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A rigid cone in the truth-table degrees with jump
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Abstract

The automorphism group of the truth-table degrees with order and

jump is fixed on the set of degrees above the fourth jump, 0(4).
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1 Introduction

A cone in a partial order (D,≤) is a set of the form D(≥ a) := {x ∈ D : x ≥ a}
for some a ∈ D. A subset of S of D is rigid if it is fixed under the action of the
automorphism group Aut(D,≤), i.e., for each x ∈ S and each π ∈ Aut(D,≤),
π(x) = x. We will also be interested in the case of structures (D,≤, j) where j

is a unary function on D. In that case, rigidity of S ⊆ D is defined with respect
to Aut(D,≤, j) rather than Aut(D,≤).

It is not known whether the structure of the Turing degrees is rigid, but it
is known [JS] that the structure of the Turing degrees with jump contains a
rigid cone. This is shown by applying a jump inversion theorem and results on
initial segments. Here we show that also the structure of truth-table degrees
with jump (Dtt,≤, j) contains a rigid cone. For definitions relating to initial
segments we refer the reader to the author’s doctoral dissertation [KH2], survey
article [KH1], and forthcoming article [KH3].

Our main result is that each automorphism of the truth-table degrees with jump
is equal to the identity on the cone above 0(4). This contrasts with the results of
Anderson [A] that each automorphism of the truth-table degrees (not necessarily
jump invariant) is equal to the identity on some cone, and each automorphism
that preserves 0(3) and 0(5) is equal to the identity on the cone above 0(5). It
is still open whether non-trivial automorphisms of these structures exist at all.

2 Steps of the proof

In this section we describe the global structure of the proof of our main theo-
rem 2.8; further recursion-theoretic and lattice-theoretic details are given in the
subsequent sections.

Definition 2.1. In the tt-degrees we denote the order by ≤. If x, y are tt-
degrees, we say that x ≡T y if for some X ∈ x and Y ∈ y, we have X ≡T Y .

The following theorem is due to Mohrherr [M3].

Theorem 2.2. Let n ≥ 1 and a ≥ 0(n). Then for some b, a = b(n).

Proposition 2.3. For each g, [0,g] is Σ0
3(g)-presentable.

Proof. An analysis of the definition of tt-reducibility.

Corollary 2.4. Each upper semilattices with least and greatest element that
can be realized as initial segments [0,g] with g(2) ≤ y(3) is Σ0

4(y)-presentable.

Theorem 2.5. For any y, the upper semilattices with least and greatest element
that can be realized as initial segments [0,g] with g(2) ≤ y(3) are exactly the
Σ0

4(y)-presentable ones.
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Proof. By Corollary 2.4 and Theorem 4.4.

Theorem 2.6. Let π be an automorphism of the truth-table degrees with jump
and let x ≥ 0(3). Then π(x) ≡T x.

Proof. By Theorem 2.2 there is a y such that x = y(3). The initial segments
[0,y′] and [0, π(y′)] are jump-isomorphic via π, so by Theorem 2.5, the Σ0

4(y)-
and Σ0

4(π(y))-presentable bounded usls coincide. Hence by Proposition 5.8,

π(y)(3) ≡T y(3)

and so
π(x) = π(y(3)) = π(y)(3) ≡T y(3) = x.

Lemma 2.7. a ≡T b ⇒ a′ = b′.

Theorem 2.8. Let π be an automorphism of the truth-table degrees with jump
and let x ≥ 0(4). Then π(x) = x.

Proof. By Theorem 2.2, there is a y such that x = y(4). Let z = y(3), so x = z′

and z ≥ 0(3). By Theorem 2.6, π(z) ≡T z and by Lemma 2.7, a ≡T b ⇒ a′ = b′.
Hence

π(x) = π(z′) = π(z)′ = z′ = x.

3 Mal’tsev homogeneous lattice tables

If (L,≤) is a partial order (transitive, reflexive, antisymmetric relation) such
that greatest lower bounds α ∧ β of all α, β ∈ L exist then (L,≤,∧) is called a
lower semilattice; if least upper bounds α ∨ β of all pairs α, β ∈ L exist, then
(L,≤,∨) is called an upper semilattice (usl). If L is both an lower semilattice
and an upper semilattice then L is a lattice. L is called bounded if there exist
elements 0, 1 ∈ L such that for all α ∈ L, 0 ≤ α ≤ 1. In particular every
finite lattice is bounded. If L has more than one element (so in the bounded
case, 0 6= 1) then we say that L is nontrivial. A unary algebra is a collection
of functions f : X → X on a set X , closed under composition. The partition
lattice Part(X) on a set X consists of all equivalence relations (considered as
sets of ordered pairs) on X , ordered by inclusion. We will be interested in the
case where X is finite or countably infinite.

A lattice table (see [L]) Θ is (1) a set X together with (2) a finite set of equiva-
lence relations α1, . . . , αn on X , and (3) an order ≤ given by αi ≤ αj ↔ αi ⊇ αj

(reverse inclusion of sets of ordered pairs), such that {α1, . . . , αn} ordered by

inclusion is a 0-1 sublattice of Part(X). We write Θ̂ = {α1, . . . , αn}. We think
of Θ as equal to X , but endowed with additional structure. So x ∈ Θ means

3



x ∈ X , etc. but for emphasis we may write |Θ| forX . Note that Θ is determined

by Θ̂.

Elements of |Θ| are denoted by lower-case Roman letters such as u, v, w, x,

y, z, and elements of semilattices in general and Θ̂ in particular by lower-case
Greek letters such as α, β, γ.

If α ∈ Θ̂ and (x, y) ∈ α then we write x ∼α y. If Θ is a lattice table then an
endomorphism of Θ is a map from Θ to Θ preserving all equivalence relations
in Θ̂. That is, (∀x, y ∈ Θ)(∀α ∈ Θ̂)(x ∼α y → f(x) ∼α f(y)). End Θ denotes
the unary algebra consisting of all endomorphisms of Θ.

CΘ(x, y) denotes the principal equivalence relation in Θ generated by (x, y), i.e.

CΘ(x, y) = ∩{α ∈ Θ̂ : (x, y) ∈ α}.

We define EndΘ(x, y) to be the the principal congruence relation in Θ generated
by (x, y), i.e. the equivalence relation generated by all pairs (f(x), f(y)) for
f ∈ End Θ.

Lemma 3.1. EndΘ(x, y) ⊆ CΘ(x, y).

Proof. If (u, v) ∈ EndΘ(x, y) then (c, d) is in the transitive closure of

{(f(x), f(y)) | f ∈ End Θ},

so it suffices to show each such (f(x), f(y)) ∈ CΘ(x, y). For this it suffices to

show (f(x), f(y)) ∈ α provided that (x, y) ∈ α for α ∈ Θ̂; this holds since
f ∈ End Θ.

Definition 3.2. Let Θ be a lattice table. We say that Θ is Mal’tsev homoge-
neous if for all x, y ∈ Θ, CΘ(x, y) ⊆ EndΘ(x, y) (so by Lemma 3.1, CΘ(x, y) =
EndΘ(x, y)).

The following Proposition can readily be proved:

Proposition 3.3. Θ is Mal’tsev homogeneous iff for all x, y, u, v ∈ Θ satisfying

(∀α ∈ Θ̂)(x ∼α y → u ∼α v),

there exist n ∈ ω = {0, 1, 2, . . .}, z1, . . . , zn ∈ Θ and f0, . . . , fn ∈ End Θ such
that

(∀i ≤ n)({fi(x), fi(y)} = {zi, zi+1})

where z0 = u and zn+1 = v.

The zi are called homogeneity interpolants.

This notion of homogeneity is more general (weaker) than those considered in
[L].

Note that if α ∧ β = γ in Θ̂ then α and β generate γ. That is, if x ∼γ y then
there exist meet interpolants z1, . . . , zn for x, y such that x ∼α z1 ∼β z2 · · · ∼α

zn ∼β y.
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Definition 3.4. If Θ is a lattice table and Y ⊆ |Θ|, then for each α ∈ Θ̂,

α ↾ Y = {(x, y) ∈ Y × Y : (x, y) ∈ α}. Let Θ̂ ↾ Y = {α ↾ Y : α ∈ Θ̂}.

If Θ0 and Θ1 are lattice tables, then we say that Θ0 ⊆ Θ1 if |Θ0| ⊆ |Θ1|

and Θ̂1 ↾ |Θ0| = Θ̂0. Note that if Θ0 ⊆ Θ1 then Θ̂0 and Θ̂1 are isomorphic
(nontrivial, finite) lattices.

If Θn, n ∈ ω are lattice tables such that Θn ⊆ Θn+1 for each n, then
⋃

n∈ω Θn

is the lattice table Θ such that |Θ| =
⋃

n∈ω |Θn| and Θ̂ ↾ |Θn| = Θ̂n for each n.

In particular Θn ⊆ Θ and Θ̂n and Θ̂ are isomorphic lattices for each n.

Definition 3.5. Θ is a sequential lattice table if there exist Θn, n ∈ ω, such
that Θ =

⋃
n∈ω Θn, and

(1) each Θn is a (0, 1,∨)-substructure of Part (|Θn|) ( Θn is an usl table),

(2) Θ is a lattice table, and

(3) for each n, meet interpolants for elements of Θn exist in Θn+1.

Θ is a sequential Mal’tsev homogeneous lattice table if in addition

(4) Θ is Mal’tsev homogeneous, with homogeneity interpolants for elements of
Θn appearing in Θn+1 (compare VII.1.1, 1.3 of [L]).

Definition 3.6 (Direct limit). Let a sequence (Li, ϕi)i∈ω be given, where each
Li is a finite lattice, ϕi : L

i → Li+1 is a (0, 1,∨) homomorphism, and Li∩Lj =
∅ for i 6= j.

Let L′ =
⋃

i∈ω Li as a set. Let ≈ be the equivalence relation on L′ generated by
a ≈ ϕi(a) for a ∈ Li. Then L = L′/ ≈ is an upper semilattice called the direct
limit of the sequence (Li, ϕi)i∈ω.

Definition 3.7. Fix finite lattices L0, L1 and a (0, 1,∨) homomorphism ϕ :

L0 → ϕ(L0) ⊆ L1, and lattice tables Θ0,Θ1. Suppose Ψi : Li → Θ̂i, i = 0, 1,
are isomorphisms. For α ∈ Li, we write ∼α for ∼Ψiα.

We say that Θ1 embeds in Θ0 with respect to ϕ and Ψ0,Ψ1 if there is a function
Θ(ϕ) : Θ1 → Θ0 such that for all x, y ∈ Θ1, and all α ∈ L0,

x ∼ϕα y ⇔ Θ(ϕ)(x) ∼α Θ(ϕ)(y).

In the characterization of intervals [0,g] for g < 0′, Definition 3.7 plays a key
role which we will now describe.

Suppose a bounded countable upper semilattice L is given such that the ordering
≤ of L is computably enumerable but not necessarily computable. That is, there
is a computable sequence that consists of all pairs (α, β) such that α ≤ β, but
if a given pair (α, β) does not appear anywhere in the list then this cannot be
determined effectively.
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For reasons whose explanation would take us too far afield (but see [KH1]),

we need a computable sequence of lattice tables Θ0,Θ1, . . . such that Θ̂s is
isomorphic to our approximation to L at stage s. (We will start with a sequence
(Li, ϕi)i∈ω having L as direct limit, and our approximation to L at stage s will
be Ls.) Suppose we discover at stage s + 1 that α ≤ β, whereas at stage s we
knew that β ≤ α but thought that α 6≤ β. Further suppose that we cannot
ignore what was done using Θs at stage s, but we can let Θs+1 be a subset of
Θs. If Θs+1 embeds into Θs with respect to ϕ (the homomorphism mapping our
approximation to L at stage s to our approximation to L at stage s + 1) then
by thinning Θ0 to Θ(ϕ)Θ1, we eliminate all elements x, y that are witnesses to
the fact that α 6= β. This allows us to identify α and β, even though so far we
have been working under the assumption that α 6= β.

We mention for the reader who is a computability theorist that in the character-
ization of lattices isomorphic to [0,g] for g < 0′, the ordering of L is computably
enumerable only relative to the Turing degree 0′′, and the “stages” above are
really levels of a priority tree, the true path of which it requires 0′′ to identify.

The full result needed for the application to the Turing degrees is contained in
Theorem 3.8 and Proposition 3.9.

