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DRAWING GRAPHS ON FEW LINES AND FEW PLANES∗

Steven Chaplick,†‡ Krzysztof Fleszar,§ Fabian Lipp,†¶ Alexander Ravsky,‖ Oleg Verbitsky,∗∗

and Alexander Wolff†††

Abstract. We investigate the problem of drawing graphs in 2D and 3D such that their
edges (or only their vertices) can be covered by few lines or planes. We insist on straight-
line edges and crossing-free drawings. This problem has many relations to other challenging
graph-drawing problems such as small-area or small-volume drawings, layered or track draw-
ings, and drawing graphs with low visual complexity. While some facts about our problem
are implicit in previous work, this is the first treatment of the problem in its full generality.
Our contribution is as follows.

– We show lower and upper bounds for the numbers of lines and planes needed for
covering drawings of graphs in certain graph classes. In some cases our bounds are
asymptotically tight; in some cases we are able to determine exact values.

– We relate our parameters to standard combinatorial characteristics of graphs (such
as the chromatic number, treewidth, or arboricity) and to parameters that have been
studied in graph drawing (such as the track number or the number of segments ap-
pearing in a drawing).

– We pay special attention to planar graphs. For example, we show that there are planar
graphs that can be drawn in 3-space on asymptotically fewer lines than in the plane.

1 Introduction

It is well known that any graph admits a crossing-free straight-line drawing in 3-space.
Suppose that we are allowed to draw edges only on a limited number of planes. How many
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Figure 1. K6 can be drawn straight-line
and crossing-free on four planes. This is
optimal, that is, ρ23(K6) = 4.

Figure 2. (a) Planar 9-vertex graph G with π1
3(G) = 3

and (b) a 3D drawing of G on three lines.

planes do we need for a given graph? For example, K6 needs four planes; see Fig. 1.1 Note
that this question is different from the well-known concept of a book embedding where all
vertices lie on one line (the spine) and edges lie on a limited number of adjacent half-planes
(the pages). In contrast, we put no restriction on the mutual position of planes, the vertices
can be located in the planes arbitrarily, and the edges must be straight-line.

In a weaker setting, we require only the vertices to be located on a limited number
of planes (or lines). For example, the planar graph with nine vertices shown in Fig. 2 can
be drawn in 3D such that its vertices are contained in three lines. It turns out that every
planar graph with at most eight vertices can be drawn in 3D such that its vertices lie on two
lines, see Remark 3.2. This version of our problem is related to the well-studied problem
of drawing a graph straight-line in a 3D grid of bounded volume [36, 86]: If a graph can be
drawn with all vertices on a grid of volume v, then v1/3 planes or v2/3 lines suffice to cover
all vertices. We now formalize the problem.

Definition 1.1. Let 1 ≤ l < d, and let G be a graph. We define the l-dimensional affine
cover number of G in Rd, denoted by ρld(G), as the minimum number of l-dimensional planes
in Rd such that G has a crossing-free straight-line drawing that is contained in the union
of these planes. We define πld(G), the weak l-dimensional affine cover number of G in Rd,
similarly to ρld(G), but under the weaker restriction that the vertices (and not necessarily
the edges) of G are contained in the union of the planes. Finally, the parallel affine cover
number, π̄ld(G), is a restricted version of πld(G), in which we insist that the planes are
parallel. The one-dimensional affine cover numbers ρ1

2(G), π1
2(G), and π̄1

2(G) in 2D are only
defined if the graph G is planar.

1An interactive and 3D-printable version of this model is available as supplementary material on the
JoCG webpage and on our webpage: http://www1.pub.informatik.uni-wuerzburg.de/pub/data/rho/
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Clearly, for any combination of l and d, we have πld(G) ≤ π̄ld(G) and πld(G) ≤ ρld(G).
Larger values of l and d give us more freedom for drawing graphs and, therefore, smaller π-
and ρ-values. Formally, for any graph G, if l′ ≤ l and d′ ≤ d, then we have πld(G) ≤ πl′d′(G),
ρld(G) ≤ ρl′d′(G), and π̄ld(G) ≤ π̄l′d′(G). But in most cases this freedom is not essential. For
example, it suffices to consider l ≤ 2 because otherwise ρld(G) = 1. Less obviously, we can
actually focus on d ≤ 3 because every graph can be drawn in 3-space as effectively as in high
dimensional spaces. This fact is formalized in the following theorem, whose proof is given
at the end of this section.

Theorem 1.2. For any integers 1 ≤ l < d, d ≥ 3, and for any graph G, it holds that
πld(G) = πl3(G), π̄ld(G) = π̄l3(G), and ρld(G) = ρl3(G).

Thus, our task is to investigate the cases 1 ≤ l < d ≤ 3. We call ρ1
2(G) and ρ1

3(G)
the line cover numbers in 2D and 3D, ρ2

3(G) the plane cover number, and analogously for
the weak and parallel versions.

Related work. We have already briefly mentioned 3D graph drawing on the grid, a topic
that has been surveyed by Wood [86] and by Dujmović and Whitesides [36]. For example,
Dujmović [28], improving on a result of Di Battista et al. [25], showed that any planar graph
can be drawn into a 3D-grid of volume O(n log n). Recently, Dujmović et al. [31] improved
on this result by showing that even a grid of volume O(n) is sufficient.

An interesting variant of our problem is to study drawings whose edge sets are
represented (or covered) by as few objects as possible. The type of objects that have been
used are straight-line segments [29, 38], circular arcs [77], and circles or spheres [61]. The
idea behind this objective is to keep the visual complexity of a drawing low for the observer.
Jamison [56] studied the slope number of Kn; given a graph G, the slope number, slope(G),
is the minimum number of distinct slopes in a straight-line drawing of G. As a variant,
Dujmović et al. [29] introduced the planar slope number for a planar graph G, as the smallest
number of slopes among all planar drawings of G. They also introduced the segment number
of a planar graph G, seg(G), as the smallest number of line segments whose union contains
a planar straight-line drawing of G. All three numbers have been studied extensively since
then [53,55,57,65].

Durocher et al. [39] showed that it is NP-hard to compute the segment number, even
for planar graphs of maximum degree 4. They pose it as an open problem to study what they
call minimum-line drawings, that is, minimum segment-drawings that additionally minimize
the number of lines needed to cover them. This is not the same as directly minimizing the
number of lines.

Further, Dujmović et al. [29] asked whether there is some universal function f
such that, for any graph G, slope(G) ≤ f(∆(G)), independently of the size of G. Their
question was answered to the negative by Pach and Pálvögyi [66] and, independently, by
Barát et al. [4]. Pach and Pálvögyi [66] showed that for any sufficiently large integer n
and ∆ ≥ 5, there is an n-vertex graph G of maximum degree ∆ whose slope number is larger
than n1/2−O(1/∆). This bound was later improved to n1−O(1/∆) by Dujmović et al. [35].

Schulz [77] showed that using circular arcs instead of line segments gives better

http://jocg.org/
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(a) 10 arcs / 5 circles [61]. (b) 13 segments / 10 lines [75]. (c) weak line cover [43].

Figure 3. Drawings of the dodecahedron using as few objects as possible.

bounds or permits drawings on a smaller grid. As an example, he drew the dodecahedron
on 10 arcs, which is optimal. Kryven et al. [61] modified Schulz’s drawing so that the
10 arcs are covered by only 5 circles (see Fig. 3a). Scherm [75] constructed a drawing of
the dodecahedron on 13 line segments and 10 lines, which is depicted in Fig. 3b. Kryven
et al. [61] showed that these drawings are (close to) optimal; for the dodecahedron, they
proved a lower bound of 13 for the segment number and a lower bound of 9 for the line
cover number (in 2D and 3D). Firman et al. [43] computed the weak line cover numbers of
the Platonic graphs; in particular, the weak line cover number of the dodecahedron is 2; see
Fig. 3c.

Hültenschmidt et al. [54] studied the visual complexity of drawings of planar graphs.
For example, they showed upper bounds for the number of segments and arcs in drawings
of trees, triangulations, and general planar graphs. Kindermann et al. [58] also conducted a
user study to evaluate the benefits of drawings with low visual complexity.

Classes of planar graphs with bounded π1
2-value are of interest in the context of

untangling [11,46,67]. If a graph G has n vertices and π1
2(G) ≤ c, then G admits a straight-

line drawing with at least n/c collinear vertices. Large collinear sets are important because
if G admits a set of k collinear vertices, then any straight-line drawing of G can be untangled
while at least

√
k vertices remain fixed [30]; see also [22,32,72].

In subsequent work, Eppstein [40] built a cubic 3-connected bipartite planar graphG`
with n = O(`3) vertices and π1

2(G) ≥ ` (which improves our Theorem 3.4 where we show
that, for infinitely many values of n, there is an n-vertex triangulation G with ∆(G) ≤ 12
and π1

2(G) ≥ n0.01). Eppstein also constructed, for any k > 0, a series-parallel graph G
with π1

2(G) > k and an apex-tree T (a graph formed by adding one vertex to a tree)
with π1

2(T ) > k. On the positive side, he proved that, for every n-vertex apex-tree T , we
have π̄1

2(T ) ∈ O(log n). Felsner [41] showed that π1
2(G) <

√
2n for any 4-connected planar

graph G with n vertices. He also showed that Eppstein’s graph G` can be turned into a
4-connected triangulation by adding a small number of vertices and many edges. Hence,
this class contains graphs G with π1

2(G) ∈ Ω(n1/3). Biedl et al. [7] showed that the universal
stacked triangulation of depth d, Gd, has π1

2(Gd) = d+ 1. Concerning 3D, they showed that
any n-vertex graph G with ρ2

3(G) = 2 has at most 5n− 19 edges, which is tight.

http://jocg.org/
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Our contribution. Our research goes into three directions.

First, we show lower and upper bounds for the affine cover numbers of graphs in
special graph classes, such as the complete graphs and the complete bipartite graphs. Most
versions of the affine cover numbers of these graphs can be determined easily, except one
case which is much more subtle: We determine ρ2

3(Kn) only asymptotically, up to a factor
of 2 (see Theorem 2.16). We also compute the exact values of ρ2

3(Kn) for small n (see
Theorem 2.19 and Table 1). As other results in this direction, we prove that almost any n-
vertex cubic graph G has ρ1

3(G) > n/5 (Theorem 2.9) and that any almost-planar graph (a
graph that becomes planar after the deletion of a single edge) can be drawn straight-line on
the union of four planes (Theorem 2.14).

Second, we relate the affine cover numbers to standard combinatorial characteristics
of graphs and to parameters that have been studied in graph drawing. In Sections 2.1
and 2.2, we characterize π1

3(G) and π2
3(G) in terms of the linear vertex arboricity and the

vertex thickness, respectively. This characterization implies that both π1
3(G) and π2

3(G) are
linearly related to the chromatic number of the graph G. We also prove that any graph G has
balanced separators of size at most ρ1

3(G) and conclude from this that ρ1
3(G) ≥ tw(G)/3,

where tw(G) denotes the treewidth of G (Theorem 2.11; for the definition of treewidth,
see [27]). In Section 3.3, we analyze the relationship between ρ1

2(G) and the above-mentioned
segment number seg(G) of a graph (see Table 2). We prove that seg(G) = O(ρ1

2(G)2) for any
connected graph G and show that this bound is optimal (see Lemma 3.9 and Example 3.8).

Third, we pay special attention to planar graphs (Section 3). Among other results,
we construct planar graphs with a large gap between the parameters ρ1

3(G) and ρ1
2(G) (see

Theorem 3.13).

We also investigate the parallel affine cover numbers π̄1
2 and π̄1

3 (Section 4). In
fact, π̄1

3(G) equals the improper track number of G, which was introduced by Dujmović
et al. [33]. We discuss some consequences of known results on this parameter and also
notice relations between π̄1

3(G) and other parameters under consideration, namely ρ2
3(G)

and π1
2(G).

Remark on the computational complexity. In a companion paper [18], we investigate the
computational complexity of computing the ρ- and π-numbers. We argue that it is NP-hard
to decide whether a given graph has a π1

3- or π2
3-value of 2 and that both values are even hard

to approximate. This result is based on Theorems 2.1 and 2.4 and Corollaries 2.2 and 2.5 in
the present paper. For the missing parameter π1

2, Biedl et al. [7] showed that it is NP-hard
to decide, for a given graph G, whether π1

2(G) = 2. While the graphs with a ρ2
3-value of 1

are exactly the planar graphs (and hence, can be recognized in linear time), it turns out
that recognizing graphs with a ρ2

3-value of 2 is already NP-hard [18]. In contrast to this,
the problems of deciding whether ρ1

3(G) ≤ k or ρ1
2(G) ≤ k are solvable in polynomial time

for each fixed k. However, the versions of these problems with k being part of the input are
complete for the complexity class ∃R which is based on the existential theory of the reals,
which plays an important role in computational geometry [74].

Proof of Theorem 1.2. We prove the following statement, which implies the theorem:

http://jocg.org/
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(*) For any finite family L of lines in Rd, there exists a linear transformation A : Rd → R3

that is injective on L0 =
⋃
{` : ` ∈ L}, the set of all points of the lines in L.

To obtain the theorem from here, we set L to be a family of lines covering the edges
or, respectively, the vertices of a given d-dimensional drawing of G. Then A transforms this
drawing into a 3-dimensional drawing of G, which is covered by the set of lines {A(`) : ` ∈ L}.
This immediately gives us the case l = 1 of the theorem. For the case of l = 2, consider a
set P of 2-dimensional planes covering the d-dimensional drawing. Then the 3-dimensional
drawing is covered by {A(p) : p ∈ P}. If it happens that some A(p) is a line or a point, it
can be arbitrarily extended to a 2-dimensional plane in R3.

We now prove statement (*) by induction on d. If d = 3, we let A be the identity
map on R3. Suppose that d > 3.

Regarding two lines ` and `′ in Rd as 1-dimensional affine subspaces, we consider
their Minkowski difference `− `′ = {x− x′ : x ∈ `, x′ ∈ `′}. Note that `− `′ is contained in
a plane, that is, in a 2-dimensional affine subspace of Rd. Denote L =

⋃
{`− `′ : `, `′ ∈ L}.

Let L′ = {tx : t ∈ R, x ∈ L} be the union of all lines going through the origin 0 of Rd and
intersecting the set L. Since the set L is contained in a union of finitely many planes
in the space Rd, the set L′ is contained in a union of finitely many 3-dimensional lin-
ear subspaces of Rd (each of them contains the origin 0). Since d > 3, there exists a
line `0 3 0 such that `0 ∩ L = {0}. Now, let A0 : Rd → Rd−1 be an arbitrary linear transfor-
mation such that kerA0 := {x ∈ Rd : A0x = 0} = `0. Let x, y ∈ L0 be arbitrary points such
that A0x = A0y. Observe that x− y ∈ L ∩ kerA0 = L ∩ `0 = {0} holds, so x = y. Thus, the
map A0 is injective on L0 and so the family of lines {A0` : ` ∈ L} is contained in Rd−1 and
satisfies the assumption of the statement for dimension d− 1. By the inductive assumption
applied to the family, there exists a linear transformation A1 : Rd−1 → R3 injective on the
union of all ` ∈ L. The composition A = A1A0 of A1 and A0 is the transformation needed
for statement (*).

