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Abstract. A universal unanswered question in neuroscience and ma-
chine learning is whether computers can decode the patterns of the hu-
man brain. Multi-Voxels Pattern Analysis (MVPA) is a critical tool for
addressing this question. However, there are two challenges in the pre-
vious MVPA methods, which include decreasing sparsity and noises in
the extracted features and increasing the performance of prediction. In
overcoming mentioned challenges, this paper proposes Anatomical Pat-
tern Analysis (APA) for decoding visual stimuli in the human brain. This
framework develops a novel anatomical feature extraction method and a
new imbalance AdaBoost algorithm for binary classification. Further, it
utilizes an Error-Correcting Output Codes (ECOC) method for multi-
class prediction. APA can automatically detect active regions for each
category of the visual stimuli. Moreover, it enables us to combine ho-
mogeneous datasets for applying advanced classification. Experimental
studies on 4 visual categories (words, consonants, objects and scram-
bled photos) demonstrate that the proposed approach achieves superior
performance to state-of-the-art methods.

Keywords: brain decoding, multi-voxel pattern analysis, anatomical feature
extraction, visual object recognition, imbalance classification

1 Introduction

One of the key challenges in neuroscience is how the human brain activities can
be mapped to the different brain tasks. As a conjunction between neuroscience
and computer science, Multi-Voxel Pattern Analysis (MVPA) [1] addresses this
question by applying machine learning methods on task-based functional Mag-
netic Resonance Imaging (fMRI) datasets. Analyzing the patterns of visual ob-
jects is one of the most interesting topics in MVPA, which can enable us to
understand how brain stores and processes the visual stimuli [2,3]. It can be
used for finding novel treatments for mental diseases or even creating a new
generation of the user interface in the future.

Technically, there are two challenges in previous studies. The first challenge is
decreasing sparsity and noise in preprocessed voxels. Since, most of the previous
studies directly utilized voxels for predicting the stimuli, the trained features are
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mostly sparse, high-dimensional and noisy; and they contain trivial useful infor-
mation [2,3,4]. The second challenge is increasing the performance of prediction.
Most of the brain decoding problems employed binary classifiers especially by
using a one-versus-all strategy [1,2,5,6,7]. In addition, multi-class predictors are
even mostly based on the binary classifiers such as the Error-Correcting Out-
put Codes (ECOC) methods [8]. Since task-based fMRI experiments are mostly
imbalance, it is so hard to train an effective binary classifier in the brain decod-
ing problems. For instance, consider collected data with 10 same size categories.
Since this dataset is imbalance for one-versus-all binary classification, most of
the classical algorithms cannot provide acceptable performance [2,5,9].

For facing mentioned problems, this paper proposes Anatomical Pattern
Analysis (APA) as a general framework for decoding visual stimuli in the human
brain. This framework employs a novel feature extraction method, which uses
the brain anatomical regions for generating a normalized view. In practice, this
view can enable us to combine homogeneous datasets. The feature extraction
method also can automatically detect the active regions for each category of
the visual stimuli. Indeed, it can decrease noise and sparsity and increase the
performance of the final result. Further, this paper develops a modified version
of imbalance AdaBoost algorithm for binary classification. This algorithm uses
a supervised random sampling and penalty values, which are calculated by the
correlation between different classes, for improving the performance of predic-
tion. This binary classification will be used in a one-versus-all ECOC method as
a multi-class approach for classifying the categories of the brain response.

The rest of this paper is organized as follows: In Section 2, this study briefly
reviews some related works. Then, it introduces the proposed method in Section
3. Experimental results are reported in Section 4; and finally, this paper presents
conclusion and pointed out some future works in Section 5.

2 Related Works

There are three different types of studies for decoding visual stimuli in the human
brain. Pioneer studies just focused on the special regions of the human brain,
such as the Fusiform Face Area (FFA) or Parahippocampal Place Area (PPA).
They only proved that different stimuli can provide different responses in those
regions, or found most effective locations based on different stimuli [2].

The next group of studies introduced different correlation techniques for un-
derstanding similarity or difference between responses to different visual stimuli.
Haxby et al. recently showed that different visual stimuli, i.e. human faces, an-
imals, etc., represent different responses in the brain [2]. Further, Rice et al.
proved that not only the mentioned responses are different based on the cate-
gories of the stimuli, but also they are correlated based on different properties of
the stimuli. They used GIST technique for extracting the properties of stimuli
and calculated the correlations between these properties and the brain responses.
They separately reported the correlation matrices for different human faces and
different objects (houses, chairs, bottles, shoes) [12].
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Fig. 1: Anatomical Pattern Analysis (APA) framework

The last group of studies proposed the MVPA techniques for predicting the
category of visual stimuli. Cox et al. utilized linear and non-linear versions of
Support Vector Machine (SVM) algorithm [5]. Norman et al. argued for using
SVM and Gaussian Naive Bayes classifiers [1]. Carroll et al. employed the Elastic
Net for prediction and interpretation of distributed neural activity with sparse
models [13]. Varoquaux et al. proposed a small-sample brain mapping by using
sparse recovery on spatially correlated designs with randomization and cluster-
ing. Their method is applied on small sets of brain patterns for distinguishing
different categories based on a one-versus-one strategy [14]. McMenamin et al.
studied subsystems underlie abstract-category (AC) recognition and priming of
objects (e.g., cat, piano) and specific-exemplar (SE) recognition and priming
of objects (e.g., a calico cat, a different calico cat, a grand piano, etc.). Tech-
nically, they applied SVM on manually selected ROIs in the human brain for
generating the visual stimuli predictors [6]. Mohr et al. compared four different
classification methods, i.e. L1/2 regularized SVM, the Elastic Net, and the Graph
Net, for predicting different responses in the human brain. They show that L1-
regularization can improve classification performance while simultaneously pro-
viding highly specific and interpretable discriminative activation patterns [7].
Osher et al. proposed a network (graph) based approach by using anatomical
regions of the human brain for representing and classifying the different visual
stimuli responses (faces, objects, bodies, scenes) [3].

3 The Proposed Method

Blood Oxygen Level Dependent (BOLD) signals are used in fMRI techniques
for representing the neural activates. Based on hyperalignment problem in the
brain decoding [2], quantity values of the BOLD signals in the same experiment
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for the two subjects are usually different. Therefore, MVPA techniques use the
correlation between different voxels as the pattern of the brain response [3,4]. As
depicted in Figure 1, each fMRI experiment includes a set of sessions (time series
of 3D images), which can be captured by different subjects or just repeating the
imaging procedure with a unique subject. Technically, each session can be par-
titioned into a set of visual stimuli categories. Indeed, an independent category
denotes a set of homogeneous conditions, which are generated by using the same
type of photos as the visual stimuli. For instance, if a subject watches 6 photos
of cats and 5 photos of houses during a unique session, this 4D image includes 2
different categories and 11 conditions.

3.1 Feature Extraction

Consider F ∈ RN×X×Y×Z = {number of scans (N)× 3D images} for each session
of the experiment. F can be written as a general linear model: F = Dβ+ε, where
D = {number of scans (N) × P categories (regressors)} denotes the design ma-
trix; ε is the noise (error of estimation); and also β = {number of categories (P )×
3D images} denotes the set of correlations between voxels for the categories of
the session. Design matrix can be calculated by convolution (D(t) = (S ∗H)(t))
of onsets (or time series S(t)) and the Hemodynamic Response Function (HRF)
[4]. This paper uses Generalized Least Squares (GLS) approach for estimating

optimized solution (β̂ = (DᵀV −1D)
−1
DᵀV −1F ), where V is the covariance ma-

trix of the noise (V ar(ε) = V σ2 6= Iσ2) [4,2]. Now, this paper defines the positive

correlation β = β̂ > 0 = {β̂1 > 0, β̂2 > 0, . . . , β̂P > 0} = {β1, β2, . . . , βP } for all

categories as the active regions, where β̂ denotes the estimated correlation, β̂p
and βp are the correlation and positive correlation for the p-th category, respec-
tively. Moreover, the data F is partitioned based on the conditions of the design
matrix as follows:

Ĉ = {ĉ11, ĉ12, . . . , ĉ1Q1
, ĉ21, ĉ

2
2, . . . , ĉ

2
Q2
, . . . , ĉp1, ĉ

P
2 , . . . , ĉ

P
QR
} (1)

where Ĉ denotes the set of all conditions in each session, P and Qr are respec-
tively the number of categories in each session and the number of conditions in
each category. Further, ĉpqr = {number of scans (Kp

qr ) × 3D images} denotes the
4D images for the p-th category and qr-th condition in the design matrix. Now,
this paper defines the sum of all images in a condition as follows:

Cp
qr =

∑
K

ĉpqr =

Kp
qr∑

k=1

ĉpqr [k, :, :, :] (2)

where cpqr [k, :, :, :] denotes all voxels in the k-th scan of qr-th condition of p-th
category; also Kp

qr is the number of scans in the given condition. ζpqr matrix is
denoted for applying the correlation of voxels on the response of each condition
as follows:

ζpqr = βp◦Cp
qr = {∀[x, y, z] ∈ Cp

qr =⇒ (ζ
p
qr

)[x,y,z] = (βp)[x,y,z]×(Cp
qr )

[x,y,z]
} (3)
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where ◦ denotes Hadamard product; and (Cp
qr )[x,y,z] is the [x, y, z]-th voxel of

the qr-th condition of p-th category; and also, (βp)[x,y,z] is the [x, y, z]-th voxel

of the correlation matrix (β values) of the p-th category.
Since mapping 4D fMRI images to standard space decreases the performance

of final results, most of the previous studies use the original images instead
of the standard version. By considering 3D image ζpqr for each condition, this
paper enables to map brain activities to a standard space. This mapping can
provide normalized view for combing homogeneous datasets. For registering ζpqr
to standard space, this paper utilizes the FLIRT algorithm [10], which minimizes
the following cost function:

T ∗ = argminT∈ST
(NMI(Ref,Ξp

qr )) (4)

where Ref denotes the reference image, ST is the space of allowable transforma-
tions, the function NMI denotes the Normalized Mutual Information between
two images, Ξp

qr = T (ζpqr ) is the condition after registration (T denotes the trans-
formation function) [10]. The performance of (4) will be analyzed in Section 4.
Now, consider Atlas = {A1, A2, . . . , AL}, where ∩Ll=1{Al} = ∅, ∪Ll=1{Al} = A
and Al denotes the set of indexes of voxels for the l-th region. The extracted
feature for l-th region of qr-th condition of p-th category is calculated as follows,
where av = [xv, yv, zv] denotes the index of v-th voxel of l-th atlas region; and
Al is the set of indexes of voxels in the l-th region.

∀av = [xv, yv, zv] ∈ Al =⇒ Γ p
qr (l) =

1

| Al |

|Al|∑
v=1

(Ξp
qr )[av] =

1

| Al |

|Al|∑
v=1

(Ξp
qr )[xv, yv, zv]

(5)

3.2 Classification Algorithm

This paper randomly partitions the extracted featuresG = {[Γ 1
1 (1) . . . Γ 1

1 (L)], . . . ,
[Γ 1

Q1
(1) . . . Γ 1

Q1
(L)], . . . , [ΓP

QR
(1) . . . ΓP

QR
(L)]} to the train set (Gtr) and the test

set (Gte). As a new branch of AdaBoost algorithm, Algorithm 1 employs Gtr

for training binary classification. Then, Gte is utilized for estimating the perfor-
mance of the classifier. As mentioned before, training binary classification for
fMRI analysis is mostly imbalance, especially by using a one-versus-all strategy.
As a result, the number of samples in one of these binary classes is smaller than
the other class. This paper also exploits this concept. Indeed, Algorithm 1 firstly
partitions the train data (Gtr) to small (GS

tr) and large (GL
tr) classes (groups)

based on the class labels (Itr ∈ {+1,−1}). Then, it calculates the scale (J) of
existed elements between two classes; and employs this scale as the number of
the ensemble iteration (J+1). Here, Int() denotes the floor function. In the next
step, the large class is randomly partitioned to J parts. Now, train data (Gj) for
each iteration is generated by all instances of the small class (GS

tr), one of the
partitioned parts of the large class (GL

tr(j)) and the instances of the previous
iteration (Ḡj), which cannot truly be trained. In this algorithm, corr() function
denotes the Pearson correlation (corr(A,B) = cov(A,B)/σAσB); and Wj ∈ [0, 1]
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Algorithm 1 The proposed binary classification algorithm

Input: Data set Gtr : is train set, Itr : denotes real class labels of the train sets,
Output: Classifier E,
Method:

1. Partition Gtr = {GS
tr, G

L
tr}, where GS

tr, GL
tr are Small and Large classes.

2. Calculate J = Int(| GS
tr | / | GL

tr |) based on number of elements in classes.
3. Randomly sample the GL

tr = {GL
tr(1), . . . , GL

tr(J)}.
4. By considering Ḡ1 = Ī1 = ∅, generating j = 1, . . . , J + 1 classifiers:
5. Construct Gj = {GS

tr, G
L
tr(j), Ḡj} and Ij = {IStr, ILtr(j), Īj}

6. Calculate Wj = {wj}|Gj | =

{
1 for instances of GS

tr or Ḡj

1− | corr(GS
tr, G

L
tr) | for instances of GL

tr(j)

7.Train θj = Classifier(Gj , Ij ,Wj).
8. Construct Ḡj+1, Īj+1 as the set of instances cannot truly trained in θj .
9. If (j ≤ J + 1): go to line 5; Else: return Θp = {θ1, . . . , θJ+1} as final classifier.

is the train weight (penalty values), which is considered for the large class. Fur-
ther, Classifier() denotes any kind of weighted classification algorithm. This
paper uses a simple classical decision tree as the individual classification algo-
rithm (θj) [9].

Generally, there are two techniques for applying multi-class classification. The
first approach directly creates the classification model such as multi-class support
vector machine [5] or neural network [1]. In contrast, (indirect) decomposition
design uses an array of binary classifiers for solving the multi-class problems. As
one of the classical indirect methods, Error-Correcting Output Codes (ECOC)
includes three components, i.e. base algorithm, encoding and decoding proce-
dures [8]. As the based algorithm in the ECOC, this paper employs Algorithm
1 for generating the binary classifiers (Θp). Further, it uses a one-versus-all en-
coding strategy for training the ECOC method, where an independent category
of the visual stimuli is compared with the rest of categories (see Figure 1.e).
Indeed, the number of classifiers in this strategy is exactly equal to the number
of categories. This method also assigns the brain response to the category with
closest hamming distance in decoding stage.

4 Experiments

4.1 Extracted Features Analysis

This paper employs two datasets, shared by openfmri.org, for running empiri-
cal studies. As the first dataset, ‘Visual Object Recognition’ (DS105) includes 71
sessions (6 subjects). It also contains 8 categories of visual stimuli, i.e. gray-scale
images of faces, houses, cats, bottles, scissors, shoes, chairs, and scrambled (non-
sense) photos. This dataset is analyzed in high-level visual stimuli as the binary

openfmri.org
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predictor, by considering all categories except scrambled photos as objects, and
low-level visual stimuli in the multi-class prediction. Please see [2,5] for more
information. As the second dataset, ‘Word and Object Processing’ (DS107) in-
cludes 98 sessions (49 subjects). It contains 4 categories of visual stimuli, i.e.
words, objects, scrambles, consonants. Please see [11] for more information.
These datasets are preprocessed by SPM 12 (www.fil.ion.ucl.ac.uk/spm/),
i.e. slice timing, realignment, normalization, smoothing. Then, the beta values
are calculated for each session. This paper employs the MNI 152 T1 1mm (see
Figure 1.d) as the reference image (Ref) in Eq. (4) for registering the extracted
conditions (ζ) to the standard space (Ξ). In addition, this paper uses Talairach
Atlas (contains L = 1105 regions) in Eq. (5) for extracting features (See Figure
1.d).

Figures 2.a-c demonstrate examples of brain responses to different stimuli,
i.e. (a) word, (b) object, and (c) scramble. Here, gray parts show the anatomical
atlas, the colored parts (red, yellow and green) define the functional activities,
and also the red rectangles illustrate the error areas after registration. Indeed,
these errors can be formulated as the nonzero areas in the brain image which
are located in the zero area of the anatomical atlas (the area without region
number). The performance of objective function (4) on DS105, and DS107 data
sets is analyzed in Figure 2.d by using different distance metrics, i.e. Woods
function (W), Correlation Ratio (CR), Joint Entropy (JE), Mutual Information
(MI), and Normalized Mutual Information (NMI) [10]. As depicted in this figure,
the NMI generated better results in comparison with other metrics.

Figure 3.a and c illustrate the correlation matrix of the DS105 and DS107
at the voxel level, respectively. Similarly, Figure 3.b and d show the correlation
matrix the DS105 and DS107 in the feature level, respectively. Since, brain re-
sponses are sparse, high-dimensional and noisy at voxel level, it is so hard to
discriminate between different categories in Figure 2.a and c. By contrast, Fig-
ure 2.b and d provide distinctive representation when the proposed method used
the correlated patterns in each anatomical regions as the extracted features.