Theorem 3.8. Let L be a bounded countable nontrivial usl and let (Li, ϕi)i∈ω

be any system of nontrivial finite lattices having L as direct limit in the sense
of Definition 3.6. Then there exists

1. a function h : ω → ω,

2. a double sequence of finite lattice tables (Θi
j)i∈ω,j≥h(i) with Θi

j ⊆ Θi
j+1 for

each i ∈ ω, j ≥ h(i), and

3. for each i ∈ ω an increasing function mi : ω → ω with mi(0) = h(i), such
that

1. letting Θi =
⋃

j∈ω Θi
j, we have |Θi| ⊇ |Θi+1| for each i ∈ ω,

2. for each i, j ≥ h(i) and k such that mi(j) ≤ k < mi(j + 1), we have

Θi
k = Θi

mi(j)
,

3. for each i ∈ ω, (Θi
mi(j)

)j∈ω is a sequential Mal’tsev homogeneous
lattice table,

4. for each i ∈ ω, Θ̂i is isomorphic to Li, and

5. there exist isomorphisms Ψi : Li → Θ̂i such that Θi+1 embeds in
Θi with respect to ϕi and Ψi,Ψi+1, and the embedding is the identity
map. In other words, for all x, y ∈ Θi+1 and α ∈ Li, we have

x ∼Ψiα y ↔ x ∼Ψi+1ϕiα y.
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The essential property in Theorem 3.8, and the one that goes beyond those of
[LL], is (5). The following Proposition can be proved by inspecting the proof of
Theorem 3.8.

Proposition 3.9 (Computability-theoretic properties). Let a be a Turing de-
gree and let L be a Σ0

1(a)-presentable usl, as in [KH1]. Then in Theorem 3.8, we
may assume that h is a-computable; the array {Θi

j | j ≥ h(i)} is a-computable;

each mi is computable; for each i < ω, (Θi
mi(j)

)j∈ω is a computable sequence;

each Θi is computable; and there is a computable function taking L0, . . . , Li to
Θi.

We now begin the development that will lead to a proof of Theorem 3.8.

If A is a unary algebra then Con A denotes the congruence lattice of A, i.e. the
lattice of all equivalence relations E on X preserved by all f ∈ A, ordered by
inclusion.

The following observation can be traced back to Mal’tsev [G1,M1,M2].

Proposition 3.10. For any unary algebra A, the dual of Con A is a Mal’tsev
homogeneous lattice table.

Proof. Suppose A is a unary algebra on a set X . Let Θ be the lattice table
such that Θ̂ is the dual of Con A. Since Con A is a 0-1 sublattice of Part(A),
Θ is a lattice table.

If f is an operation in A and α ∈ Θ̂ then α is a congruence relation on A and
hence ∀x, y(x ∼α y → f(x) ∼α f(y)), which means that f ∈ End Θ. So

A ⊆ End Θ.

Clearly for any unary algebras A,B on the same underlying set, we have A ⊆
B ⇒ Con A ⊇ Con B. Hence Con End Θ ⊆ Con A = Θ̂.

If u, v, x, y ∈ X , f ∈ End Θ and (x, y) ∈ EndΘ(u, v) then there exist z1, . . . , zk
such that (zi, zi+1) = (gi(u), gi(v)) for gi ∈ End Θ with z1 = x, zk = y, hence
letting wi = f(zi) and hi = f ◦ gi we have (wi, wi+1) = (hi(u), hi(v)) ∈
EndΘ(u, v), w1 = f(x), wk = f(y), and so (f(x), f(y)) ∈ EndΘ(u, v). Hence
we have shown EndΘ(u, v) ∈ Con End Θ ⊆ Θ. Since End Θ contains the iden-
tity map, EndΘ(u, v) contains (u, v). Hence EndΘ(u, v) is in Θ and contains
(u, v), so it contains CΘ(u, v). So Θ is Mal’tsev homogeneous.

We recall the construction of [P].

Definition 3.11. Let L be a nontrivial lattice. A = (A, r, h) is called an L−{1}-
colored graph if A is a set, r is a set of size-two subsets of A, i.e. (A, r) is an
undirected graph without loops, and h : r → L − {1} is a mapping of the set r
of the edges of the graph into L− {1}.

The map e : L → Part(A) is defined by: for α ∈ L, e(α) is the equivalence
relation on A generated by identifying points x, y if there is a path from x to y
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in the graph consisting of edges all of which have color ≥ α. In this case we say
that x, y are connected with color ≥ α.

Definition 3.12 (α-cells). Let L be a nontrivial lattice and let α ∈ L − {1}.
An α-cell Bα = (Bα, sα, kα) is an L − {1}-colored graph consisting of (1) a
base edge {x, y} colored α, and (2) for each pair (α1, α2) of elements of L such
that α1 ∧ α2 ≤ α, a chain of edges {x, u1}, {u1, u2}, {u2, u3}, {u3, y}, colored
α1, α2, α1, α2, respectively. Here x, y, u1, u2, u3 are distinct elements of Bα. The
base edge and chain of edges corresponding to a particular inequality α1∧α2 ≤ α
is referred to as a pentagon. So an α-cell consists of several pentagons, inter-
secting only in a common base edge.

Definition 3.13 (Pudlák graphs). Let L be a nontrivial lattice. The Pudlák
graph [P] of L is an L− {1} colored graph AP , defined as follows.

1. AP
0 consists of a single edge colored by 0 ∈ L. (In fact, how we choose to

color this one edge has no impact on later proofs.)

2. AP
n+1 contains AP

n as a subgraph and is obtained by attaching to each edge
of AP

n of any color α an α-cell.

3. AP =
⋃

n∈ω AP
n .

We will use the following modification, which contains infinitely many copies of
each edge in Pudlák’s graph.

1. A
(i)
0 = AP

0 , for each i ∈ ω.

2. A
(i)
j is obtained by attaching to each edge of A

(i)
j−1 of any color α, i many

α-cells.

3. Aj = A
(j)
j .

4. A =
⋃

n∈ω An = A(L) is called the homogenized Pudlák graph of L.

The underlying set of An is denoted by An.

Let Θ = Θ(L) be the lattice table with |Θ| = A, and Θ̂ = {e(α) : α ∈ L}.

Note that by definition of Θ being a lattice table, Θ̂ is ordered by reverse inclu-
sion. Similarly let Θn be the lattice table with |Θn| = An,

Θ̂n = {e(α) ↾ Θn | α ∈ L}.

Lemma 3.14. Let B0 ⊆ B1 ⊆ A, where A is the underlying set of Θ(L).

For i = 0, 1, let Ξi be the usl table whose underlying set is Bi, and whose
equivalence relations are computed using graph points belonging to Bi only.

Then Ξ0 ⊆ Ξ1 in the sense of Definition 3.4.
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Proof. We have to show that if x ∼α y holds in Ξ1 then x ∼α y holds in Ξ0.
The only way this could fail is if there is a path of edges between x and y leading
out of Ξ0 and then back in. We may assume that the path does not leave and
re-enter Ξ0 via the same node. So it suffices to show that any path that goes
around a pentagon not contained in Ξ0 but whose base is in Ξ0 can be shortened
to one contained in Ξ0 with no loss of equivalence. Since the pentagons represent
inequalities α ∧ β ≤ γ, any path x, u1, u2, u3, y going around the pentagon in
Ξ1 − Ξ0 may be replaced by the edge x, y cutting across which has equal or
greater color, i.e. with no loss of equivalence.

Lemma 3.15. Θn ⊆ Θn+1 for each n, so Θ =
⋃

n∈ω Θn.

Proof. Let Ξi = Θn+i for i = 0, 1 and apply Lemma 3.14.

Theorem 3.16. Let L be a nontrivial finite lattice. L is dual isomorphic to the
congruence lattice of End Θ(L). In fact, e : L→ Θ̂(L) is an isomorphism, and
Θ(L) = Con End Θ(L).

Proof. Pudlák [P] assumes that L is an algebraic lattice [G2], defines a certain

algebra S ⊆ End ΘP (L), and shows that e : L → Θ̂P (L) is an isomorphism,

and Θ̂P (L) = Con S. Now trivially Θ̂P (L) ⊆ Con End ΘP (L) holds, and S ⊆

End ΘP (L) implies Con End ΘP (L) ⊆ Con S. So we have Θ̂P (L) = Con End
ΘP (L).

In fact Pudlák’s proof works for our graph Θ as well, i.e. it shows that e : L→
Θ̂(L) is an isomorphism, and Θ̂(L) = Con End Θ(L).

Now let L be a finite lattice. Since every finite lattice is algebraic, L is an
algebraic lattice. Hence e : L→ Θ̂(L) is an isomorphism and Θ̂(L) = Con End
Θ(L).

Lemma 3.17. The sequence Θn(L), n ∈ ω has a subsequence which is a com-
putable Mal’tsev homogeneous sequential lattice table.

Proof. Since Θ is a congruence lattice, Θ is a Mal’tsev homogeneous lattice
table. Hence as Θ =

⋃
n∈ω Θn, a subsequence of Θn, n ∈ ω will be a sequential

Mal’tsev homogeneous lattice table. The sequence is computable since to com-
pute an equivalence relation on elements of Θn, it is sufficient to consider paths
in Θn, since Θn ⊆ Θn+1 by Lemma 3.15.

From now on we will assume that in fact Θn, n ∈ ω is itself the subsequence from
Lemma 3.17. Fix nontrivial finite lattices L0, L1 and a (0, 1,∨)-isomorphisms
ϕ : L0 → ϕ(L0) ⊆ L1. Let the ∧-isomorphism ϕ∗ : L1 → L0 be defined by
ϕ∗β =

∨
{α ∈ L0 | ϕ(α) ≤ β}. This ϕ∗ is known as the Galois adjoint of ϕ

[GHK+].

The map ϕ∗ has many nice properties; we list the ones we need in the following
lemma.
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Lemma 3.18. 1. ϕ∗ is a (∧, 1)-homomorphism.

2. If β < 1 then ϕ∗β < 1.

3. ϕ∗ is injective on ϕL0.

4. α ≤ ϕ∗β ↔ ϕ∗ϕα ≤ ϕ∗β.

Proof. These all follow easily from the definition of ϕ∗ and the fact that {α ∈
L0 | ϕ(α) ≤ β} is the principal ideal generated by ϕ∗(β), i.e. {α ∈ L0 | α ≤
ϕ∗(β)}.

Lemma 3.19. Let C(ϕ)AL1 be the graph obtained from AL1 by replacing each
color β by ϕ∗β. Then C(ϕ)AL1 is isomorphic to a subgraph of AL0.

Proof. Each pentagon of C(ϕ)AL1 represents an inequality of the form

ϕ∗β1 ∧ ϕ
∗β2 ≤ ϕ∗β,

for β1, β2, β ∈ L1 satisfying β1∧β2 ≤ β. Then ϕ∗β1∧ϕ
∗β2 = ϕ∗(β1∧β2) ≤ ϕ∗β,

so the represented inequality ϕ∗β1 ∧ ϕ∗β2 ≤ ϕ∗β holds in L0.

Hence we can obtain an isomorphic copy of C(ϕ)AL1 within AL0 by running
through the construction of AL0, omitting every pentagon that represents an
inequality involving members of L0−ϕ∗L1, and omitting pentagons for inequal-
ities that are true in L0 but not in L1. If an edge becomes disconnected from
A0 by such omissions then it too is omitted. Since L1 may have many more
elements than L0, we make use of the fact that A contains infinitely many copies
of each edge from Pudlák’s original graph AP . Since ϕ∗(β) = 1 → β = 1 by
Lemma 3.18, recoloring of points is never identification of points.

Lemma 3.20. Let Θ(ϕ) be the isomorphism from Lemma 3.19, sending AL1

to a subgraph of AL0 isomorphic to C(ϕ)AL1.

Then Θ(ϕ)ΘL1 ⊆ ΘL0 in the sense of Definition 3.4.

Proof. Let Ξ0 = Θ(ϕ)ΘL1 and Ξ1 = ΘL0 and apply Lemma 3.14.

Lemma 3.21. Let Ψi be the map e of Definition 3.11 for L = Li, i = 0, 1.

Then Θ(L1) embeds in Θ(L0) with respect to ϕ and Ψ0,Ψ1.

Proof. Let x, y be points in ΘL1, i.e. in AL1, and let α ∈ L0. Then obviously
x ∼ϕα y → Θ(ϕ)x ∼ϕ∗ϕα Θ(ϕ)y. Now suppose Θ(ϕ)x ∼ϕ∗ϕα Θ(ϕ)y. Then
there is a path witnessing this, which by Lemma 3.19 we may assume lies within
Θ(ϕ)AL1. Hence the path has an inverse image path under Θ(ϕ)−1. This is
then a path from x to y with colors β for all of which ϕ∗β ≥ ϕ∗ϕα. But then
α ≤ ϕ∗β by Lemma 3.18(4), and so ϕα ≤ β, so x ∼ϕα y. So in fact x ∼ϕα y ↔
Θ(ϕ)x ∼ϕ∗ϕα Θ(ϕ)y. Colors γ of edges in Θ(ϕ)AL1 are all of the form ϕ∗(β)
for some β. So Θ(ϕ)x ∼ϕ∗ϕα Θ(ϕ)y iff there is a path from Θ(ϕ)x to Θ(ϕ)y, all
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edges of which are colored γ ≥ ϕ∗ϕα, or equivalently by Lemma 3.18(4) (using
γ = ϕ∗β), colored γ ≥ α. Hence equivalently Θ(ϕ)x ∼α Θ(ϕ)y.

Proof of Theorem 3.8. Let mi(n) be the least m such that Θ(ϕi)Θ
i+1
n ⊆ Θi

m.
Let h(i) = mi(0), for i ∈ ω. Let Θ0 = Θ(L0) and for i ≥ 1, denoting composition
by juxtaposition,

Θi = Θ(ϕ0) · · ·Θ(ϕi−1)Θ(Li).

Let Θi
k = Θ(ϕ0) · · ·Θ(ϕi−1)Θj(L

i) if k = m0m1 · · ·mi−1(j) for some j; other-
wise, let Θi

k = Θi
k−1. The Theorem now follows easily.

4 Initial segments of the tt-degrees

Lemma 4.1. Suppose for each e, g lies on a tree Te which is e-splitting for
some c for some tables with the properties of Proposition 3.9, in the sense of
[LL]. Then g is hyperimmune-free.

Proof. For each e ∈ ω there exists e∗ ∈ ω such that for all stages s and all
oracles g, if {e∗}gs(x) ↓ then {e∗}g(x) = {e}g(x) and {e}gs(y) ↓ for all y ≤ x.
If g lies on Te∗ then it follows that {e}g is total and {e∗}T (σ)(x) ↓ for each σ
of length x + 1. Hence {e}g = {e∗}g is dominated by the recursive function
f(x) = max{{e}T (σ)(x) : |σ| = x+ 1}.

Proposition 4.2. Let L be a Σ0
4(y)-presentable upper semilattice with least and

greatest element. Then there exist t, i, g such that

1. t : ω → 2 is 0′′-computable,

2. i is the characteristic function of a set I such that I ≤m y(3),

3. g(2)(e) = t(i(0), . . . , i(e)) for all e ∈ ω,

4. [0,g] is isomorphic to L, and

5. g is hyperimmune-free

Proof. The proof in [LL] must be modified to employ the lattice tables of
Proposition 3.9.

By Proposition 3.9, for all x, y ∈ Θk+1 and α ∈ Lk, we have [identifying the

isomorphism between Li and Θ̂i with the identity]

x ∼ϕkα y ↔ x ∼α y.

Lemma 4.1 of [LL] is modified so that ψT,c is ψT,ϕkc. The equivalence

uFm(i)(c)v ↔ uGi(c)v
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now becomes
uFm(i)(c)v ↔ uGi(ϕkc)v

Just as in Lemma 3.1 it is shown that ψT,c is Turing equivalent to ψT0,c, it now
follows that ψT,ϕkc is Turing equivalent to ψT0,c, which is what we want.

i(e) = 1 iff the answers to the Π0
1(y

(2))-question about Le is yes.

By Lemma 4.1, g is hyperimmune-free.

Lemma 4.3. If t, i, A, q satisfy

1. t : ω → 2 is q-computable,

2. i is the characteristic function of a set I such that I ≤m q′,

3. A(e) = t(i(0), . . . , i(e)) for all e ∈ ω,

then A ≤tt q
′.

Proof. The value of A(e) is determined by the following e+ 2 many yes-or-no
questions to q′:

Is i(0) = 0? · · · Is i(e) = 0? and, using the answers to the first e + 1 many
questions: Is t(i(0), . . . , i(e)) = 0?

Theorem 4.4. Each Σ0
4(y)-presentable upper semilattice with least and greatest

element can be realized as an initial segment [0,g] with g(2) ≤ y(3).

Proof. Let g be as in Proposition 4.2. By Lemma 4.3 with q = y(2) and
A = g(2), we have g(2) ≤tt y

(3).

By Proposition 4.2, L is isomorphic to [0,g]T . Since g is hyperimmune-free,
[0,g]T = [0,g]tt.

5 Coding a set into a lattice

Definition 5.1. Let L be an upper semilattice and suppose G = {gi | i < ω} ⊆
L. If there exist p, q ∈ L such that

{gi | i ∈ ω} ⊆ {x | x ∨ p ≥ q & (∀y < x)(y ∨ p 6≥ q)}

then G is called a Slaman-Woodin set (SW-set) for p, q in L.