Notation and terminology. For a graph G, we use n and m to denote the numbers of
vertices and edges of G, respectively. Let ∆(G) = maxv∈V deg v denote the maximum degree
of a vertex in G. Furthermore, we will use the standard notation χ(G) for the chromatic
number, tw(G) for the treewidth, and diam(G) for the diameter of G. For a graph G,
let V (G) be the vertex set of G and let E(G) be the edge set of G. The Cartesian product
of graphs G and H is denoted by G×H. Let Kn denote the complete graph on n vertices
and let Kp,q denote the complete bipartite graph where the two parts of the graph have p
respectively q vertices. For a graph G and a set V ′ ⊆ V (G), we use G[V ′] to denote the
subgraph of G induced by V ′.

Cubic graphs are graphs where all vertices have degree 3. Recall also that a graph
is k-connected if it has more than k vertices and stays connected after removal of any set
of up to (k − 1) vertices. A planar graph G is maximal if adding an edge between any
two non-adjacent vertices of G violates planarity. Maximal planar graphs on more than
three vertices are 3-connected. Clearly, all facial cycles in such graphs have length 3. By
this reason, maximal planar graphs are also called triangulations, and we use the last term
throughout the paper.

http://jocg.org/
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By a 3D grid drawing of a graph G we mean a straight-line drawing of G whose
vertices are located at points of the integer grid Z3. The bounding box of a 3D grid drawing
is the inclusion-wise smallest axis-aligned cuboid that contains the drawing. If the bounding
box has sides of lengths a− 1, b− 1, and c− 1, we say that the 3D grid drawing is of
size a × b × c. The volume of this drawing is abc, which is the number of grid points
contained in the bounding box. A 2D grid drawing of a planar graph and its area are
defined similarly.

2 The Affine Cover Numbers of General Graphs in 3-Space

In the following sections we study the affine cover numbers of general graphs. We start with
the weak line cover number and the weak plane cover number and relate those to the graph
parameters linear vertex arboricity, vertex thickness, and chromatic number. After that,
we show lower bounds for the line cover number in terms of the number of vertices and in
terms of treewidth. Finally, we consider the plane cover number of almost-planar graphs.
At the end of each section, we examine the values of the affine cover numbers for complete
(bipartite) graphs.

2.1 Placing Vertices on Few Lines (π1
3)

A linear forest is a forest whose connected components are paths. The linear vertex arboric-
ity lva(G) of a graph G equals the smallest size r of a partition V (G) = V1 ∪ · · · ∪ Vr such
that every Vi induces a linear forest (Matsumoto [62]). This notion, which is an induced
version of the fruitful concept of linear arboricity (see Remark 2.8 below), appears very
relevant to our topic. The following result is based on a construction of Pach et al. [68]. For
the reader’s convenience, we give some details of this construction in the proof.

Theorem 2.1. For any graph G, it holds that π1
3(G) = lva(G). Moreover, G has a 3D grid

drawing of size r × 4rn× 4r2n, where r = lva(G), with the vertices covered by r lines in R3.

Proof. The inequality lva(G) ≤ π1
3(G) holds because any set of collinear vertices induces a

linear forest in G. We, therefore, have to prove the converse inequality π1
3(G) ≤ lva(G).

LetK(r, n) denote the complete r-partite graph with each of the r vertex classes hav-
ing size n. Pach et al. [68] show thatK(r, n) admits a 3D grid drawing of size r × 4rn× 4r2n.
They construct this drawing as follows. Let p be the smallest prime such that p ≥ 2r − 1 and
set N = pn. By Bertrand’s postulate, p < 4r and, hence, N < 4rn. Given 0 ≤ i ≤ r − 1,
consider Ui = {(i, t, it) : 0 ≤ t < N, t ≡ i2 (mod p)}. These r sets are pairwise disjoint, and
each of them has precisely N/p = n elements. Connect any two points belonging to differ-
ent Ui’s by a straight-line segment. Pach et al. [68, page 48] showed that no two segments
in this drawing of K(r, n) cross each other.

Note that Ui is contained in the line `i = {(i, 0, 0) + t(0, 1, i) : t ∈ R}. We will use
two additional properties of the above construction:

(i) The lines `i and `j for any i 6= j do not intersect as they lie in different planes parallel
to the yz-plane.

http://jocg.org/
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(ii) There is also no crossing between any edge of K(r, n) and any line `i. This fact can
be derived from Case 2 of the proof by Pach et al. [68, page 49].

Now, let V (G) = V1 ∪ · · · ∪ Vr be a partition of the vertex set of G where each G[Vi]
is a linear forest. Fix a map f : V (G)→ Z3 such that, for each i, f maps Vi into Ui and the
restriction of f to Vi induces a crossing-free drawing of the linear forest G[Vi] on the line `i.
Note that f induces a crossing-free straight-line drawing of the whole graph G. Indeed,
as we have already mentioned, there are no crossings between those edges of G which are
also edges of the underlying drawing of K(r, n). The edges of different linear forests G[Vi]
and G[Vj ] do not cross by Property (i). Finally, if one edge belongs to one of the linear
forests G[Vi] and another does not, they do not cross by Property (ii). It remains to note
that the bounding box of this drawing of G is included in the bounding box of the underlying
drawing of K(r, n).

Corollary 2.2. For any graph G, χ(G)/2 ≤ π1
3(G) ≤ χ(G).

Proof. We have lva(G) ≤ χ(G) because any independent set is a linear forest. On the other
hand, χ(G) ≤ 2 lva(G) because any linear forest is 2-colorable.

The lower bound in this corollary is tight for complete graphs Kn with even n, see
Example 2.3(a). The upper bound is tight for complete r-partite graphs (with sufficiently
many vertices in each set of the partition). Since χ(G) ≤ ∆(G) + 1 by Brooks’ theorem [13],
Corollary 2.2 readily implies that π1

3(G) ≤ ∆(G) + 1. This can be considerably improved
using a relationship between the linear vertex arboricity and the maximum degree that is
established by Matsumoto [62]. Matsumoto’s result implies that π1

3(G) ≤ ∆(G)/2 + 1 for
any connected graph G. Moreover, if ∆(G) = 2d, then π1

3(G) = d+ 1 if and only if G is a
cycle or the complete graph K2d+1.

Example 2.3. The weak line cover number of complete (bipartite) graphs is as follows.

(a) π1
3(Kn) = dn/2e for any n ≥ 2; therefore, π1

3(G) ≤ dn/2e for every graph G.

(b) π1
3(Kp,q) = 2 for any 1 ≤ p ≤ q; except for π1

3(K1,1) = π1
3(K1,2) = 1.

Proof. The lower bound for π1
3(Kn) and the upper bound for π1

3(Kp,q) follow from Corol-
lary 2.2. The upper bound π1

3(Kn) ≤ dn/2e is given by any 3-dimensional drawing of Kn;
we can split the vertices in pairs and draw a line through each pair.

2.2 Placing Vertices on Few Planes (π2
3)

We now turn to the weak plane cover numbers. The vertex thickness vt(G) of a graph G
is the smallest size r of a partition V (G) = V1 ∪ · · · ∪ Vr such that the induced subgraphs
G[V1], . . . , G[Vr] are all planar.

Theorem 2.4. For any graph G, it holds that π2
3(G) = π̄2

3(G) = vt(G). Moreover, G has a
3D grid drawing of size vt(G)×O(m2)×O(m ·max{n,m}) (whose vertices are obviously
covered by vt(G) planes), where m is the number of edges of G and n is the number of
vertices of G.

http://jocg.org/
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Proof. As the relations vt(G) ≤ π2
3(G) ≤ π̄2

3(G) are obvious, it remains to prove the inequal-
ity π̄2

3(G) ≤ vt(G). Since this inequality follows from the existence of a drawing of the size
specified in the theorem statement, it suffices to prove that such a drawing exists. If G
contains isolated vertices, we ignore them at first and show that the resulting graph can
be drawn in a 3D grid of size vt(G) × O(m2) × O(m2). Obviously, we can reinsert these
isolated vertices into this drawing by adding O(n) grid points. In the following, we assume
that there are no isolated vertices in G and, hence, n ≤ 2m.

Let r = vt(G) and let V1, . . . , Vr be a partition of the vertex set of G such that
each G[Vi] is a planar graph. As well known, every planar graph admits a plane straight-line
drawing on an O(n)×O(n) grid [24, 76]. Let us fix such a drawing δi for each G[Vi] and
place it in the plane z = i. An edge uv is called horizontal if both u and v belong to the
same Vi for some i ≤ r. We now have to resolve two problems:

• A non-horizontal edge can pass through a vertex of some δi;

• Two edges that are not both horizontal can cross each other.

In order to remove all possible crossings, we replace each δi with its random perturbation δ′i
(still in the same plane z = i) and prove that, with non-zero probability, no crossing occurs.

Specifically, let s and t be parameters that will be chosen later. Let Ta,b,p,q be an
affine tranformation of the xy-plane defined by

Ta,b,p,q

(
x
y

)
=

(
a −b
b a

)(
x
y

)
+

(
p
q

)
,

where a, b, p, and q are integers such that 0 ≤ p, q < s, 1 ≤ b < a ≤ t, and a and b are
coprime. Note that Ta,b,p,q consists of a dilating rotation followed by a shift, and that it
transforms integral points into integral points. The random drawings δ′i are obtained by
choosing a, b, p, and q at random and applying Ta,b,p,q to δi (this is done independently for
different i ≤ r). Note that the resulting 3D grid drawing has size r ×O(tn+ s)×O(tn+ s).

For each fixed edge uv and vertex w such that u ∈ Vi, w ∈ Vj , and v ∈ Vk for
some i < j < k, let us estimate the probability that uv passes through w in the drawing.
Conditioned on the positions of δ′l for all l 6= j and on the choice of the parameters a and b
in Ta,b,p,q for δ′j , this probability is clearly at most 1/s2. Therefore, this probability is at
most 1/s2 also if all δ′l are chosen at random. It follows that there is a non-horizontal edge
passing through some vertex with probability at most mn/s2.

Consider now two edges u1v1 and u2v2. If there is an i ≤ r such that Vi contains
exactly one of the vertices u1, v1, u2, and v2, then an argument similar to the above shows
that u1v1 and u2v2 cross with probability at most 1/s. It follows that some edges of this
kind cross each other with probability at most m2/s.

Suppose now that u1, u2 ∈ Vi and v1, v2 ∈ Vj . Note that shifts cannot resolve the
possible crossing of the edges u1v1 and u2v2. Luckily, if we fix δ′i and “rotate” δ′j by means
of Ta,b,p,q with random a, b and fixed p, q, then u1v1 and u2v2 will cross for at most one choice
of the pair a, b. The probability of this event is bounded by O(1/t2) because the number of
coprime a and b such that 1 ≤ b < a ≤ t is known to be asymptotically 3

π2 t
2 +O(t log t) [48].

It follows that some edges of this kind cross each other with probability at most O(m2/t2).
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Summarizing, we see that the random drawing of G will have a crossing with probability
bounded by

mn

s2
+
m2

s
+O

(
m2

t2

)
.

This probability can be ensured to be strictly smaller than 1 by choosing large enough
parameters s = O(m2) and t = O(m). We conclude that for such choice of s and t there is
at least one crossing-free drawing. Since O(tn+ s) = O(mn+m2) = O(m2), such a drawing
has a size of r ×O(m2)×O(m2).

Corollary 2.5. For any graph G, χ(G)/4 ≤ π2
3(G) ≤ χ(G).

Proof. These inequalities follow from the relations vt(G) ≤ χ(G) (any independent set is
a planar subgraph) and χ(G) ≤ 4 vt(G) (a straightforward consequence of the four color
theorem).

Again (similar to Corollary 2.2), the lower bound is tight for complete graphs Kn

with n being a multiple of 4, see Example 2.6(a); the upper bound is tight for complete
r-partite graphs with sufficiently many vertices in each set of the partition.

Example 2.6. The weak plane cover number of complete (bipartite) graphs is as follows.

(a) π2
3(Kn) = dn/4e for any n ≥ 2; therefore, π2

3(G) ≤ dn/4e for every graph G.

(b) π2
3(Kp,q) = 2 for any 3 ≤ p ≤ q and π2

3(Kp,q) = 1 for any p ≤ 2 and q ≥ p.

Proof. (a) By Theorem 2.4, π2
3(Kn) is equal to the smallest size r of a partition V (G) =

V1 ∪ · · · ∪ Vr where each Vi induces a planar subgraph of Kn, that is, has size at most 4
(as K4 is planar and K5 is not). Such a partition exists if and only if r ≥ dn/4e.

(b) The result for the planar complete bipartite graphs is trivial. So consider Kp,q

with 3 ≤ p ≤ q. Obviously, the graph is non-planar and thus its vertices cannot be placed
on one plane. The upper bound follows by Corollary 2.5.

2.3 Placing Edges on Few Lines (ρ1
3)

This section contains lower bounds for ρ1
3(G) in terms of different combinatorial character-

istics of a graph G.

We call a vertex v of a graph G essential if deg v ≥ 3 or if v belongs to a K3 subgraph
of G. We denote the number of essential vertices in G by es(G).

Lemma 2.7. The following bounds hold for any graph G.

(a) ρ1
3(G) ≥ (1 +

√
1 + 8 es(G))/2 >

√
2 es(G).

(b) ρ1
3(G) >

√
m2/n−m if n = |V (G)| ≥ 1 and m = |E(G)| ≥ n.

Proof. (a) In any drawing of a graph G, any essential vertex is shared by two edges not lying
on the same line. Therefore, each such vertex is an intersection point of at least two lines,
which implies that es(G) ≤

(ρ13(G)
2

)
. Hence, ρ1

3(G) ≥
(
1 +

√
1 + 8 es(G)

)
/2 >

√
2 es(G).
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(b) Each vertex v serves as an intersection point for at leastddeg v/2e(ddeg v/2e−1)/2
pairs of lines. This implies that(

ρ1
3(G)

2

)
≥ 1

2

∑
v∈V (G)

⌈
deg v

2

⌉(⌈
deg v

2

⌉
− 1

)
≥
∑ deg v(deg v − 2)

8
=

=
1

8

∑
(deg v)2 − 1

4

∑
deg v ≥ 1

8n

(∑
deg v

)2
− 1

4
2m =

m2

2n
− m

2
.

The last inequality follows by the inequality between arithmetic and quadratic means.
Hence, ρ1

3(G) >
√
m2/n−m.

Part (a) of Lemma 2.7 implies that ρ1
3(G) >

√
2n if a graph G has no vertices of

degree 1 and 2, while part (b) yields ρ1
3(G) >

√
m/2 for all such G. Note that the graph kC4,

the disjoint union of k 4-cycles, has no essential vertex, but each cycle will need at least 3
intersection points of lines, implying ρ1

3(kC4) >
√

6k. Thus, ρ1
3(G) cannot be bounded from

above in terms of es(G).

Remark 2.8. The linear arboricity la(G) of a graph G is the minimum number of linear
forests which partition the edge set of G [51]. Clearly, we have

ρ1
3(G) ≥ la(G) ≥ χ′(G)/2 ≥ ∆(G)/2 ,

where χ′(G) denotes the chromatic index2 of G. On the other hand, ρ1
3(G) cannot be

bounded from above in terms of la(G). Indeed, let G be an arbitrary cubic graph. Akiyama
et al. [2] showed that la(G) = 2. On the other hand, any vertex of G is essential, thus we
have ρ1

3(G) >
√

2n by Lemma 2.7(a). Theorem 2.9 below shows an even larger gap.

Theorem 2.9. The following lower bound holds for almost all cubic graphs G with n ver-
tices: ρ1

3(G) > n/5.

Proof. The bisection width bw(G) of a graph G is the minimum possible number of edges
between two sets of vertices W1 and W2 with |W1| = dn/2e and |W2| = bn/2c partition-
ing V (G). We prove that bw(G) ≤ ρ1

3(G) for any graph G. Then the theorem follows from
the fact that a random cubic graph on n vertices has bisection width at least n/4.95 with
probability 1− o(1), which was shown by Kostochka and Melnikov [59].

Fix a drawing of the graph G so that its edges lie on r = ρ1
3(G) lines in R3. Choose

a plane L that is not parallel to any of the at most
(
n
2

)
lines passing through two vertices

of the drawing. Let us move L along the orthogonal direction until it separates the vertex
set of G into two almost equal parts W1 and W2 (that is, ||W1| − |W2|| ≤ 1 and no vertex of
the graph G belongs to L). The plane L can intersect at most r edges of G, which implies
that bw(G) ≤ r.

Theorem 2.9 shows that graphs of bounded vertex degree can have linearly large
value of ρ1

3(G). Hence, the factor of n in the trivial bound ρ1
3(G) ≤ m ≤ 1

2 n∆(G) is best
possible.

2also called the edge chromatic number
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We now prove a general lower bound for ρ1
3(G) in terms of the treewidth of G.

The relationship between ρ1
3(G) and tw(G) follows from the fact that graphs with low

parameter ρ1
3(G) have small separators, which is interesting by itself. We need the following

definition. Let W ⊆ V (G). A set of vertices S ⊂ V (G) is a balanced W-separator of the
graph G if |W ∩ C| ≤ |W |/2 for every connected component C of G \ S. Let sepW (G)
denote the minimum k such that G has a balanced W-separator S with |S| = k. It is
known [44, Theorem 11.17] that sepW (G) ≤ tw(G) + 1 for every W ⊆ V (G). On the other
hand, if sepW (G) ≤ k for all W ⊆ V (G) with |W | = 2k + 1, then tw(G) ≤ 3k.

Lemma 2.10. For any graph G, ρ1
3(G) ≥ sepW (G) for every W ⊆ V (G).

Proof. Given W ⊆ V (G), we have to prove that sepW (G) ≤ ρ1
3(G). Fix a drawing of the

graph G so that its edges lie on r = ρ1
3(G) lines in R3, choose a plane L as in the proof of

Theorem 2.9 and move it until it separates W into two equal parts W1 and W2. If |W | is
odd, then L contains one vertex w of W and no other vertices of G. If |W | is even, we can
ensure that L does not contain any vertex of G.

We now construct a set S as follows. If L contains a vertex w ∈W , that is, |W |
is odd, we put w in S. Let E be the set of those edges which are intersected by L but
are not incident to the vertex w (if it exists). Note that |E| < r if |W | is odd and |E| ≤ r
if |W | is even. Each of the edges in E contributes one of its incident vertices into S. Note
that |S| ≤ r.

The plane L splits the set of vertices V (G) \ {w} into two parts, V1 ⊇W1 and
V2 ⊇W2. The construction of S ensures that there is no path between V1 and V2 avoid-
ing S. Therefore, any connected component C of G \ S is included either in V1 or in V2.
Thus, C is disjoint from W2 ∪ {w} or from W1 ∪ {w}, which implies that |W ∩ C| ≤ |W |/2.
We conclude that S is a balanced W-separator.

The next theorem follows from Lemma 2.10 by the relationship between treewidth
and balanced separators.

Theorem 2.11. For any graph G, ρ1
3(G) ≥ tw(G)/3.

On the other hand, ρ1
3(G) cannot be bounded from above by any function of tw(G),

even for graphs of bounded degree. Indeed, by Lemma 2.7(a) we have ρ1
3(T ) = Ω(

√
n) for

every caterpillar T with linearly many vertices of degree 3. The asymptotically best possible
relation in this direction is ρ1

3(G) ≤ m ≤ n tw(G); the second inequality is due to Chandran
and Subramanian [16]. Note for comparison that π1

3(G) ≤ χ(G) ≤ tw(G) + 1. The factor
of n in the upper bound for ρ1

3(G) cannot be much improved, as follows from the next
example.

Example 2.12. ρ1
3(Kn) =

(
n
2

)
for any n ≥ 2.

Proof. Any line contains at most one of the
(
n
2

)
edges ofKn, otherwise the line would contain

a triangle.
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v

u

u′

w

w′

(a) degH v ≤ 1 (b) ρ12(K2,q) ≤ 2q−b(q+1)/2c

v1

v2

v3

v4

u1

u2

u3

u4

(c) ρ13(K4,4) ≤ 12. The triangle u2v3v4
is orthogonal to the triangle v1v2u4; they
intersect along the dashed line u2u4.

Figure 4. Establishing lower and upper bounds for ρ1∗(Kp,q) (proof of Example 2.13).

We are also able to determine the exact values of ρ1
2(G) and ρ1

3(G) for complete
bipartite graphs Kp,q.

Example 2.13. The line cover numbers of the complete bipartite graphs are as follows.

(a) For q ≥ 1, ρ1
3(K1,q) = ρ1

2(K1,q) = q − bq/2c = dm/2e.
(b) For q ≥ 2, ρ1

3(K2,q) = ρ1
2(K2,q) = 2q − b(q + 1)/2c = d(3m− 2)/4e.

(c) For q ≥ p ≥ 3, ρ1
3(Kp,q) = pq − bp/2c − bq/2c.

Proof. Since (a) is obvious, we only consider (b) and (c). Suppose that the bipartition of
the graph Kp,q is defined by p white and q black vertices.

To show the lower bound (for both cases), fix an optimal set L of lines covering the
edges ofKp,q and consider an auxiliary graphH on the same vertex set as the graphKp,q and
the set of edges defined as follows. Each line ` ∈ L contains two vertices ofKp,q with different
colors or two monochromatic vertices v and u of Kp,q and a vertex w of Kp,q with another
color, which is drawn inside the segment [vu] between the vertices v and u. In the latter case,
we shall consider the vertices v and u of the graphH as adjacent. We claim that each vertex v
of the graph H has degree at most one. Indeed, assume the converse, the vertex v is adjacent
to distinct vertices u and u′. Then there exist (necessarily distinct) vertices w and w′

drawn inside the segments [vu] and [vu′], respectively. This implies that the segments [wu′]
and [w′u] intersect (see Fig. 4a), which is impossible, a contradiction. Thus, the number mH

of edges of the graph H is at most l(p, q) = bp/2c+ bq/2c. Since the number m of edges
of the graph Kp,q equals pq and |L| = m−mH ≥ pq − bp/2c − bq/2c, we already obtain a
lower bound for Case (c). For Case (b) we shall be a bit more specific and take care of the
case of even q. It suffices to show that mH ≤ l(p, q)− 1. If the two white vertices v and u of
the graph K2,q are not adjacent in the graph H, then mH ≤ q/2 = l(p, q)− 1. Assume that
the vertices v and u are adjacent in H. Then there exists a black vertex w of the graph K2,q

that lies inside the segment [vu]. It follows that the vertex w cannot be adjacent to any
other vertex in H. Therefore, mH ≤ 1 + q/2− 1 = l(p, q)− 1.

For Case (b), the upper bound ρ1
3(K2,q) ≤ ρ1

2(K2,q) ≤ 2q − b(q + 1)/2c is shown in
Fig. 4b. To show the upper bound for Case (c), it suffices to present drawings of the
graph Kp,q which certify the equality mH = l(p, q). We prove this by induction. For the
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base case, we describe drawings of the graphs K3,3, K3,4, and K4,4. For the last graph in this
list, a partial drawing is shown in Fig. 4c. The corresponding auxiliary graph H consists of
the following edges: {v1, u4}, {v2, u1}, {v3, u2}, and {v4, u3}. This shows mH = 4 = l(4, 4).
The drawing of the graph K3,4 can be obtained from the drawing of the graph K4,4 by
removing its vertex v1; the drawing of K3,3 can be obtained by removing v1 and v2.

For the inductive step, observe that if a drawing ofKp,q satisfyingmH = l(p, q) exists
for a pair (p, q), then drawings with mH = l(p+2, q) and with mH = l(p, q+2) also exist for
the pairs (p+ 2, q) and (p, q + 2), respectively. To see this, we can add a pair of vertices u
and v of the same color to the graph Kp,q such that the segment [uv] contains a vertex of
the graph G of the other color. We can assure the absence of crossings in the new graph if
both vertices u and v will be taken outside any plane spanned by three distinct vertices of
the graph Kp,q. Similarly, if p is even, then such a drawing also exists for a pair (p+ 1, q)
because for this purpose we can add a white vertex to the graph Kp,q without creating new
edges in the corresponding graph H. Correspondingly, if q is even, then such a drawing also
exists for a pair (p, q + 1).

2.4 Placing Edges on Few Planes (ρ2
3)

We now turn to the plane cover number. At the end of this section, we will establish lower
and upper bounds for the plane cover number of complete graphs and determine exact values
for complete graphs with up to 9 vertices.

But the first result is about almost-planar graphs, that is, graphs that become planar
after the deletion of a single edge. If we use more than one plane, we can avoid crossings.
By lifting one of the endpoints of the additional edge above the xy-plane, it is easy to
upper-bound the number of planes in terms of the degree of this endpoint. We show that a
constant number of planes suffices. For two vertices u and v of a graph G, let G+ uv denote
the graph obtained from G by connecting u and v by an edge (if they were not adjacent).

Theorem 2.14. For any planar graph G and any pair of vertices u and v of G, it holds
that ρ2

3(G+ uv) ≤ 4.

Proof. We first triangulate G by adding edges without introducing crossings. If this makes u
and v adjacent, we are done since then G+ uv is planar. Otherwise, take a Schnyder
realizer (T1, T2, T3) of the resulting triangulation G′ [76]. Each of the three trees in the
realizer spans the interior vertices of G′ and is rooted at a distinct vertex of the outer face.
We direct the trees towards their roots. We say that an edge that belongs to tree Ti has
color i. In each interior vertex, the three outgoing edges (each belonging to a distinct tree)
have the same cyclic order. In this cyclic order, the incoming edges of one tree all lie between
the two outgoing edges of the two other trees. The three trees connect each interior vertex w
by paths P1(w), P2(w), and P3(w) to the exterior vertices a1, a2, and a3, respectively. The
paths partition the triangulation into three regions R1(w), R2(w), and R3(w) with respect
to w; region R1(w) is bounded by paths P2(w) and P3(w) and so on.

Due to the cyclic order of the in- and outgoing edges around each vertex w, it is
clear that the three paths P1(w), P2(w), and P3(w) only meet in the starting point. This
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(a) case I (paths from u bold)

P3(x)
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(b) case II (paths from x bold)
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v

(c) drawing on four planes (case I)

Figure 5. Illustration for the proof of Theorem 2.14.

in turn shows that paths Pi(w) and Pi′(w′) for two vertices w 6= w′ and indices i 6= i′ meet
at most once. This implies that none of these paths can have a chord, which is important
for our construction.

We want to find a vertex x 6∈ {u, v} that “separates” u and v in the sense that u
and v end up in different regions with respect to x and that u and v do not both belong
to Pi(x) for any i ∈ {1, 2, 3}. Then we can draw G on three faces of a tetrahedron with x
on the tip, paths P1(x), P2(x), and P3(x) on the edges incident to the tip, and edge uv as
a line segment in the interior of the tetrahedron. Consider the paths Pi(u) and Pi(v) that
connect u and v to the exterior vertices. We distinguish two cases depending on whether or
not one of the vertices u and v lies on one of the paths emanating from the other vertex.

Case I: See Fig. 5a. Vertex v lies on Pi(u) or u lies on Pi(v) for some i ∈ {1, 2, 3}. Without
loss of generality, assume that v lies on P1(u). In this case, let x be the successor of u
on P1(u). As x is a neighbor of u but uv is not an edge of G′, we know that x 6= v.
Also note that, for j ∈ {2, 3}, {u, v} ∩ Pj(x) = ∅ due to the cyclic order of the edges
around the vertices.

Case II: See Fig. 5b. For each tree Ti, there are two paths from the root to u and v,
respectively. These paths may share edges at the beginning, but none of them is a
subset of the other (otherwise, we would be in case I). Without loss of generality, we
assume that v lies in the region R3(u) and that the path P3(v) crosses P1(u); the
other cases are symmetric. Let x be the crossing vertex of P3(v) and P1(u). Note
that x 6∈ {u, v} given our assumption that, for i ∈ {1, 2, 3}, neither Pi(u) is a subpath
of Pi(v) nor the other way around. As x ∈ P3(v), v lies in (the interior of) R3(x) by
the construction of the Schnyder realizer. Analogously, as x ∈ P1(u), u lies in (the
interior of) R1(x).

Hence, in both cases, x separates u and v as desired.

We draw G′ into an equilateral triangle T . The exterior vertices of G′ are mapped
to the vertices of the triangle, x is mapped to the centroid of T , and the three paths P1(x),
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P2(x), and P3(x) are mapped to straight-line segments that connect x to the exterior ver-
tices. This is possible since the paths do not have chords. The paths subdivide T into three
congruent isosceles triangles T1, T2, and T3. We use Tutte’s barycenter algorithm [81] three
times, to draw each region Ri into the corresponding triangle Ti. Then we project this
planar drawing onto three faces of a tetrahedron as described above. Finally, as a fourth
plane, we add any plane that contains u and v. In Fig. 5c, we chose the gray plane that
additionally contains x.

Problem 1. Can we bound ρ2
3 (or π2

3) for the class of 1-planar graphs (which are the graphs
that can be drawn in R2 with at most one crossing per edge) or for the class of RAC graphs
(which are the graphs that can be drawn straight-line in R2 such that all crossings are at
right angles)?

Example 2.15. For any integers 1 ≤ p ≤ q, it holds that ρ2
3(Kp,q) = dp/2e.

Proof. If p ≤ 2, the graph Kp,q is planar, and the equality reads ρ2
3(Kp,q) = 1. Suppose

that p ≥ 3. Let L be a set of planes covering a drawing of Kp,q. Every plane in L covers
at most 2q edges, for else it would contain the non-planar K3,3. Since the total number of
edges is pq, we conclude that |L| ≥ dpq/2qe = dp/2e.

A drawing showing tightness of this lower bound is similar to a standard book em-
bedding of Kp,q on p pages. Denote the vertex classes of Kp,q by V1 and V2 where |V1| = p
and |V2| = q. Place all the vertices in V2 on a line ` and consider dp/2e distinct planes
containing `. The line ` divides the planes into 2dp/2e ≥ p half-planes. Put every vertex
in V1 on one of these half-planes and connect it to the points on `.

Determining the parameter ρ2
3(G) for complete graphs G = Kn is a much more subtle

issue. We are able to determine the asymptotics of ρ2
3(Kn) up to a factor of 2.

By a combinatorial cover of a graph G, we mean a set of subgraphs of G such that
every edge of G belongs to at least one of these subgraphs. A geometric cover of a crossing-
free drawing d : V (G)→ R3 of a graph G is a set L of planes in R3 such that every edge in the
drawing is contained in one of these planes. Any geometric cover L induces a combinatorial
cover KL = {G` : ` ∈ L} of G where G` is the subgraph of G formed by the edges drawn in
the plane `. Note that, if G = Kn, then each G` is a Ks subgraph with s ≤ 4 (because K5

is not planar).

Given k ≤ n, let c(Kn,Kk) denote the minimum size of a combinatorial cover of Kn

by Kk subgraphs. Obviously, c(Kn,Kk) ≥ n(n−1)
k(k−1) . This lower bound is attained if and only

if there exists a Steiner system S(2, k, n). Note that, in our terminology, a Steiner sys-
tem S(2, k, n) is a combinatorial cover of Kn by Kk subgraphs such that every edge of Kn

belongs to exactly one of these subgraphs. In 1847 Kirkman showed (see, for example, Bol-
lobás’ book [10, page 113]) that a Steiner system S(2, 3, n) exists if and only if n ≡ 1 (mod 6)
or n ≡ 3 (mod 6). For example, Fig. 6b shows that c(K7,K3) = 7. We get an upper bound
for the size of a combinatorial cover by adding vertices to the graph until a Steiner system
exists for n. It follows that (n2 − n)/6 ≤ c(Kn,K3) ≤ (n+ 3)(n+ 2)/6 = (n2 + 5n+ 6)/6
for any n ≥ 3. More than one hundred years later, Hanani [50] (see also [73, Theorem 2.1])
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(a) c(K6,K4) = 3. (b) c(K7,K3) = 7.

Figure 6. Combinatorial covers of K6 and K7 with K4 and K3, respectively.

showed that a Steiner system S(2, 4, n) exists if and only if n ≡ 1(mod 12) or n ≡ 4(mod 12).
It follows that we have

(n2 − n)/12 ≤ c(Kn,K4) ≤ (n+ 8)(n+ 7)/12 = (n2 + 15n+ 56)/12

for any n ≥ 4. This leads to the following bounds for ρ2
3(Kn).

Theorem 2.16. For all n ≥ 4,

n2 − n
12

≤ c(Kn,K4) ≤ ρ2
3(Kn) ≤ c(Kn,K3) ≤ n2 + 5n+ 6

6
.

Proof. For the lower bound, consider a drawing of Kn that admits a geometric cover L
by ρ2

3(Kn) planes. This geometric cover induces a combinatorial cover KL of Kn by ρ2
3(Kn)

copies of K4, K3, or K2. It follows that c(Kn,K4) ≤ ρ2
3(Kn).

For the upper bound, let d : V (Kn)→ R3 be an arbitrary crossing-free straight-
line drawing of Kn in 3-space. Let K be a combinatorial cover of Kn by c(Kn,K3) K3-
subgraphs. For each subgraph K ∈ K, let `K be the plane containing the d-image of K.
Then {`K : K ∈ K} is a geometric cover of d certifying that ρ2

3(Kn) ≤ c(Kn,K3).

Problem 2. Can the gap between the bounds for ρ2
3(Kn) in Theorem 2.16 be made closer?

Find limn→∞ ρ
2
3(Kn)/n2 if it exists.

Note that we cannot always realize a combinatorial cover of Kn by copies of K4

geometrically. For example, Fig. 6a shows that c(K6,K4) = 3 while ρ2
3(K6) = 4 by Theo-

rem 2.19 below.

In order to determine ρ2
3(Kn) for particular values of n, we need some properties of

geometric and combinatorial covers of Kn.

Lemma 2.17. If d : V (Kn)→ R3 is a crossing-free drawing of Kn and L is a geometric
cover of d, then two different 4-vertex subgraphs G` and G`′ in KL can share at most two
vertices.
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Table 1. Lower and upper bounds for ρ23(Kn) for small values of n.

n 4 5 6 7 8 9

≥ 1 3 4 6 6 7
≤ 1 3 4 6 7 10

Proof. Assume, to the contrary, that G` and G`′ share three vertices. Since these vertices
cannot be collinear, we have ` = `′. This implies that G` = G`′ , yielding a contradiction.

Lemma 2.18. The following statements hold for all n ≥ 4.

(a) ρ2
3(Kn+1) ≤ ρ2

3(Kn) + dn/2e.

(b) ρ2
3(Kn+1) ≤ ρ2

3(Kn) + d(n − 3)/2e if there is a geometric cover of a drawing d of Kn

by ρ2
3(Kn) planes such that one of the covering planes contains exactly three vertices.

Proof. Let V (Kn) = {v1, . . . , vn} and V (Kn+1) = V (Kn) ∪ {vn+1}.
(a) Any drawing d of Kn can be extended to a crossing-free drawing of Kn+1 by

adding a new point d(vn+1) and connecting it by segments to d(vi) for all i ≤ n. The new n
segments can be covered by dn/2e planes.

(b) Without loss of generality, suppose that a covering plane ` contains exactly
three vertices d(v1), d(v2), and d(v3). We can extend d to a crossing-free drawing of Kn+1

by adding a new point d(vn+1) inside of the triangle d(v1)d(v2)d(v3). The plane ` cov-
ers the segments d(vn+1)d(vi) for i ≤ 3, and d(n− 3)/2e new planes suffice to cover the
segments d(vn+1)d(vi) for 3 < i ≤ n.

Theorem 2.19. For n ≤ 9, the value of ρ2
3(Kn) is bounded by the numbers in Table 1.

Proof. Case n = 5: By Lemma 2.18(a), ρ2
3(K5) ≤ ρ2

3(K4) + 2 = 3. This bound is tight be-
cause ρ2

3(K5) ≥ c(K5,K4) ≥ 3. To prove the last inequality, note that although a graph K5

has 10 < 2 · 6 edges, it cannot be covered by two K4 subgraphs K ′4 and K ′′4 . Indeed, in
this case K ′4 and K ′′4 would have at least three common vertices and, hence, at least three
common edges, whereas 12− 3 < 10.

Case n = 6: Fig. 1 shows that ρ2
3(K6) ≤ 4. Now we argue that ρ2

3(K6) ≥ 4. As-
sume, to the contrary, that K6 has a drawing d with a geometric cover L by 3 planes.
Consider the corresponding combinatorial cover KL of K6. Since K6 has 15 edges, KL has
to use at least two copies of K4 and, additionally, a copy of Kk for 3 ≤ k ≤ 4. Note now
that any two K4 subgraphs of K6 have a common edge and, by Lemma 2.17, this edge is
unique. It follows from here that the cover KL consists of three K4 subgraphs. Denote
them by K1

4 , K2
4 , and K3

4 . Since K4 is not outerplanar, each Ki
4 is represented in d by

a triangle with an additional point d(vi) in its interior, i = 1, 2, 3. Let V0 = {v1, v2, v3}.
By the Krein–Milman theorem [60, 84], the convex hull Conv(d(V (K6))) coincides with
the convex hull Conv(d(V (K6)) \ d(V0)). If all the vertices vi are mutually distinct, then
the set d(V (K6)) \ d(V0) must be a triangle and the drawing d is contained in a single
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plane, a contradiction. Therefore, vi = vj for some i 6= j. Let k be the third index that
is distinct from both i and j. The unique common edge of Ki

4 and Kj
4 has to connect

the vertex vi to some other vertex v of K6 (see Fig. 1 with u4 for vi and u1 for v).
Let V (Ki

4) = {v, vi, v1
i , v

2
i } and V (Kj

4) = {v, vj , v1
j , v

2
j }. Since K1

4 , K2
4 , and K3

4 cover all
edges of K6, the edges v1

i v
1
j , v

1
i v

2
j , v

2
i v

1
j , and v2

i v
2
j all belong to Kk

4 . Therefore, we have
V (Kk

4 ) = {v1
i , v

2
i , v

1
j , v

2
j }. However, vertices v1

i , v
2
i , v

1
j , and v2

j are in convex position (see
Fig. 1), contradicting the fact that K4 is not outerplanar.

