Skip to main content

A Survey on Universal Computably Enumerable Equivalence Relations

  • Chapter
  • First Online:
Book cover Computability and Complexity

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

We review the literature on universal computably enumerable equivalence relations, i.e. the computably enumerable equivalence relations (ceers) which are \(\Sigma ^0_1\)-complete with respect to computable reducibility on equivalence relations. Special attention will be given to the so-called uniformly effectively inseparable (u.e.i.) ceers, i.e. the nontrivial ceers yielding partitions of the natural numbers in which each pair of distinct equivalence classes is effectively inseparable (uniformly in their representatives). The u.e.i. ceers comprise infinitely many isomorphism types. The relation of provable equivalence in Peano Arithmetic plays an important role in the study and classification of the u.e.i. ceers.

Andrews was partially supported by NSF grant DMS-1201338.

Badaev was partially supported by Grant 3952/GF4 of the Science Committee of the Republic of Kazakhstan.

Sorbi is a member of INDAM-GNSAGA; he was partially supported by Grant 3952/GF4 of the Science Committee of the Republic of Kazakhstan, and by PRIN 2012 “Logica Modelli e Insiemi”.

The authors thank Keng Meng Ng for his helpful comments and suggestions. The wish also to thank an anonymous referee for having pointed out several inaccuracies in a previous version of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, U., Lempp, S., Miller, J.S., Ng, K.M., San Mauro, L., Sorbi, A.: Universal computably enumerable equivalence relations. J. Symbolic Logic 79(1), 60–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, U., Sorbi, A.: The complexity of index sets of classes of computably enumerable equivalence relations. J. Symbolic Logic (to appear)

    Google Scholar 

  3. Andrews, U., Sorbi, A.: Jumps of computably enumerable equivalence relations (2016, in preparation)

    Google Scholar 

  4. Badaev, S.: On weakly precomplete positive equivalences. Siberian Math. J. 32, 321–323 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badaev, S., Sorbi, A.: Weakly precomplete computably enumerable equivalence relations. Mat. Log. Quart. 62(1–2), 111–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C.: On the relation provable equivalence and on partitions in effectively inseparable sets. Studia Logica 40, 29–37 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Montagna, F.: Equivalence relations induced by extensional formulae: classifications by means of a new fixed point property. Fund. Math. 124, 221–232 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Bernardi, C., Sorbi, A.: Classifying positive equivalence relations. J. Symbolic Logic 48(3), 529–538 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cleave, J.P.: Creative functions. Z. Math. Logik Grundlag. Math. 7, 205–212 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC Mathematics, Boca Raton, London, New York, Washington, DC (2003)

    MATH  Google Scholar 

  11. Coskey, S., Hamkins, J.D., Miller, R.: The hierarchy of equivalence relations on the natural numbers. Computability 1, 15–38 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Ershov, Y.L.: Positive equivalences. Algebra Logic 10(6), 378–394 (1973)

    Article  MATH  Google Scholar 

  13. Ershov, Y.L.: Theorie der Numerierungen I. Z. Math. Logik Grundlag. Math. 19, 289–388 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ershov, Y.L.: Theorie der Numerierungen II. Z. Math. Logik Grundlag. Math. 19, 473–584 (1975)

    Article  MathSciNet  Google Scholar 

  15. Fokina, E., Khoussainov, B., Semukhin, P., Turetsky, D.: Linear orders realized by c.e. equivalence relations. J. Symbolic Logic (to appear)

    Google Scholar 

  16. Fokina, E., Friedman, S., Nies, A.: Equivalence relations that are \(\Sigma ^0_3\) complete for computable reducibility. In: Ong, L., Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 26–33. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-32621-9_2

    Chapter  Google Scholar 

  17. Fokina, E.B., Friedman, S.D., Harizanov, V., Knight, J.F., McCoy, C., Montalbán, A.: Isomorphism relations on computable structures. J. Symbolic Logic 77(1), 122–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedman, H.: Proof-theoretic degrees (Unpublished)

    Google Scholar 

  19. Gao, S., Gerdes, P.: Computably enumerable equivalence realations. Studia Logica 67, 27–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gravuskin, A., Jain, S., Khoussainov, A., Stephan, F.: Graphs realized by r.e. equivalence relations. Ann. Pure Appl. Logic 165(7–8), 1263–1290 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Gravuskin, A., Khoussainov, A., Stephan, F.: Reducibilities among equivalence relations induced by recursively enumerable structures. Theoret. Comput. Sci. 612(25), 137–152 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Lachlan, A.H.: A note on positive equivalence relations. Z. Math. Logik Grundlag. Math. 33, 43–46 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mal’tsev, A.I.: Sets with complete numberings. Algebra i Logika 2(2), 4–29 (1963)

    MathSciNet  Google Scholar 

  24. Miller III, C.F.: On Group-Theoretic Decision Problems and Their Classification. Annals of Mathematics Studies. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  25. Montagna, F.: Relative precomplete numerations and arithmetic. J. Philos. Logic 11, 419–430 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Myhill, J.: Creative sets. Z. Math. Logik Grundlag. Math. 1, 97–108 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nies, A., Sorbi, A.: Calibrating word problems of groups via the complexity of equivalence relations. Math. Structures Comput. Sci. (2016, to apper)

    Google Scholar 

  28. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  29. Shavrukov, V.Y.: Remarks on uniformly finitely positive equivalences. Math. Log. Quart. 42, 67–82 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smullyan, R.: Theory of Formal Systems. Annals of Mathematical Studies, vol. 47. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  31. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Omega Series. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  32. Visser, A.: Numerations, \(\lambda \)-calculus & arithmetic. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 259–284. Academic Press, London (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sorbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Andrews, U., Badaev, S., Sorbi, A. (2017). A Survey on Universal Computably Enumerable Equivalence Relations. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics