of the size and length of each training 

target, 
s and 

l  are the relevant standard deviations.  

It is noticed from Fig. 2 that the vehicles in this image are distinct from the surround-

ing and thus possess strong conspicuity. The saliency maps are shown in Fig. 3 and the 

detection results are shown in Fig. 4. The green rectangles mark the detected targets, 

while the red and white ones mark the false alarms and the undetected targets respec-

tively. There are 2 targets undetected and 2 false alarms generated for the proposed 

method, whereas the CFAR has 4 targets undetected and generated 5 false alarms. As 

for the bottom-up way, the result seems unacceptable with 3 targets undetected and 

generated astonishing 11 false alarms. 

TableⅡ  shows the quantitative evaluation for the two methods. The proposed 

method outperformed the CFAR by 10% detection rate higher and 13.81% false alarm 

rate lower. And, the results demonstrated the effectiveness of the top-down strategy. 

4 Conclusion 

In this paper a visual attention based approach has been presented for the underlying 

application in detecting targets from remote sensing images. The proposed method con-

tains a bottom-up stage, which is a modified version of the Itti model, and specifically 

tuned for SAR images, as well as a top-down stage. The top-down process contains a 

novel learning strategy, but it is a once-for-all job, because once the weights are learned 

it can be adapted to most of the scenes. The novelty of the method lies in the following 

three aspects. First, the brand new weighting function makes multi-target popping out 

possible. Second, the learning strategy selects the optimal weights from the training set. 

Last but not least, target’s prior information like size and length are used as thresholds 

in the decision stage. Experiment results have demonstrated that the proposed method 

possesses greater ability in detecting vehicle targets in comparison with the CFAR. In 

addition, the results from the only bottom-up way were presented, which were far infe-

rior to that of the complete method, which further validated the effectiveness of the top-

down strategy. 

Though the proposed method was applied to the vehicle detection from SAR images, 

it can be adapted to other areas.  For example, it can be potentially applied to detect 

other targets or applied to the optical images on fixation prediction. Our future work 

will explore these potentials by applying our method to other research fields. 
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Table 1. QUANTITATIVE MEASURES OBTAINED BY CFAR AND THE PROPOSED 

METHOD FOR SCENE 2. 

Methods Pd Pf P R Fα=1 

Training 

set

BU  map

Gaussian 

low-pass 

filter

Center-

surround 

operation

Oriented 

Gabor 

filter

Angle 

selection

Weighting 

and intra-

feature 

fusion

Weighting 

and inter-

feature 

fusion

Input

Gaussian 

pyramid

Gabor 

pyramid

6 maps

12 maps

Feature 

maps

Conspicu

ity maps

Bottom-up 

stage

Compute 

conspicuity 

maps for 

each slice

Acquire 

corresponding 

BU weights

Obtain 

weights 

interval use 

(9)-(12)

Exhaustive 

search

TD 

weighting 

and fusion

TD  map

Linear 

combination

Global  mapBinary  map

BinarizationDouble 

thresholds

Prior 

information

Detection 

result

Bottom-up 

stage

Top-down 

stage

Decision

Optimal 

weights

Fig. 1. Framework of the proposed method. 



CFAR 80.00% 23.81% 76.19% 80.00% 

78. 

05% 

Bottom-up way 85.00% 39.29% 60.71% 85.00% 70.83% 

Proposed 

method 90.00% 10.00% 90.00% 90.00% 90.00% 

 

 

 
 

 

 

 

 
 

Fig. 2. Scene 2 with 20 vehicle targets inside. 

(a) (b) (c) 

Fig. 3. Saliency maps of scene 2. (a) BU; (b) TD; (c) Global 

Fig. 4. Detection results of the CFAR and the proposed method of scene 2. (a) Result of 

the CFAR; (b) Result of the only bottom-up way; (c) Result of the proposed method. 

(a) (b) (c) 


