Skip to main content

On the Strongly Bounded Turing Degrees of the Computably Enumerable Sets

  • Chapter
  • First Online:
  • 1000 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

We introduce and discuss some techniques designed for the study of the strongly bounded Turing degrees of the computably enumerable sets, i.e., of the computable Lipschitz degrees and of the identity bounded Turing degrees of c.e. sets. In particular we introduce some tools which allow the transfer of certain facts on the weak truth-table degrees to these degree structures. Using this approach we show that the first order theories of the partial orderings \((\mathrm {R}_\mathrm {cl},\le )\) and \((\mathrm {R}_\mathrm {ibT},\le )\) of the c.e. \(\mathrm {cl}\)- and \(\mathrm {ibT}\)-degrees are not \(\aleph _0\)-categorical and undecidable. Moreover, various other results on the structure of the partial orderings \((\mathrm {R}_\mathrm {cl},\le )\) and \((\mathrm {R}_\mathrm {ibT},\le )\) are obtained along these lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambos-Spies, K.: Cupping and noncapping in the r.e. weak truth-table and Turing degrees. Arch. Math. Logik Grundlag. 25(3–4), 109–126 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambos-Spies, K.: On the strongly bounded Turing degrees of simple sets. Logic Comput. Hierarchies Ontos Math. Log. 4, 23–78 (2014). De Gruyter, Berlin

    MathSciNet  MATH  Google Scholar 

  3. Ambos-Spies, K., Bodewig, P., Fan, Y., Kräling, T.: The partial orderings of the computably enumerable ibT-degrees and cl-degrees are not elementarily equivalent. Ann. Pure Appl. Logic 164(5), 577–588 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambos-Spies, K., Bodewig, Thorsten, P., Liang, Y.: Nondistributivity in the strongly bounded Turing degrees of c.e. sets. (to appear)

    Google Scholar 

  5. Ambos-Spies, K., Ding, D., Fan, Y., Merkle, W.: Maximal pairs of computably enumerable sets in the computably Lipschitz degrees. Theory Comput. Syst. 52(1), 2–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambos-Spies, K., Soare, R.I.: The recursively enumerable degrees have infinitely many one-types. Ann. Pure Appl. Logic 44(1–2), 1–23 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barmpalias, G.: Computably enumerable sets in the solovay and the strong weak truth table degrees. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 8–17. Springer, Heidelberg (2005). doi:10.1007/11494645_2

    Chapter  Google Scholar 

  8. Barmpalias, G., Downey, R., Greenberg, N.: Working with strong reducibilities above totally \(\omega \)-c.e. and array computable degrees. Trans. Amer. Math. Soc. 362(2), 777–813 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barmpalias, G., Lewis, A.E.M.: The ibT degrees of computably enumerable sets are not dense. Ann. Pure Appl. Logic 141(1–2), 51–60 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bélanger, D.R.: Structures of some strong reducibilities. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 21–30. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03073-4_3

    Chapter  Google Scholar 

  11. Cholak, P., Downey, R., Walk, S.: Maximal contiguous degrees. J. Symbolic Logic 67(1), 409–437 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Day, A.R.: The computable Lipschitz degrees of computably enumerable sets are not dense. Ann. Pure Appl. Logic 161(12), 1588–1602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Downey, R.G.: \(\Delta ^0_2\) degrees and transfer theorems. Illinois J. Math. 31(3), 419–427 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010)

    Book  MATH  Google Scholar 

  15. Downey, R.G., Hirschfeldt, D.R., Forte, G.: Randomness and reductibility. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 316–327. Springer, Heidelberg (2001). doi:10.1007/3-540-44683-4_28

    Chapter  Google Scholar 

  16. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. J. Comput. System Sci. 68(1), 96–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Downey, R.G., Lempp, S.: Contiguity and distributivity in the enumerable Turing degrees. J. Symbolic Logic 62(4), 1215–1240 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Downey, R.G., Stob, M.: Structural interactions of the recursively enumerable T- and w-degrees. Special Issue: Second Southeast Asian Logic Conference, Bangkok (1984). Ann. Pure Appl. Logic 31(2–3), 205–236 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, Y., Lu, H.: Some properties of \(sw\)-reducibility. J. Nanjing Univ. (Mathematical Biquarterly) 2, 244–252 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Fan, Y., Yu, L.: Maximal pairs of c.e. reals in the computably Lipschitz degrees. Ann. Pure Appl. Logic 162(5), 357–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jockusch, C.G.: Three easy constructions of recursively enumerable sets. In: Lerman, M., Schmerl, J.H., Soare, R.I. (eds.) Logic Year 1979–80. LNM, vol. 859, pp. 83–91. Springer, Heidelberg (1981). doi:10.1007/BFb0090941

    Chapter  Google Scholar 

  22. Ladner, R.E., Sasso Jr., L.P.: The weak truth table degrees of recursively enumerable sets. Ann. Math. Logic 8(4), 429–448 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lempp, S., Nies, A.: The undecidability of the \(\Pi _4\)-theory for the r.e. wtt and Turing degrees. J. Symbolic Logic 60(4), 1118–1136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewis, A.E.M., Barmpalias, G.: Random reals and Lipschitz continuity. Math. Structures Comput. Sci. 16(5), 737–749 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. André, N.: Computability and Randomness. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  26. Odifreddi, P.G.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. 2. North-Holland Publishing Co., Amsterdam (1999)

    MATH  Google Scholar 

  27. Soare, R.I.: Recursively Enumerable Sets and Degrees. A study of computable functions and computably generated sets. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  28. Soare, R.I.: Computability theory and differential geometry. Bull. Symbolic Logic 10(4), 457–486 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stob, M.: wtt-degrees and T-degrees of r.e. sets. J. Symbolic Logic 48, 921–930 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thomason, S.K.: Sublattices of the recursively enumerable degrees. Z. Math. Logik Grundlagen Math. 17, 273–280 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ambos-Spies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ambos-Spies, K. (2017). On the Strongly Bounded Turing Degrees of the Computably Enumerable Sets. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics