
Related-Key Cryptanalysis of Midori ∗

David Gérault and Pascal Lafourcade
firstname.lastname@udamail.fr

University Clermont Auvergne

Abstract. Midori64 and Midori128 [2] are lightweight block ciphers,
which respectively cipher 64-bit and 128-bit blocks. While several attack
models are discussed by the authors of Midori, the authors made no
claims concerning the security of Midori against related-key differential
attacks. In this attack model, the attacker uses related-key differential
characteristics, i.e., tuples (δP , δK , δC) such that a difference (generally
computed as a XOR) of δP in the plaintext coupled with a difference δK
in the key yields a difference δC after r rounds with a good probability.
In this paper, we propose a constraint programming model to automate
the search for optimal (in terms of probability) related-key differential
characteristics on Midori. Using it, we build related-key distinguishers on
the full-round Midori64 and Midori128, and mount key recovery attacks
on both versions of the cipher with practical time complexity, respectively
235.8 and 243.7.

Key Works: Midori, Related-Key Attack, Constraint Programming.

1 Introduction

The increasing usage of embedded devices led to a lot of research on how to adapt
existing cryptographic primitives for the low power and energy constraints as-
sociated with the internet of things. Lightweight block ciphers follow this trend,
and aim at providing energy efficient ways to ensure confidentiality for fixed
size block messages. In 2015, the authors of [2] consider the challenging task
of minimizing the energy cost for a lightweight block cipher. They proposed a
lightweight symmetric block cipher scheme called Midori, composed of two ver-
sions Midori64 and Midori128, which respectively cipher 64- and 128-bit message
blocks.

In this paper, we challenge the related-key security of both versions of Midori.
In the related-key model, introduced independantly by Biham [3] and Knud-
sen [12], the attacker is allowed to require the encryption of messages of his
choice under the secret key, but also under other keys which have a relation to
the original one. For instance, if K is the secret key, the attacker can require the

∗This research was conducted with the support of the FEDER program of 2014-
2020, the region council of Auvergne, and the Digital Trust Chair of the University of
Auvergne.

encryption of a message m under K, but also under another key K∗, computed
as K ⊕ δK , where ⊕ is the XOR operation and δK is a bit string chosen by the
attacker. In an ideal block cipher, the distribution of the resulting ciphertext dif-
ference should be uniform and independant from the input difference. However,
in real ciphers, there exist related-key differential characteristics, i.e., difference
propagation patterns, which happen with higher probabilities. In a related-key
differential attack, the attacker requires the encryption of message pairs satisfy-
ing a difference δP , under keys satisfying a difference δK , expecting an output
difference δC .

One of the main applications of related-key cryptanalysis is finding collisions
on hash functions built from block ciphers (e.g., with the Davies-Meyer con-
struction). For instance, the hash function used in Microsoft’s Xbox was broken
due to the related-key vulnerability of the underlying block cipher TEA [19],
leading to a hack of the system [20]. Related-key attacks were not taken into
account in the design of Midori, and the authors made no claim on its security
in this model. As Midori is designed for embedded devices, it could however be
used to build a hash function, which motivates scrutinizing its security in the
related key setting.

The search for related-key differential characteristics is however difficult. Fol-
lowing the idea of [9], we use constraint programming (CP) to tackle this prob-
lem. In this programming paradigm, instead of providing an imperative algo-
rithm, the programmer describes the problem to be solved as a set of variables
linked together by constraints (for instance, x+ y = 10), and the exploration of
the search space is left to the solver. While an overwhelming part of the crypt-
analysis literature relies on custom algorithms, we believe that a more generic
approach is very promising. In particular, as shown in [9], constraint program-
ming seems less error prone than custom code.

Contributions:

– We provide constraint programming models to find optimal related key dif-
ferential characteristics on both versions of Midori.

– Using our models, we give the optimal R− 1 rounds related-key differential
characteristics of both versions of Midori, with probability 2−14 for Midori64,
and 2−38 for Midori128.

– We then mount practical time key recovery attacks requiring 235.8 operations
with 20 related keys for Midori64, and 243.7 encryptions with 16 related keys
for Midori128.

– We also provide a related-key distinguisher of probability 2−16 for Midori64
and 2−40 for Midori128.

Related Work: Most results in the literature using constraint programming
for the cryptanalysis of block ciphers use Mixed Integer Linear Programming
(MILP). In [14], the authors use MILP to mount a linear cryptanalysis on a
stream cipher and on the block cipher AES, both in the single key setting.
In [18] and [17], the authors use MILP to find the best related-key differential
characteristics on several bit oriented block ciphers, but they do not treat Midori.
As opposed to MILP, CP supports table constraints defining tuples of authorized

2

Type Rounds Data Time Reference

Midori64

Impossible differential 10 262,4 280,81 [6]

Meet-in-the-middle 12 255.5 2125,5 [13]

Invariant subspace∗ full(16) 2 216 [11]

Related-key differential 14 259 2116 [7]

Related-key differential full(16) 223.75 235.8 Section 5

Midori128

Related-key differential full(20) 243.7 243.7 Section 5

Table 1. Summary of the attacks against Midori.

values, which provides a rather efficient way to model the non linear SBs. To the
best of our knowledge, only [9] uses classical CP instead of MILP. The authors
present a model for finding optimal related-key differential characteristics against
AES, using a method similar to the one presented in this paper.

The existing attacks against Midori are summed up in Table 1.
In [6], the authors propose an impossible differential attack on 10 rounds of

Midori64. In [13], Li Lin and Wenling Wu describe a meet-in-the-middle attack
on 12-round Midori64. In [11], the authors exhibit a class of 232 weak keys which
can be distinguished with a single query. Assuming a key from this class is used,
then it can be recovered with as little as 216 operations, and a data complexity
of 21. Finally, a related-key cryptanalysis of Midori64 is performed in [7]. It
covers 14 rounds and has a complexity of 2116, as opposed to 235.8 for ours. This
difference is due to their differential characteristics being far from optimal.

As for Midori128, to the best of our knowledge, no cryptanalysis on it has
been published yet. We fill this gap by mounting a key recovery attack on the
whole cipher, requiring 243.7 encryptions.
Outline: In Section 2, we give a brief description of Midori. We then remind the
basics of related-key cryptanalysis and introduce our notations in Section 3. We
present our CP models in Section 4. Finally, we detail our results in Section 5,
before concluding in the last section.

2 Description of Midori Encryption Scheme

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


Fig. 1. Representation of
the state in Midori.

Both versions of Midori, Midori64 and Midori128,
use 128-bit keys. In both versions, the blocks are
treated as 4 × 4 matrices of words of m bits, with
m = 4 for Midori64 and m = 8 for Midori128. The
encryption process consists in applying a round func-
tion that updates an internal state S, represented as

∗Note that this attack only works if a key from the weak class is used

3

shown on Figure 1 (where the si are 4-bit words for Midori64 and 8-bit words
(bytes) for Midori128), for a given number of rounds R. For Midori64, R is equal
to 16, whereas for Midori128 R is 20†.

The round function is composed of the following consecutive operations:
SubCell (SB) substitutes every cell of the state, using a non linear Substitution

Box, denoted Sbox. The Sbox of Midori64 is given as example in Figure 2(a).
For Midori128, 4 different Sboxes are used (one for each line of the state)‡.

ShuffleCell (SC) operates a permutation of the cells of the state. On input
(s0, . . . , s15), it applies the following permutation:
(s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8) .

MixColumns (MC) multiplies the state by the symmetric matrix given in
Figure 2(b), thus applying a linear transformation on each column inde-
pendently. It has the quasi-MDS property if MC(0, 0, 0, 0) = (0, 0, 0, 0) or
|X|+ |MC(X)| = 0 or |X|+ |MC(X)| ≥ 4, where |X| denotes the number
of non-zero words in a column X of the state.

KeyAdd (KA) is a XOR between S and a round key derived from the initial
key.
The Midori encryption process works as follows: an initial KeyAdd, using the

whitening key WK, is applied. Then, the round function is executed R−1 times.
Finally, a final SubCell is applied to the resulting state, and a new KeyAdd is
performed, again using WK. The round key derivation is very straightforard :
the key for each round i is obtained by XORing the initial key with a predefined
4 × 4 constant matrix αi. For Midori64, the 128-bit key is considered as two
4 × 4 matrices of 4-bit words K0 and K1, and WK is computed as K0 ⊕ K1.
The round key for round i is computed as Ki mod 2 ⊕ αi. For Midori128, K is
a single 4 × 4 bytes matrix, and WK = K. The round key for round i is then
simply computed as for Midori64: K ⊕ αi.

3 Related-Key Cryptanalysis

Differential cryptanalysis studies the propagation of the differences, generally
computed as a XOR, between two plaintexts ciphered with the same key. Related-
key cryptanalysis, which was independently introduced by Biham [3] and Knud-
sen [12], additionally considers the case where the two plaintexts are ciphered

†The full specification is presented in [2].
‡The Sboxes of Midori 128 are given in [11]

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SB(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

(a) The Sbox of Midori64.


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


(b) The MixColumns matrix
of Midori.

Fig. 2. Midori description.

4

with different keys. A tuple (δin, δK , δout) is an n-rounds related-key differ-
ential for a keyed round function fK , for which f iK denotes the output af-
ter round i (starting from 0), if for some plaintext P and key K it holds

that fn−1K (P) ⊕ fn−1K⊕δK (P ⊕ δin) = δout. Similarly, if XP,K
i denotes the in-

ternal state of the round function with inputs P and K at round i, a tuple
(δin, δK , δX0

. . . δXn−1
, δout) is an n-rounds related-key differential characteris-

tics if (δin, δout, δK) is an n-rounds related-key differential and, for all i from 0

to n− 1, it holds that XP,K
i ⊕XP⊕δin,K⊕δK

i = δXi .
The differences δX are composed of differential words, defined as δX [i][j] =

X[i][j] ⊕ X ′[i][j], where X[i][j] (resp. X ′[i][j]) denotes a word at position i, j
(where (i, j) ∈ [0; 3]2) of a matrix X (resp. X ′).

The probability p = Pr[(δin, δK) → δout] denotes the probability that a
related-key differential (δin, δk, δout) holds, i.e., for P and K drawn uniformly at
random, fK(P)⊕ fK⊕δK (P ⊕ δin) = δout.

Note that, by definition, for the linear parts L of the cipher, we have L(P)⊕
L(P ⊕ δ) = L(δ), for any P and δ. On the other hand, for the non linear parts
NL, NL(P)⊕NL(P⊕δ) is generally different from NL(δ). Hence, to handle the
non linear parts of block ciphers (namely the Sboxes), related-key differential
cryptanalysis usually uses a Differential Distribution Table (DDT) to derive
the probability Pr[δin → δout] that for a random word w, SB(w) ⊕ SB(w ⊕
δin) = δout. For any differential words δin and δout, DDT [δin][δout] gives the
number of words w satisfying this relation, and the probability is computed

as DDT [i][j]
2|W |

, where |W | denotes the bit length of the words. When the Sboxes

are bijective§, they do not introduce nor remove differences. More formally, it
holds that for any word w, SB(w) ⊕ SB(w ⊕ δ) 6= 0 if δ 6= 0, and SB(w) ⊕
SB(w ⊕ δ) = 0 if δ = 0. Said otherwise, for a given Sbox, Pr[0 → 0] = 1.
Hence, the probability of a related-key differential characteristic is only affected
by active Sboxes, i.e., Sboxes which have a non-zero difference at their input.
Thus, the probability p for a related-key differential characteristic to hold for
random P and K is computed as the product of the probabilities associated with
each the active Sboxes it contains. We have p =

∏x
i=1 pi, where pi denotes the

probability that the transition δini → δouti, defined by the related-key differential
characteristic, holds for the ith active Sbox (among x). Since the complexity of a
related-key differential key recovery attack is directly related to the probability
of the related-key differential that is used, characteristics with the least possible
active Sboxes are generally the most interesting. The crucial point of this type
of cryptanalysis is then to determine high probability related-key differential
characteristics.

However, exhaustive search on all possible input differences is not practical
for Midori because the size of the input is 128 bits for the key and 64 or 128
bits for the plaintext. Hence, a common method is to solve the problem in two
steps (e.g., [5,8,9]). The first step does not consider the value of the differential
bytes, but only the positions of non-zero differences. During the first step, the
differential words are abstracted to a compact representation. In the compact

§It is the case for most block ciphers, including Midori.

5

representation, the differential words are abstracted to differential bits. The dif-
ferential bit ∆ representing a differential word δ in the compact representation
is defined by δ = 0⇒ ∆ = 0 and δ 6= 0⇒ ∆ = 1. We denote a differential word
by δ, and a differential bit by ∆.

An n-round compact related-key differential characteristic ∆ abstracting a
related-key differential characteristic δ = (δin, δk, δX0

, . . . , δXn−1
, δout) is the tu-

ple (∆in, ∆k, ∆X0
, . . . ,∆Xn−1

, ∆out), where ∆in = 0 if δin = 0 and ∆in = 1 if
δin 6= 0 (and similarly for ∆X0 , . . . ,∆Xn−1 and ∆out).

The idea of working with two steps is that related-key differential charac-
teristics with the best probabilities are generally the ones with the least active
Sboxes. Hence, a lot of filtering can be done by simply starting by working on
differential bits and minimizing the number of active Sboxes.

Once compact related-key differential characteristics minimizing the number
of active Sboxes are obtained, a second step is run to build full related-key
differential characteristics built with differential words. Note that not all compact
related-key differential characteristics can be instantiated with differential words.
The main reason is that a given input difference to an Sbox can only yield a
limited number of output differences. For instance, in Midori64, if δX = 0x1
(where 0x denotes hexadecimal representation), there exists no word X such
that SB(X) ⊕ SB(X ⊕ 0x1) = 0x9, according to the Sboxes of Midori64 given
in Figure 2(a). Moreover, the coefficients of the MixColumns matrix cannot be
directly taken into account with differential bits, nor can the equalities of the
corresponding differential words. This yields transitions that are correct when
working on a bit related-key differential characteristic, but not with differential
words. Such solutions are said to be inconsistent, otherwise, they are consistent.

4 Constraint Programming Model

We describe our constraint programming models to find related-key differential
characteristics with optimal probability on Midori. This process is decomposed
in two steps: the first one aims at lower bounding the number of active Sboxes. It
only considers compact related-key differential characteristics. The second step
transforms the solutions to Step 1 into word related-key differential character-
istics when it is possible. In other words, during Step 1, we simply find the
positions of the differences in the related-key differential characteristic, and in
Step 2, we assign actual values to these differences.

4.1 Step 1

Variables and objective function: In Step 1, we consider the propagation
of differences through the cipher by working on compact related-key differential
characteristics. Let n denote the number of times the full round function is
applied, i.e., we neglect the initial KeyAdd and the final KeyAdd and SB. For
Midori64, n = 15, and for Midori128, n = 19. When no information about the
format is provided, the variables are n×4×4 binary arrays, i.e., one 4×4 matrix
per round. Each of the following variables represent differential bits:

6

∆K represents the differential bits of the key. For Midori64, it is modeled as a
2× 4× 4 binary array (as the initial key is composed of two 4× 4 matrices).
For Midori128, it is represented as a 4× 4 binary matrix.

∆SB represents the state after the SB operation. Note that since this opera-
tion does not introduce differences, this variable is somehow redundant. We
however use it for readability.

∆KA represents the state after the KeyAdd operation.
∆MC represents the state after the MixColumns operation.
∆SC represents the state after the ShuffleCell operation.

The relations between these variables for a given round r is:

∆SB [r]
SC−−→ ∆SC [r]

MC−−→ ∆MC [r]
KA−−→ ∆KA[r]

SB−−→ ∆SB [r + 1]

Our aim is to minimize the number of active Sboxes, i.e., Sboxes with non zero
differences. Hence, we ask the solver to minimize the sum of all ∆SB [r], which
constitutes our objective function:

Minimize
(∑n−1

r=0

∑3
i=0

∑3
j=0∆SB [r][i][j]

)
Constraints: Since we work with differential bits representing the presence or
absence of difference, we cannot use the regular XOR operation between such
values for KeyAdd nor MixColumns. Let ∆0 and ∆1 denote two differential
bits. We remind that ∆0 (resp. ∆1) is 1 if δ0 6= 0 (resp. δ1 6= 0). The compact
representation contains no information about the actual values of δ0 and δ1 when
they are non-zero. This abstraction leads us to define the following constraint
that describes the xor between several differential bits x1, . . . , xq−1 where xq is
the result:

XOR(x1, . . . , xq)⇔ {x1 + . . .+ xq 6= 1}

where + denotes the integer addition and x1, . . . , xk ∈ {0, 1}. Intuitively, it
states that the xor of the q − 1 corresponding words is known to be 0 when all
the differential bits are zero, or only one is non zero, but can be either 0 or 1
otherwise.

For ShuffleCell, we simply apply the permutation given in Section 2 to build
∆SC [r] from ∆SB [r].
∆SC [r][0][0] = ∆SB [r][0][0],∆SC [r][1][0] = ∆SB [r][2][2],∆SC [r][2][0] = ∆SB [r][1][1],
∆SC [r][3][0] = ∆SB [r][3][3],∆SC [r][0][1] = ∆SB [r][2][3],∆SC [r][1][1] = ∆SB [r][0][1],
∆SC [r][2][1] = ∆SB [r][3][2],∆SC [r][3][1] = ∆SB [r][1][0],∆SC [r][0][2] = ∆SB [r][1][2],
∆SC [r][1][2] = ∆SB [r][3][0],∆SC [r][2][2] = ∆SB [r][0][3],∆SC [r][3][2] = ∆SB [r][2][1],
∆SC [r][0][3] = ∆SB [r][3][1],∆SC [r][1][3] = ∆SB [r][1][3],∆SC [r][2][3] = ∆SB [r][2][0],

∆SC [r][3][3] = ∆SB [r][0][2].

The constraint for MC contains two parts, where r varies from 0 to n − 1
and j varies from 0 to 3.

Firstly the quasi-MDS property directly gives the following constraint:(∑3
i=0∆SC [r][i][j] +∆MC [r][i][j]

)
∈ {0, 4, 5, 6, 7, 8}

Then, we model the fact that MC(0, 0, 0, 0) = (0, 0, 0, 0) as follows:

7

(∑3
i=0∆SC [r][i][j] = 0

)
⇔
(∑3

i=0∆MC [r][i][j] = 0
)

.

The second part directly implements the product of the vector ∆SC with the
matrix given in Midori to get ∆MC . It is modeled as follows:

XOR(∆SC [r][1][j], ∆SC [r][2][j], ∆SC [r][3][j], ∆MC [r][0][j])
XOR(∆SC [r][0][j], ∆SC [r][2][j], ∆SC [r][3][j], ∆MC [r][1][j])
XOR(∆SC [r][0][j], ∆SC [r][1][j], ∆SC [r][3][j], ∆MC [r][2][j])
XOR(∆SC [r][0][j], ∆SC [r][1][j], ∆SC [r][2][j], ∆MC [r][3][j])

For KA, following the rules of Midori and the XOR constraint described earlier¶,
we have, for r from 0 to n− 1, and i and j from 0 to 3: For Midori64 :

XOR(∆MC [r][i][j], ∆K [r mod 2][i][j], ∆KA[r][i][j])

and for Midori128:

XOR(∆MC [r][i][j], ∆K [i][j], ∆KA[r][i][j])

4.2 Step 2

Variables: In addition to the variables from Step 1, new ones are introduced to
represent the differential words in the whitening key, the plaintext, the result of
the initial KeyAdd, and the probabilities for each Sbox. When no information
about the format is provided, the following variables are n× 4× 4 word arrays,
i.e., one 4× 4 matrix per round.
δK represents the differential words in the key. It is modeled as a 2×4×4 array

of 4-bit words for Midori64, as a 4× 4 byte matrix for Midori128.
δSB represents the state after the SB operation.
δKA represents the state after the KeyAdd operation.
δMC represents the state after the MixColumns operation.
δSC represents the state after the ShuffleCell operation.
δWK represents the whitening key, which is δK [0]⊕ δK [1] for Midori64, and δK

for Midori128.
δP represents the plaintext and δP ′ the state after the initial KeyAdd.
P is a n×4×4 matrix used to compute the final probability, where P [r][i][j] = 0

if δSB [r][i][j] = 0, and log2(DDT [δKA[r][i][j]][δSB [r+ 1][i][j]) otherwise. For
Midori64, the domain of this variable is {0, 1, 2}, whereas for Midori128 it is
{0, 1, 2, 3, 4, 5, 6}.

To find the optimal related-key differential characteristics, we need to maximize
the sum of the P variables, hence our objective function is

Maximize

n−1∑
r=0

3∑
i=0

3∑
j=0

P [r][i][j]


¶Note that the XOR operations between the key and constants at each rounds

are not taken into account when working at a differential level. This is because the
constants are canceled, i.e., for two different keys K0 and K1, and a constant c, (K0⊕
c)⊕ (K1 ⊕ c) = K0 ⊕K1.

8

Constraints: The first constraints aim at linking each variable of the input
(from Step 1) to the variables of Step 2: for instance, for δKA, we have ∀r ∈
[0..n− 1],∀i ∈ [0..3],∀j ∈ [0..3] :

if ∆KA[r][i][j] == 0 then δKA[r][i][j] = 0, else δKA[r][i][j] > 0

Similar constraints are defined for the other input variables.

The constraint for SC is exactly the same as in Step 1, except that it is on
the δ variables (differential words) instead of the ∆ variables (differential bits).

For the other operations, we make use of table constraints to model the
Sboxes and the XOR operations‖. Intuitively, table constraints tell the solver
which tuples of values are allowed.

We denote tupleXOR the set of all tuples (X,Y, Z) that satisfying Z = X⊕Y .
Similarly we denote tupleSBS the tuples modeling the DDT for the Sbox S, i.e.,
for every couple of words δin, δout there is a tuple (δin, δout, log2(DDTS [δin][δout])),
where DDTS is the DDT of the Sbox S.

We also denote by TABLE((x, y, z), SET), the constraint that tells the solver
that the values x, y and z must for a valid tuple with regards to a given SET .

We define XORbyte(x, y, z) := TABLE((x, y, z), tupleXOR) and extend it to
XORbyte3(x, y, z, w) := XORbyte(t, z, w), where t is defined by XORbyte(x, y, t).

The MixColumns operation can then be expressed, according the specifica-
tion of the cipher, by: ∀r ∈ [0..n− 1],∀j ∈ [0..3] :

XORbyte3(δSC [r][1][j], δSC [r][2][j], δSC [r][3][j], δMC [r][0][j])

XORbyte3(δSC [r][0][j], δSC [r][2][j], δSC [r][3][j], δMC [r][1][j])

XORbyte3(δSC [r][0][j], δSC [r][1][j], δSC [r][3][j], δMC [r][2][j])

XORbyte3(δSC [r][0][j], δSC [r][1][j], δSC [r][2][j], δMC [r][3][j])

We now define δWK . For Midori64, δWK is defined by: ∀i ∈ [0..3],∀j ∈ [0..3] :

XORbyte(δK [0][i][j], δK [1][i][j], δWK [i][j])

For Midori128, we simply have δWK = δK .

The initial KeyAdd operation then is modeled as: ∀i ∈ [0..3],∀j ∈ [0..3] :

XORbyte(δP [r][i][j], δWK [i][j], δP ′ [i][j])

For the other KeyAdd operations, we have ∀r ∈ [0..n−1],∀i ∈ [0..3],∀j ∈ [0..3] :

XORbyte(δMC [r][i][j], δK [r mod 2][i][j], δKA[r][i][j])

for Midori64, and

XORbyte(δMC [r][i][j], δK [i][j], δKA[r][i][j])

‖As the operation XOR is not by default implemented in the solver.

9

for Midori128. We finally model the SB operations. In the model for Midori128,
where 4 different Sboxes are used, we use Sboxi, where i is the number of the
line. For readability, the number of the Sbox is omitted in what follows.

The initial SB is modeled as follows: ∀i ∈ [0..3],∀j ∈ [0..3] :

TABLE((δP ′ [i][j], δSB [0][i][j], P [0][i][j]), tupleSB)

Then, for the other rounds, we have ∀r ∈ [1..n− 1],∀i ∈ [0..3],∀j ∈ [0..3] :

TABLE((δKA[r − 1][i][j], δSB [r][i][j], P [r][i][j]), tupleSB)

5 Results

Step 1 was implemented in the Minizinc∗∗ language, and solved using the solver
Chuffed ††, which minimizes the objective function in around 3 hours for Mi-
dori64 and in around 10 hours for Midori128‡‡. Step 2 was solved using Choco3 [15],
which finds the best related-key differential characteristic (when it exists) for
each input from Step 1 within 10 seconds.

The results are given in table 2.

Note that since all Sboxes in our related-key differential characteristics have
the best possible probability (2−2), any related-key differential characteristic
with more Sboxes has a lower probability.

Version Number of rounds Number of Sboxes Probability

Midori64
15 7 2−14

16 8 2−16

Midori128
19 19 2−38

20 20 2−40

Table 2. The results obtained by the solvers, both for full-round and n − 1 rounds
of both versions of Midori. The number of Sboxes is the result of Step 1, and the
probability is the result of Step 2.

5.1 Key Recovery Attacks

Our goal is to recover the secret key K. We use an encryption oracle EncK(x,m)
that encrypts a message m with the key K ⊕ x. Our attacks are different for
Midori64 and Midori128.

∗∗http://www.minizinc.org/
††https://github.com/geoffchu/chuffed
‡‡We run our experiments on an Intel i7-4790, 3.6 Ghz with 16 GB RAM.

10

δWK δWK

δP

KA SB KA

.........
15 rounds

δKA[14]

SB KA

δC

Fig. 3. An example of a related-key differential characteristic provided by the solver.

δK [0] δK [1]

δKA[r−1]

SB

δSB [r]

SC

δSC [r]

MC

δY [r]

KA

δKA[r]

SB

δSB [r+1]

SC

δSC [r+1]

MC

δY [r+1]

KA

δKA[r+1]

Fig. 4. An optimal 2-rounds related-key differential characteristic from Set 1 for Mi-
dori64, where r is an even round. Non-zero differences are represented as black and
gray squares. It has 1 active Sbox, for instance with � = 0x1 and � = 0x2.

Midori64: For this attack, we first recover WK, one word at a time, using 16 15-
rounds related-key differential characteristics with 16 ·219.32 = 223.32 operations.
Then we use 4 14-rounds related-key differential characteristics to recover K[0] in
235.8 operations. By combining them, we obtain K[1] = K[0]⊕WK and deduce
K (composed of K[0] and K[1]), for a total complexity of 223.32 + 235.8 ≈ 235.8.

Recovery of WK: The solvers give 16 different 15-rounds related-key differen-
tial characteristics, the corresponding related-key differentials are given in Ap-
pendix A. Each of them contains only one non-zero difference at the end of the
15th round (corresponding to δKA[14] in Figure 3), all at different positions.

To be complete we need to give all the details our related-key differential
characteristics. Minizinc finds optimal 2-rounds patterns with 1 active Sbox in
all the odd rounds and none in the even rounds, as described in Figure 4. Then
the missing steps in Figure 3 are 7.5 times the characteristic given in Figure 4.

In order to recover one word of WK, we use the corresponding values of δK ,
δP and δKA[14] given by the related-key differential characteristics§§. First we
randomly choose some plaintext P , and query the oracle for C = EncK(0, P),
and C∗ = EncK(δK , P δP). We compute δC = C ⊕ C∗. We say that δC is valid
iff ∀i, j ∈ [0, 3], δKA[14][i][j] = 0 ⇒ δC [i][j] = δWK [i][j]. If δC is valid then we
compute δSB [i][j] = δC [i][j]⊕ δWK [i][j] (where (i, j) is the positions of the non-
null difference). We now use the fact that for Midori64 the maximum value in
the DDT is 4, i.e. every valid δC yields at most 4 possible values for SB[i][j]
(x in Algorithm 1), to obtain four candidates for WK[i][j] = SB[i][j]⊕ C[i][j].
By repeating this process several times we can find the right candidate: it is the

§§From δK which is composed of δK[0] and δK[1], we can compute δWK = δK[0]⊕δK[1].

