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Abstract

The burning number b(G) of a graph G was introduced by Bonato,
Janssen, and Roshanbin [Lecture Notes in Computer Science 8882 (2014)]
for measuring the speed of the spread of contagion in a graph. They proved
for any connected graph G of order n, b(G) ≤ 2⌈√n⌉−1, and conjectured

that b(G) ≤ ⌈√n⌉. In this paper, we proved b(G) ≤ ⌈−3+
√

24n+33

4
⌉, which

is roughly
√
6

2

√
n. We also settled the following conjecture of Bonato-

Janssen-Roshanbin: b(G)b(Ḡ) ≤ n + 4 provided both G and Ḡ are con-
nected.

1 Introduction

The burning number of a graph was introduced by Bonato-Janssen-Roshanbin
[3, 4, 10]. It is related to the contact processes on graphs such as the Firefighter
problem [6, 8, 9]. In the paper [3, 4], Bonato-Janssen-Roshanbin considered a
graph process which they called burning. At the beginning of the process, all
vertices are unburned. During each round, one may choose an unburned vertex
and change its status to burned. At the same time, each of the vertices that
are already burned, will remain burned and spread to all of its neighbors and
change their status to burned. A graph is called k-burnable if it can be burned
in at most k steps. The burning number of a graph G, denoted by b(G), is the
minimum number of rounds necessary to burn all vertices of the graph. For
example, b(Kn) = 2, b(P4) = 2, and b(C5) = 3. In the paper [4], they proved
b(Pn) = ⌈n1/2⌉. Based on this result, Bonato-Janssen-Roshanbin [4] made the
following conjecture.

Conjecture 1: for any connected graph G of order n, b(G) ≤ ⌈n1/2⌉.
Bonato-Janssen-Roshanbin [3, 4] proved b(G) ≤ 2⌈n1/2⌉ − 1. The previous

best known bound is due to Bonato et al. [7]:

b(G) ≤
(

√

32

19
+ o(1)

)

√
n.
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In this paper, we improved the upper bound of b(G) as follows.

Theorem 1. If G is a connected graph of order n, then

b(G) ≤
⌈−3 +

√
24n+ 33

4

⌉

.

In the paper [4], Bonato, Janssen, and Roshanbin also considered Nordhaus-
Gaddum Type problem on the burning number. Let Ḡ be the complement graph
of the graphG. In [4], they proved b(G)+b(Ḡ) ≤ n+2 and b(G)b(Ḡ) ≤ 2n. Both
bounds are tight and are achieved by the complete graph and its complement.
When both graphsG and Ḡ are connected, they proved b(G)+b(Ḡ) ≤ 3⌈n1/2⌉−1
and b(G)b(Ḡ) ≤ n+6 for all graph Gn of order n ≥ 6. The following conjecture
has been made in [4]:

Conjecture 2: If both G and Ḡ are connected graphs of order n, then

b(G)b(Ḡ) ≤ n+ 4.
Using Theorem 1, we settled this conjecture positively.

Theorem 2. If both G and Ḡ are connected graphs of order n, then

b(G)b(Ḡ) ≤ n+ 4.

The equality holds if and only if G = C5.

2 Notations and Lemmas

For each positive integer k, let [k] denote the set {1, 2, . . . , k}. A graph G =
(V,E) consists of a set of vertices V and edges E. The order of G, dented
by |G|, is the number of vertices in G. A graph G is called connected if for
any two vertices there is a path connecting them. In this paper, we always
assume that G is a connected graph. The distance between two vertices u and
v, denoted by d(u, v), is the length of the shortest path from u to v in graph
G. The eccentricity of a vertex v is the maximum distance between v and any
other vertex in G. The maximum eccentricity is the diameter D(G) while the
minimum eccentricity is the radius r(G). The center of G is the set of vertices
of eccentricity equal to the radius.

For any nonnegative integer k and a vertex u, the k-th closed neighborhood

of u is the set of vertices whose distance from u is at most k; denoted by Nk[u].
From the definition, a graph G is k-burnable if there is a burning sequence

v1, . . . , vk of vertices such that

V ⊂ ∪k
i=1Nk−i[vi] (1)

∀i, j ∈ [k] : d(xi, xj) ≥ j − i. (2)

The burning number b(G) is the smallest integer k such that G is k-burnable.
It has been shown that Condition (2) is redundant for the definition of burning
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number b(G) (see Lemma 1 of [7]). It is often convenient to rewrite Condition
(1) by relabeling the vertices in the burning sequence as follows:

V ⊂ ∪k
i=1Ni−1[vi]. (3)

This leads the following generalization, which is very useful for the purpose
of induction. For a set (or multiset) A of k positive integers a1, a2, . . . , ak (not
necessarily all distinct), we say a graph G is A-burnable, if there exist k vertices
v1, v2, . . . , vk such that G ⊆ ∪k

i=1Nai−1[vi]. Under this terminology, the burning
number b(G) is the least k so that G is [k]-burnable.

A tree is an acyclic connected graph. For any tree T , it is well-known that
the center of T consists of either one vertex or two vertices. If the center of T
consists of one vertex, then D(T ) = 2r(T ); otherwise, D(T ) = 2r(T ) − 1. (See
[2].)

A rooted tree is a tree with one vertex r designated as the root. The height

of a rooted tree is the eccentricity of the root. In a rooted tree, the parent of
a vertex is the vertex connected to it on the path to the root. A child of a
vertex v is a vertex of which v is the parent. A descendent of any vertex v is
any vertex which is either the child of v or is (recursively) the descendent of
any of the children of v. A leaf vertex is a vertex with degree 1 but not equal
to the root. The subtree rooted at v is the induced subgraph on the set of v and
its all descendents. The important observation is that if a subtree rooted at v
is pruned from the whole tree, the remaining part (if non-empty) is still a tree.
This observation is very useful for induction.

A spanning tree of graph G is a subtree of G that covers all vertices of G.
In the papers [3, 4], Bonato, Janssen, and Roshanbin proved

b(G) = min{b(T ) : T is a spanning subtree of G}. (4)

Thus, it is sufficient to only consider the burning number b(T ) for tree T .
First we prove a simple lemma, which illustrates the idea of the induction.

Lemma 1. Let A = {a1, a2, . . . , ak} be a set of k nonnegative integers. If a tree

T has order at most
∑k

i=1
ai +max{ai : 1 ≤ i ≤ k} − 1, then T is A-burnable.

Proof. With loss of generality, we can assume that a1 ≥ a2 ≥ · · · ≥ ak. We will
use induction on k. Initial case: k = 1, A = {a1}. We need to prove that if a
tree T has at most 2a1 − 1 vertices, then T is A-burnable. Note that

r(T ) ≤ D(T ) + 1

2
≤ n

2
≤ a1 −

1

2
.

Since the radius r(T ) is an integer, we must have r(T ) ≤ a1 − 1. Thus T is
{a1}-burnable.

Now we assume the statement holds for any set of k − 1 integers. For
any A of k integers a1 ≥ a2 ≥ · · · ≥ ak > 0 and any tree T with at most
2a1 + a2 + · · · + ak − 1, we will prove that T is A-burnable. Pick an arbitrary
vertex r as the root of T . Let h be the height of this rooted tree. If h ≤ a1 − 1,
then V (T ) ⊂ Na1−1(r). I.e., T is {a1}-burnable. Thus T is A-burnable.
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Now we assume h ≥ a1. Select a leaf vertex u such that d(r, u) = h. Let vk
be the vertex on the ru-path such that the distance d(u, vk) = ak − 1. (This
is possible since h ≥ a1 > ak − 1. Let T1 be the subtree rooted at vk, and
T2 := T \ T1 be the remaining subtree. Notice that |T1| ≥ ak. Thus,

|T2| = |T | − |T1|
≤ 2a1 + a2 + · · ·+ ak − 1− ak

= 2a1 + a2 + · · ·+ ak−1 − 1.

By inductive hypothesis, T2 is {a1, a2, . . . , ak−1}-burnable. Thus, there exists
k − 1 vertices v1, v2, . . . , vk−1 such that T2 ⊆ ∪k−1

i=1 Nai−1[vi]. Also, notice T1 ⊆
Nak−1[vk]. Therefore, T ⊆ ∪k−1

i=1 Nai−1[vi]. The proof of the lemma is finished.

Remark 1. The bound in Lemma 1 is tight.

Proof. Consider the following example: for any positive integer a, let a1 = a2 =
· · · = ak = a, i.e. A is a multiset consisting of k a’s. Now we will construct a
tree T as following. First construct k+1 disjoint paths P0, P1, . . . , Pk with each
of order a. Create tree T by connecting one endpoint of P1, P2, . . . , Pk to the
same endpoint of P0 (see figure below).

P0

P1

Pk

The tree T has order (k + 1)a, which is just one more than the amount of
vertices in Lemma 1. Now we show T is not A-burnable. Otherwise, there exists
v1, v2, . . . , vk such that T is covered by ∪k

i=1Na[vi]. By Pigeon-hole principle,
one of the paths P0, P1, . . . , Pk will not contain v1, v2, . . . , vk, and the leaf vertex
on this path is in any Na−1[vi]. Thus, T is not A-burnable.

The following corollary is a slight improvement of Theorem 7 of [7].

Corollary 1. For any connected graph G, b(G) ≤ −3+
√
8n+17

2
≈

√
2n− 3

2
.

Proof. Let A = {k, k−1, · · · , 1}. By Lemma 1, any Tree of order n ≤ (
∑k

i=1
i)+

k − 1 = k2
+3k−2

2
is A-burnable. Solving k we get k ≤ −3+

√
8n+17

2
. Thus,

b(T ) ≤ −3+
√
8n+17

2
. By Equation (4), the same bound holds true for b(G).
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3 Proof of Theorems 1 and 2

We have seen that Lemma 1 is sharp when all ai’s are equal. The improvement
can be made when ai’s are distinct. Let g(A) be a function of A so that any
tree T with order at most g(A) is A-burnable. In the proof of Lemma 1, we
show that

g(A) ≤ g(A \ {ak}) + ak.

The idea is to show a recursive bound

g(A) ≤ max
1≤i≤k−1

{g(A \ {ai}) + ai}+
⌊

k − 1

3

⌋

where k is the number of (distinct) elements in A. We first prove the following
Lemma.

Lemma 2. For any k− 1 distinct positive integers a1 < a2 < · · · < ak−1, there

exists an ai such that 2⌊k−1

3
⌋ ≤ ai ≤ ak−1 − ⌊k−1

3
⌋.

Proof. Let j = ⌊k−1

3
⌋ and A = {a1, a2, . . . , ak−1}. Divide [1, ak−1] into 3 inter-

vals:
[1, 2j − 1] ∪ [2j, ak−1 − j] ∪ [ak−1 − j + 1, ak−1].

There are at most 2j − 1 elements of A in the first interval. There are at most
j elements of A in the last interval. Since 3j − 1 < k − 1, there exists at least
one element of A in the middle interval. Call this element ai.

Lemma 3. For all integer k ≥ 1.

k
∑

i=1

⌊

i− 1

3

⌋

=

⌊

k2 − 3k + 2

6

⌋

.

Proof. For k = 3s, we have

k
∑

i=1

⌊

i− 1

3

⌋

= 3

s
∑

j=1

(j − 1) =
3s(s− 1)

2
=

⌊

k2 − 3k + 2

6

⌋

.

For k = 3s+ 1, we have

k
∑

i=1

⌊

i− 1

3

⌋

= 3

s
∑

j=1

(j − 1) + s =
3s(s− 1)

2
+ s =

⌊

k2 − 3k + 2

6

⌋

.

For k = 3s+ 2, we have

k
∑

i=1

⌊

i− 1

3

⌋

= 3
s
∑

j=1

(j − 1) + 2s =
3s(s− 1)

2
+ 2s =

⌊

k2 − 3k + 2

6

⌋

.
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Theorem 3. Let A be a set of k distinct positive integers a1 < a2 < · · · < ak.

If a tree T has order at most

(

k
∑

i=1

ai

)

+ ak − 1 +

⌊

k2 − 3k + 2

6

⌋

.

then T is A-burnable.

Proof. Let f(k) := ⌊k2−3k+2

6
⌋. By Lemma 3, we have f(k) = f(k − 1) + ⌊k−1

3
⌋.

Now we use induction on k.
Initial case k = 1: A = {a1}. by Lemma 1, if a tree T has order at most

2a1 − 1, then T is {a1}-burnable. The statement holds true for k = 1 since
f(1) = 0.

Now assume this statement holds true for any set of k − 1 distinct positive
integers. Consider the case A = {a1, a2, . . . , ak}. We need to prove that if a
tree T has order at most a1 + a2 + · · ·+ 2ak − 1 + f(k) then T is A-burnable.

Let j = ⌊k−1

3
⌋. By Lemma 1, there exists ai that satisfies 2j ≤ ai ≤ ak−1−j.

Choose an arbitrary root r and view T as a rooted tree. Let u be the leaf vertex
which has the farthest distance away from the root r. If d(r, u) ≤ ak − 1, then
V (T ) ⊂ Nak−1(r); thus T is A-burnable. So, we can assume d(r, u) ≥ ak. We
will name three vertices vi, t, vk on the ru-path such that d(u, vi) = ai − 1,
d(u, t) = ai − 1 + j, and d(u, vk) = ak−1. Let T1 be the subtree rooted at t.
There are two cases:

r

vk

t

w

vi

u

z

Case 1: T1 ⊆ Nai−1[vi]. Let T2 = T \ T1. Notice |T1| ≥ ai + j. Then,

|T2| ≤ |T | − |T1|
≤ a1 + a2 + · · ·+ 2ak − 1 + f(k)− (ai + j)

= a1 + a2 + · · ·+ âi + · · ·+ 2ak − 1 + f(k − 1).