If there exist e0, e1, f0, f1 ∈ L such that for each i < ω,

g2i+1 = (g2i ∨ e1) ∧ f1 & g2i+2 = (g2i+1 ∨ e0) ∧ f0,

then the function i 7→ gi is called a Shore sequence for e0, e1, f0, f1 in L.

12



Lemma 5.2. Let a be a Turing degree. Let L be a Σ0
1(a)-presented upper

semilattice containing elements p, q, e0, e1, f0, f1, and atoms gi for i ∈ ω, such
that G = {gi | i < ω} is a Slaman-Woodin set for p, q and i 7→ gi is a Shore
sequence for e0, e1, f0, f1. Then {〈y, i〉 | y = gi} ≤T a.

Proof.

y = g2i+1 ⇔ ∃x(x = g2i & y ≤ x ∨ e1 & y ≤ f1 & y ∨ p ≥ q)

y = g2i+2 ⇔ ∃x(x = g2i+1 & y ≤ x ∨ e0 & y ≤ f0 & y ∨ p ≥ q)

Note that the matrices of the formulas on the right hand side are positive for-
mulas in the language with ∨ and ≤. The function ∨ is a-recursive and the
relation ≤ is Σ0

1(a). Hence the entire right hand sides are Σ0
1(a). So starting

with g0 we can find gn, a-recursively.

Definition 5.3. Let a ∈ D. An usl L is said to be of degree a if (1) L is
a-presentable, and (2) if b ∈ D and L is b-presentable then a ≤ b.

Definition 5.4. Given U ⊆ ω we define a lattice L(U).

It consists of 0, 1, atoms {gi : i ∈ ω}, more atoms e0, e1, p, s and non-atoms
f0, f1 < 1 with the properties of Lemma 5.2 (taking q = 1) and an additional
element s with the following property for each n ∈ ω:

n ∈ U ⇔ gn ∨ s = 1.

Remark 5.5. Historically, the technique of enumerating the gn a′-recursively
was first done in [S2]. The idea of the improvement can be seen in [S1] Lemma
1.11. The Slaman-Woodin conditions used to combine these ideas to get the
above lemma were presented in [NSS1] with a proof appearing in [NSS2] Lemma
2.13(i). The construction of L(U) was presented to the author by Slaman; see
also Theorem 3.7 of [NSS1].

Remark 5.6. Here are some details for the proof that such a lattice L(U) exists
(thanks to assistance from participants in a 2008 seminar at the University of
Hawai‘i). We make L(U) a height-three lattice, i.e., every element is either 0,
1, an atom or a co-atom. The atoms are e0, e1, s, and the gi. The element p
may be either an atom or a co-atom, and is incomparable with all other elements
except that 0 ≤ p ≤ 1. The co-atoms are e0 ∨ g2n+1, and e1 ∨ g2n, f0, f1, and
gi ∨ s whenever i 6∈ U . These elements are incomparable except as forced by the
above conditions. The point of including p and q is that y ∨ p ≥ q is a positive
statement that implies y 6≤ 0.

The following lemma will have many applications:

Lemma 5.7. Let U ⊆ ω.

1. L(U) has degree u.
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2. If L(U) is Σ0
1(b)-presentable, then U ∈ Σ0

1(b).

3. If U ∈ Σ0
1(b) then L(U) is Σ0

1(b)-presentable.

Proof. 1. The definition of L(U) appeals to an oracle of degree u only and so
L(U) is u-presentable. Suppose L(U) is presented with degree v. By Lemma
5.2, the relation y = gi is recursive in v. Now i ∈ U ↔ gi ∨ s ≥ 1, so since ∨
and ≥ are recursive in v,u ≤ v.

2. We have

n ∈ U ⇔ ∃x(x = gn & x ∨ s ≥ 1) ⇔ ∀x(x = gn → x ∨ s ≥ 1).

By Lemma 5.2, U is of the form ∃x(△0
1(b) & Σ0

1(b)) U ∈ Σ0
1(b).

3. Immediate from the fact that all clauses of the definition of L(U) except
“n ∈ U ↔ gn ∨ s ≥ 1” are recursive.

Proposition 5.8. If each Σ0
4(x)-presentable bounded usl is Σ0

4(y)-presentable,
then x(3) ≤T y(3).

Proof. Let b = x(3). Since L(B ⊕ B) is Σ0
1(B)-presentable, it is Σ0

1(y
(3))-

presentable. Thus by Lemma 5.7(2), B ⊕B is Σ0
1(y

(3) and hence B ≤T y(3).
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