11

Input: δK , δP , ∀k ∈ [0, 14]δKA[k], i, j

P
$←{0, 264 − 1};

C = EncK(0, P); C∗ = EncK(δK , P ⊕ δP);
δC = C∗ ⊕ C;
if δC is valid then

δSB [i][j] = δC [i][j]⊕ δWK [i][j];
for ∀x ∈ DDTS(δKA[14][i][j], δSB [i][j]) do

WK[i][j] = SB[i][j]⊕ C[i][j];
CPT[WK[i][j]]++;

end

end

Algorithm 1: How to recover WK in Midori64, where DDTS(a, b) = {x :
SB(x)⊕SB(x⊕a) = b}, and CPT a table that is initialized to zero and stores
the occurences of possible candidates for WK.

word that has the most occurrences¶¶. This is formally described in Algorithm 1.
This is done 16 times, one for each word of WK.

Complexity analysis of Algorithm 1: Our aim is to determine how many times we
need to repeat our attack in order to have the true key. To determine precisely
this value denoted T , we follow the approach given in [16]. It uses the signal to

noise ratio S/N introduced by Biham in [4]. It is defined as S/N = 2k·p
α·β , where

k is the number of key bits that we want to recover (in our case, k = 4 since we
aim to recover a word of 4 bits of the key), p is the probability of the related-key
differential characteristic (for us p = 2−14), α is the number of key candidates
suggested for each good pair (using the DDT, we have α = 4), and β is the ratio
of the pairs that are not discarded. For β we have 2−14 + 2−60 since 2−14 is the
probability given by the solvers and 2−60 corresponds to the false positives, i.e.,
pairs having the same difference pattern, with 4 bits of undetermined difference.

Then we obtain S/N = 2k·p
α·β = 24·2−14

4·(2−14+2−60) = 2−10

2−12+2−58 ≈ 4. We denote by PS

the probability to obtain the true key. We use the equation (19) of [16], where
Φ denote the density probability function of the standard normal distribution,

and Φ−1 its inverse: PS = Φ

(√
T ·S/N−Φ−1(1−2−k)√

S/N+1

)
(19). Then we can obtain

PS for given values of T , S/N and α. Note that since we repeat the analysis 16
times (one for each word of WK), we need to have PS

16 sufficiently large as well.
By numerical approximation we obtain T = 20 ≈ 24.32, which gives PS > 0.99,
and PS

16 > 0.99. Hence, using T · p−1 plaintext pairs, we recover a key word
with a probability greater than 0.99. The corresponding data complexity is then
16 · 2 · 20 · 214 ≈ 223.32 chosen plaintexts, as well as 1 related key, for each
related-key differential characteristic used.
Recovery of K[0]: Using WK previously computed thanks to the 15-rounds
related-key differential characteristics, we decrypt the last round of Midori and

¶¶Indexes of the cell having the maximum values in the tables CPT .

12

Input: δK , δP , ∀k ∈ [0, 14]δKA[k], i, j,WK

P
$←{0, 264 − 1};

C = EncK(0, P); C∗ = EncK(δK , P ⊕ δP);
δC = C∗ ⊕ C;
if δC = δWK then

SB = C ⊕WK; SB∗ = C∗ ⊕WK∗ ⊕ δWK ;
X = InvSB(SB); X∗ = InvSB(SB∗);
δX = X∗ ⊕X;
δSB [14] = InvSC(InvMC(δX));
for ∀x ∈ DDTS(δKA[13], δSB [14]) do

for ∀u, v, w ∈ {0, 24}3 do
K[0][.][j′] = MC[14][.][j′]⊕KA[.][j′];
CPT [K[0][.][j′]] + +;

end

end

end

Algorithm 2: How to recover K[0] in Midori64, where InvSB (resp. InvMC

and InvSC) is the inverse of the Sbox function (resp. MC and SC), δWK =
δK[0] ⊕ δK[1], CPT a table that is initialized to 0 and stores the occurences
of possible candidates for K[0], and j′ is the index of the column where the 4
possibles values appeared after the MixColumn. The value of j′ is deterministic
and only depends of the positions i, j.

obtain the state of the 14th round δKA[14]. Now we use other four 14-rounds
related-key differential characteristics outputted by the solvers, one for each col-
umn of K[0], the corresponding related-key differentials are given in Appendix B.
They have only one active Sbox in the last round and there is a characteristic
for each position of the active word. Hence we obtain the value of δKA[13]. Sim-
ilarly as in the case of Midori64, we can use the DDT to obtain 4 possibilities
for a word of SB[13]. In the encryption function of Midori64, we have to apply
the ShuffleCell (which does not influence our attack), then MixColumns which
propagates the position of the 4 possibles values into different position. Then we
need to guess all the remaining values for these 3 words of 4 bits in the column
where the value has been shifted after the ShuffleCell. This leads us to a total
of 24 · 24 · 24 · 4 = 214 possibilities. Each of these possibilities gives a candidate
for 4 words of the key K[0] by xoring the obtained column of MC[13] and the
corresponding column of KA[14], as described in Algorithm 2.

Complexity analysis of Algorithm 2: This time k = 4×4 = 16, p = 2−14, α = 214,

β = 2−14 + 2−60, then S/N = 2k·p
α·β = 216·2−14

214·(2−14+2−60) = 2−12

2−14+2−58 ≈ 4. Then by

numerical approximation we find T = 28 ≈ 24.8, which gives PS > 0.99, and
PS

4 > 0.99. It gives us the time complexity of 2 · 4 · 28 · 214 · 214 = 235.8 and a
data complexity of 2 · 4 · 28 · 214 = 221.8.

Midory128: The constraints programming solvers find 16 patterns similar to the
one of Figure 5, each of them having a different position for the active Sbox.

13

δK

δKA[r−1]

SB

δSB [r]

SC

δSC [r]

MC

δY [r]

KA

δKA[r]

Fig. 5. The optimal 1-round related-key differential characteristic for Midori128. There
is 1 active Sbox that can be repeated to cover 19 rounds of Midori128, for instance
with � = 0x9 and � = 0x1.

The corresponding related-key differentials are given in Appendix C. Hence, we
can build 16 different 19-rounds related-key differential characteristics with 19
active Sboxes each, and each happening with probability 2−38, to recover one
word of WK per characteristic. We use a similar technique as for Midori64 for
WK, since in Midori128 the key is K exactly WK.

Complexity evaluation: Here, we only need to use 16 related-key differential
characteristics, so we want PS

16 ≥ 0.99. To compute S/N , we use k = 8 as we
recover a 8-bit word of the key for each related-key differential characteristic,
p = 2−38, α = 64 (according to the DDT), and β = 2−38 + 2−120. With these
values, we have S/N = 4, and need T = 25 ≈ 24.7 to have PS

16 > 0.99. Thus,
the data complexity of the attack is 2 · 25 · 238 ≈ 243.7 plaintexts and 16 related
keys, and we need 243.7 encryptions.

5.2 Related-Key Distinguishers

A related-key distinguisher aims at distinguishing a cipher scheme from a Pseudo-
Random Function (PRF) that represents an ideal cipher. We construct two dis-
tinguishers for Midori64 and for Midori128.

Midori64: Midori64 has related-key differential characteristics with 8 active
Sboxes, all of which can be crossed with the maximal probability 2−2. Following

the bound given in [1], we have that only
√
2
p =

√
2

2−18 = 218.5 are needed to
distinguish Midori64 from a PRF, using the distinguisher given in Figure 3. The
equivalent complexity to find for a PRF is 226 operations (following the formula
given in [10]). Thus, we are able to distinguish Midori64 from a PRF∗∗∗.

Midori128: As for Midori64, there exist patterns that can be repeated to cover
the whole cipher. The optimal ones only contain one active Sbox per round, e.g.,
Figure 5, hence leading to 20-rounds distinguishers with 20 active Sboxes. Since
these Sboxes can be crossed with maximal probability (2−2), the probability
of the distinguisher is 2−40. Hence, distinguishing Midori128 from a PRF, using

∗∗∗In Appendix D, we provide an example of values that satisfy the distinguisher
built using the pattern given in Figure 4 with � = 0xa and � = 0xa.

14

Input: δK , δP , δC
for i = 1 to 218.5 do

P
$←{0, 264 − 1};

C = EncK(0, P); C∗ = EncK(δK , P ⊕ δP);
if C ⊕ C∗ = δC then return 1;

end
return 0;

Algorithm 3: Algorithm for a distinguisher for Midori64.

Algorithm 3, can be done with
√
2
p = 239.5 encryptions of plaintext pairs whereas

the equivalent complexity to find such a structure for a PRF is 252, again with
the formula given in [10].

6 Conclusion

In this paper, we give a practical related-key attack on Midori64, improving the
existing key recovery attack from 2116 for 14 rounds to 235.8 for the full 16 rounds
cipher. We also are able to provide the first related-key attack on Midori128 with
a complexity of 243.7. In order to construct such impressive practical attacks, we
model Midori with constraint programming. The constraint programming solvers
help us determine the minimal number of active Sboxes in a few hours, and then
to derive optimal related-key differential characteristics in a few seconds.

Finally we propose two efficient distinguishers for Midori64 and Midori128. In
the future, we aim at exploring how CP can be used to perform some related-key
cryptanalysis on other symmetric encryption schemes.

References

1. T. Baignères, P. Sepehrdad, and S. Vaudenay. Distinguishing distributions using
chernoff information. In S. Heng and K. Kurosawa, editors, Provable Security - 4th
International Conference, ProvSec 2010, Malacca, Malaysia, October 13-15, 2010.
Proceedings, volume 6402 of Lecture Notes in Computer Science, pages 144–165.
Springer, 2010.

2. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and
F. Regazzoni. Midori: A block cipher for low energy. In T. Iwata and J. H.
Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

3. E. Biham. Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory
and Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993
Proceedings, chapter New Types of Cryptanalytic Attacks Using Related Keys,
pages 398–409. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

We would like to thank Marine Minier for her valuable advice.

15

4. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, London, UK, UK, 1993.

5. A. Biryukov and I. Nikolic. Automatic search for related-key differential charac-
teristics in byte-oriented block ciphers: Application to aes, camellia, khazad and
others. In Advances in Cryptology - EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 322–344. Springer, 2010.

6. Z. Chen and X. Wang. Impossible differential cryptanalysis of midori. IACR
Cryptology ePrint Archive, 2016:535, 2016.

7. X. Dong. Cryptanalysis of reduced-round midori64 block cipher. Cryptology ePrint
Archive, Report 2016/676, 2016. http://eprint.iacr.org/2016/676.

8. P.-A. Fouque, J. Jean, and T. Peyrin. Structural evaluation of aes and chosen-
key distinguisher of 9-round aes-128. In Advances in Cryptology - CRYPTO 2013,
volume 8042 of Lecture Notes in Computer Science, pages 183–203. Springer, 2013.