By inductive hypothesis, T2 is (A\{ai})-burnable. Thus, T is A-burnable.

Case 2: T1 6⊆ Nai−1[vi]. Then there is a vertex z ∈ T1 such that d(vi, z) ≥ ai.
Let w be the closest vertex on the path rt to z. Observe that w is not in
the subtree rooted at vi. Thus, w is between vi and t. We have

d(w, z) = d(vi, z)− d(vi, w) ≥ ai − d(w, vi) ≥ ai − d(vi, t) ≥ ai − j ≥ j.
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The last inequality uses Lemma 2 for the choice of ai.

Let vk be a vertex on the path from u to the root with distance d(u, vk).
Let T3 be the subtree rooted at vk and let T4 := T \ T3 be the remaining
subtree. We have that |T3| ≥ ak−1 + d(w, z) ≥ ak−1 + j.

|T4| ≤ |T | − |T3|
≤ a1 + a2 + · · ·+ 2ak − 1 + f(k)− (ak−1 + j)

= a1 + a2 + · · ·+ ak−2 + 2ak − 1 + f(k − 1).

By inductive hypothesis, T4 is (A\{ak−1})-burnable. Clearly, T3 is {ak−1}-
burnable. Putting together, T is A-burnable.

The inductive proof is finished.

Proof. Proof of Theorem 1 Let A = (1, 2, . . . , k). Applying Theorem 3, any tree
of n vertices is [k]-burnable if

n ≤ 1 + 2 + · · ·+ k + k − 1 +

⌊

(k2 − 3k + 2)

6

⌋

=

⌊

2k2 + 3k − 2

3

⌋

.

Note that
⌊

2k2
+3k−2

3

⌋

equals to 2k2
+3k−3

3
if k is divisible by 3; equals to 2k2

+3k−2

3

otherwise. In either case, G is [k]-burnable if n ≤ 2k2
+3k−3

3
. Solving for k, we

have k ≥ −3+
√
24n+33

4
. Since k is an integer, we can take ceiling on the bound

of k. Thus for any tree T of n vertices,

b(T ) ≤
⌈−3 +

√
24n+ 33

4

⌉

.

By equation (4), the same bound holds for all connected graphs G.

Lemma 4. If G is connected and the radius satisfies r(G) ≥ 3, then the com-

plement Ḡ is also connected and r(Ḡ) ≤ 2.

Proof. Since r(G) ≥ 3, there exists a pair of vertex (u, v) with distance at least
3. Let S be the set of all neighbors of v in the graph G. For any vertex not
in S ∪ {v}, it is directly connected to v in the complement graph Ḡ. For any
vertex x in S, both xu and uv are edges of Ḡ. Thus, the complement graph Ḡ

has radius at most 2.

Proof of Theorem 2: By Lemma 4, either r(G) or r(Ḡ) is at most 2. Without
loss of generality, we can assume r(Ḡ) ≤ 2, which implies b(Ḡ) ≤ 3. We have
the following cases.

case 1 n ≤ 4. Since both G and Ḡ are connected, the only graph G that can
exist is the path P4. In this case G = Ḡ = P4. Note, b(P4) = 2. This
satisfies

b(G) · b(Ḡ) = 4 < n+ 4.
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case 2 n ≥ 5. By Theorem 1, b(Gn) ≤
⌈

−3+
√
24n+33

4

⌉

.

b(G) · b(Ḡ) ≤ 3 ·
⌈−3 +

√
24n+ 33

4

⌉

.

Now we show this bound is at most n+4. When n = 5, 6, 7, 8, ⌈−3+
√
24n+33

4
⌉ =

3, so 3 · 3 = 9 ≤ n+ 4. It holds for n = 5, 6, 7.

Now we assume n ≥ 9, we use ⌈−3+
√
24n+33

4
⌉ ≤ −3+

√
24n+33

4
+ 1. It is

sufficient to show

−3 +
√
24n+ 33

4
+ 1 < n+ 4.

A simple calculation yields 0 < n2 − 7n− 8. This true is for all n ≥ 9.

From above argument, the equality holds only when n = 5 and b(G) =
b(Ḡ) = 3. Now assume n = 5. If G contains a vertex v of degree 3 or 4, then
b(G) ≤ 2 since we N [v] can covers at least 4 vertices. Thus all degrees of G are
at most 2. For the same reason, all degrees of Ḡ are at most 2. This implies
that all degrees in G and in Ḡ are exactly 2. Since both G and Ḡ are connected
and n = 5, the only possible case is G = Ḡ = C5.
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