4.2 Classification Analysis

The performance of our framework is compared with state-of-the-art methods,
i.e. Cox & Savoy [5], McMenamin et al. [6], Mohr et al. [7], and Osher et al.
[3], by using leave-one-out cross validation in the subject level. Further, all of
algorithms are implemented in the MATLAB R2016a (9.0) by authors in or-
der to generate experimental results. Tables 1 and 2 respectively illustrate the
classification Accuracy and Area Under the ROC Curve (AUC) for the binary
predictors based on the category of the visual stimuli. All visual stimuli in the
dataset DS105 except scrambled photos are considered as the object category
for generating these experimental results. As depicted in the Tables 1 and 2, the
proposed algorithm has achieved better performance in comparison with other
methods because it provided a better representation of neural activities by ex-
ploiting the anatomical structure of the human brain. Table 3 illustrates the
classification accuracy for multi-class predictors. In this table, ‘DS105’ includes

www.fil.ion.ucl.ac.uk/spm/
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Fig. 2: Extracted features based on different stimuli, i.e. (a) word, (b) object,
and (c) scramble. (d) The effect of different objective functions in (4) on the
error of registration.

(a) (b)

(c) (d)

Fig. 3: The correlation matrices: (a) raw voxels and (b) extracted features of the
DS105 dataset, (c) raw voxels and (d) extracted features of the DS107 dataset.
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Table 1: Accuracy of binary predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Binary-APA

DS105-Objects 71.65±0.97 83.06±0.36 85.29±0.49 90.82±1.23 98.37±0.16
DS107-Words 69.89±1.02 89.62±0.52 81.14±0.91 94.21±0.83 97.67±0.12
DS107-Consonants 67.84±0.82 87.82±0.37 79.69±0.69 95.54±0.99 98.73±0.06
DS107-Objects 65.32±1.67 84.22±0.44 75.32±0.41 95.62±0.83 95.06±0.11
DS107-Scramble 67.96±0.87 86.19±0.26 78.45±0.62 93.1±0.78 96.71±0.18

Table 2: Area Under the ROC Curve (AUC) of binary predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Binary-APA

DS105-Objects 68.37±1.01 82.22±0.42 80.91±0.21 88.54±0.71 96.25±0.92
DS107-Words 67.76±0.91 86.35±0.39 78.23±0.57 93.61±0.62 97.02±0.2
DS107-Consonants 63.84±1.45 85.63±0.61 77.41±0.92 94.54±0.31 96.92±0.14
DS107-Objects 63.17±0.59 81.54±0.92 73.92±0.28 94.23±0.94 95.17±0.03
DS107-Scramble 66.73±0.92 85.79±0.42 76.14±0.47 92.23±0.38 96.08±0.1

Table 3: Accuracy of multi-class predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Multi-APA

DS105 (P=8) 18.03±4.07 38.34±3.21 29.14±2.25 50.61±4.83 57.93±2.1
DS107 (P=4) 38.01±2.56 71.55±2.79 64.71±3.14 89.69±2.32 94.21±2.41
ALL (P=4) 32.93±2.29 68.35±3.07 63.16±4 80.36±3.04 95.67±1.25

8 different categories (P=8 classes) and ‘DS107’ contains 4 categories of the vi-
sual stimuli. As another 4 categories dataset, ‘ALL’ is generated by considering
all visual stimuli in the dataset DS105 except scrambled photos as object cate-
gory and combining them with the dataset DS107. In this dataset, the accuracy
of the proposed method is improved by combining two datasets, whereas, the
performances of other methods are significantly decreased. As mentioned before,
it is the standard space registration problem in the 4D images. In addition, our
framework employs the extracted features from the brain structural regions in-
stead of using all or a subgroup of voxels, which can increase the performance
of the predictive models by decreasing noise and sparsity.

5 Conclusion

This paper proposes Anatomical Pattern Analysis (APA) framework for decod-
ing visual stimuli in the human brain. This framework uses an anatomical feature
extraction method, which provides a normalized representation for combining
homogeneous datasets. Further, a new binary imbalance AdaBoost algorithm
is introduced. It can increase the performance of prediction by exploiting a su-
pervised random sampling and the correlation between classes. In addition, this
algorithm is utilized in an Error-Correcting Output Codes (ECOC) method for
multi-class prediction of the brain responses. Empirical studies on 4 visual cate-
gories clearly show the superiority of our proposed method in comparison with
the voxel-based approaches. In future, we plan to apply the proposed method to
different brain tasks such as low-level visual stimuli, emotion and etc.
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