9. D. Gerault, M. Minier, and C. Solnon. Constraint programming models for chosen
key differential cryptanalysis. In The 22nd Internation Conference on Principles
and Practice of Constraint Programming, Toulouse, France, 2016.

10. H. Gilbert and T. Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations, pages 365–383. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

11. J. Guo, J. Jean, I. Nikolić, K. Qiao, Y. Sasaki, and S. M. Sim. Invariant subspace
attack against full midori64. Cryptology ePrint Archive, Report 2015/1189, 2015.
http://eprint.iacr.org/.

12. L. R. Knudsen. Cryptanalysis of LOKI 91, pages 196–208. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1993.

13. L. Lin and W. Wu. Meet-in-the-middle attacks on reduced-round midori-64. Cryp-
tology ePrint Archive, Report 2015/1165, 2015. http://eprint.iacr.org/.

14. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and linear cryptanalysis
using mixed-integer linear programming. In Information Security and Cryptology
- 7th International Conference, Inscrypt 2011, volume 7537 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2011.

15. C. Prud’homme, J.-G. Fages, and X. Lorca. Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016.

16. A. A. Selçuk. On probability of success in linear and differential cryptanalysis.
Journal of Cryptology, 21(1):131–147, 2008.

17. S. Sun, L. Hu, M. Wang, Q. Yang, K. Qiao, X. Ma, L. Song, and J. Shan. Extending
the applicability of the mixed-integer programming technique in automatic differ-
ential cryptanalysis. In Information Security - 18th International Conference, ISC
2015, volume 9290 of Lecture Notes in Computer Science, pages 141–157. Springer,
2015.

18. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security eval-
uation and (related-key) differential characteristic search: Application to simon,
present, lblock, DES(L) and other bit-oriented block ciphers. In Advances in Cryp-
tology - ASIACRYPT 2014. Proceedings, Part I, volume 8873 of Lecture Notes in
Computer Science, pages 158–178. Springer, 2014.

19. D. J. Wheeler and R. M. Needham. Tea, a tiny encryption algorithm. In B. Pre-
neel, editor, Fast Software Encryption: Second International Workshop Leuven,
Belgium, December 14–16, 1994 Proceedings, pages 363–366, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

20. ZDNet. New xbox security cracked by linux fans. http://www.zdnet.com/

article/new-xbox-security-cracked-by-linux-fans.

16

A 16 Related-Key Differentials for WK for Midori64

In the following table we give the 16 differential found by the solver that we used
for recovery WK for Midori64.

no δP δK δKA[14]
1 1110000000000002 00000000000000021110000000000000 0000000000000002
2 0000110100020000 00000000000200000000110100000000 0000000000020000
3 0000000200000111 00000002000000000000000000000111 0000000200000000
4 0002000010110000 00020000000000000000000010110000 0002000000000000
5 0000022200000010 00000000000000100000022200000000 0000000000000010
6 1011000000200000 00000000002000001011000000000000 0000000000200000
7 0000002011100000 00000020000000000000000011100000 0000002000000000
8 0010000000002202 00100000000000000000000000002202 0010000000000000
9 0000000000001211 00000000000002000000000000001011 0000000000000200
10 0000000003110000 00000000020000000000000001110000 0000000002000000
11 1101020000000000 00000200000000001101000000000000 0000020000000000
12 0100222000000000 01000000000000000000222000000000 0100000000000000
13 0000000011012000 00000000000020000000000011010000 0000000000002000
14 0000000020001110 00000000200000000000000000001110 0000000020000000
15 0000301100000000 00002000000000000000101100000000 0000200000000000
16 2111000000000000 20000000000000000111000000000000 2000000000000000

B 4 Related-Key Differentials for K[0] for Midori64

In the following table we give the 4 related-key differential charateristics found
by the solver, that we used for recovery K[0] for Midori64.

no δP δK δKA[13]
1 0111000000000000 01110000000000001000000000000000 1000000000000000
2 0000101100000000 00001011000000000000100000000000 0000100000000000
3 0000000001110000 00000000011100000000000001000000 0000000001000000
4 0000000000001011 00000000000010110000000000000100 0000000000000100

C 16 Related-Key Differentials for Midori128

In the following table, we give the 16 related-key differential charateristics found
by the solver, that we used for recovery K for Midori128. The hexadecimal values
of corresponding bytes are separated by a coma for more clarity.

17

no δP δK δKA[18]
1 33, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 32, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2 0, 3, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 1, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
3 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4 0, 0, 0, 8, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 0, 0, 0, 9, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
5 0, 0, 0, 0, 32, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 33, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
6 1, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
7 0, 0, 0, 0, 0, 0, 6, 0, 1, 1, 1, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 7, 0, 1, 1, 1, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0
8 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 9, 9 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 9, 9, 9 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
9 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
10 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0, 6, 0 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0, 1, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
11 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
12 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 0, 32, 33, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 0, 32, 1, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
13 0, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 1, 1, 1, 0 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 1, 1, 1, 0 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0
14 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 8, 0, 0, 0, 0 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 9, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0
15 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9
16 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0

D Example of Related-Key Distinguisher for Midori64

In Table 3, we give an example of values that satisfy the related-key distinguisher
built using the pattern given in Figure 4 with � = 0xa and � = 0xa.

Plaintext (P) Key (K) Ciphertext (C)

Y cdd0776b6777667e fffefefeefeeffe7 5448eff3eeffffff 99471218a32ea67c

Y ∗ 6770776b67776674 fffefefeefeeffed fee8eff3eeffffff 33e71218a32ea67c

δY = Y ⊕ Y ∗ aaa000000000000a 00000000000a aaa000000000 aaa0000000000000

Table 3. A pair of plaintext/key couples following the related key distinguisher on
Midori64, where Y can be P , K or C.

18