Case n = 7: Fig. 1 shows the cover of a drawing ofK6 by four planes, and one of them
contains exactly three vertices. By Lemma 2.18(b), we have ρ2

3(K7) ≤ 4 + d(6− 3)/2e = 6.
Now we argue that ρ2

3(K7) ≥ 6. Assume, to the contrary, that K7 has a drawing with a ge-
ometric cover L by r < 6 planes. Consider the corresponding combinatorial cover KL of K7.
Let s denote the number of pairs (u,K) such that u ∈ V (K) and K ∈ KL. Since |KL| = r
and each subgraph K ∈ KL has at most four vertices, s ≤ 5 · 4 = 20 < 21 = 7 · 3. There-
fore, there exists a vertex v ∈ V (K7) that belongs to at most two subgraphs in KL. Since
each K ∈ KL contains at most three edges incident to v (and exactly three only if K is
a K4 subgraph containing v) and v is incident to six edges of K7, we see that v belongs
to exactly two subgraphs K1

4 and K2
4 in KL and each of them is a copy of K4. More-

over, v is the only common vertex of K1
4 and K2

4 . For each i = 1, 2, let Vi = V (Ki
4) \ {v}.

Let K′ = KL \ {K1
4 ,K

2
4}. Since |K′| = r − 2 and r − 2 < 4 = ρ2

3(K6), the graph K7 − v con-
tains an edge – call it v′v′′ – that does not belong to any subgraph in K′. Since every
edge between V1 and V2 belongs to a subgraph in K′, there exists an index i ∈ {1, 2} such
that V ′ = {v′, v′′} ⊂ Vi. Let j 6= i be the other index in {1, 2}. We have |V ′ ∩ V (K)| ≤ 1
for every K ∈ K′. Since |K′| = r − 2 ≤ 3, there exists a vertex w′ ∈ V ′ that belongs to at
most one subgraph K ∈ K′. Such a subgraph K does exist because otherwise no edge w′w
with w ∈ Vj would be covered by KL. Since bothKj

4 andK are members of KL, Lemma 2.17
implies that there exists a vertex w ∈ Vj \ V (K). However, the edge w′w is not covered
by KL, a contradiction.

Case n = 8: Clearly, ρ2
3(K8) ≥ ρ2

3(K7) = 6. Let d be the drawing of K6 with ver-
tices u1, . . . , u6 on four planes depicted in Fig. 1. Extend this drawing by putting ver-
tex u7 into the interior of the purple triangle d(u2)d(u5)d(u6) and vertex u8 into the interior
of the orange triangle d(u3)d(u5)d(u6), symmetrically with respect to the axis d(u1)d(u4)
and such that the new points are not contained in the plane spanned by the blue tri-
angle d(u1)d(u2)d(u3). In order to cover the resulting drawing of K8, consider the four
planes of Fig. 1 and an additional plane spanned by the triangle d(u1)d(u7)d(u8), which
contains d(u4) due to the symmetric placement of u7 and u8. Note that only the two new
edges u3u7 and u2u8 remain uncovered. Therefore, ρ2

3(K8) ≤ 7.

Case n = 9: To see the upper bound, consider the drawing of K8 again. In the last
step, use the plane spanned by the triangle d(u3)d(u6)d(u7) to cover the edge d(u3)d(u7). So
we can apply Lemma 2.18(b) to get the upper bound of 10. For the lower bound, it suffices
to prove c(K9,K4) > 6 as ρ2

3(K9) ≥ c(K9,K4). Since a graph K9 has 36 = 6 · 6 edges, each
cover of K9 by six K4 subgraphs forms a Steiner system S(2, 4, 9). The non-existence
of such a system follows from the aforementioned result by Hanani and also can be seen
directly by the following argument. Assume, to the contrary, thatK9 admits a combinatorial
cover K′ by six K4 subgraphs. Having degree 8, each vertex of K9 belongs to at least 3
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members of K′. Let s denote the number of pairs (u,K) such that u ∈ V (K) and K ∈ K′.
It follows that s ≥ 9 · 3 = 27. On the other hand, each member K ∈ K′ contains 4 vertices,
implying s ≤ 6 · 4 = 24, a contradiction.

Problem 3. Is ρ2
3(G) bounded by a constant or by a linear function for bounded-degree (in

particular, cubic) graphs?

3 The Line Cover Numbers of Planar Graphs in 3-Space and in the Plane

In this section we focus on the line cover numbers of planar graphs, both in 2D and 3D.
We start by showing a constant upper bound for the weak line cover number in 3D, in-
cluding specific results about certain subclasses of planar graphs. After that, we establish
a superlogarithmic lower bound for the weak line cover number in 2D for certain graphs,
which shows an advantage of 3D drawings for these graphs. Also, there are classes of planar
graphs for which the weak line cover numbers in 2D have a constant upper bound.

In the last subsection we relate the line cover number to the slope number and
segment number and give examples that show gaps between these parameters. Again, we
construct a graph class that shows a separation of 2D and 3D line cover numbers. Finally,
we consider the line cover numbers of complete bipartite graphs and complete binary trees.

3.1 Placing Vertices on Few Lines in 3-Space (π1
3)

Call a drawing outerplanar if all the vertices lie on the outer face. An outerplanar graph
is a graph admitting an outerplanar drawing. Note that this definition does not depend on
whether straight line or curved drawings are considered.

Combining Corollary 2.2 with the 4-color theorem yields π1
3(G) ≤ 4 for planar graphs.

Given that outerplanar graphs are 3-colorable (they are partial 2-trees), we obtain π1
3(G) ≤ 3

for these graphs. These bounds can be improved using the equality π1
3(G) = lva(G) of

Theorem 2.1 and known results on the linear vertex arboricity:

(a) For any planar graph G, it holds that π1
3(G) ≤ 3 [47, 69].

(b) There is a planar graph G with π1
3(G) = 3 [19, 47].

(c) For any outerplanar graph G, π1
3(G) ≤ 2 [1, 12,83].

According to Chen and He [20], the upper bound lva(G) ≤ 3 for planar graphs by
Poh [69] is constructive and yields a polynomial-time algorithm for partitioning the vertex
set of a given planar graph into three parts, each inducing a linear forest. By combining this
with the construction given in Theorem 2.1, we obtain a polynomial-time algorithm that
draws a given planar graph such that the vertex set “sits” on three lines.

The example of Chartrand and Kronk [19] is a 21-vertex planar graph whose vertex
arboricity is 3, which means that the vertex set of this graph cannot even be split into
two parts both inducing (not necessarily linear) forests. Raspaud and Wang [71] showed
that all 20-vertex planar graphs have vertex arboricity at most 2. We now observe that a
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(a) (b)

Figure 7. The smallest planar graphG
with lva(G) = 3.

Figure 8. (a) Planar 9-vertex graph G with π1
3(G) = 3

and (b) a 3D drawing of G on three lines. (Copy of Fig. 2.)

smaller example of a planar graph attaining the extremal value π1
3(G) = 3 can be found by

examining the linear vertex arboricity.

Example 3.1. The planar 9-vertex graph G in Fig. 8 has π1
3(G) = lva(G) = 3.

Proof. Indeed, in the picture it is easy to see that 2 ≤ lva(G) ≤ 3. In order to show
that lva(G) > 2, assume that the vertex set of G is colored black and white where each
monochromatic component induces a linear forest. Without loss of generality, we may as-
sume that the central vertex is white. Since the central vertex cannot have more than two
white neighbors, at most two other vertices are white. Note that the neighbors of the central
vertex form a square in Fig. 8 and that each side of the square contains a cycle. Hence, none
of the sides of the square can be monochromatic; it must contain at least one white vertex.
Therefore, the boundary of the square contains exactly two white vertices, which must be
placed in opposite corners. If the white vertices are placed in the top left and the bottom
right corners, then the two other corners, which are black, have three black neighbors. If
the white vertices are placed in the top right and the bottom left corners, then the three
white vertices induce a cycle. In both cases, we have a contradiction.

Remark 3.2. A computer verification shows that all planar graphs G with up to 8 vertices
have lva(G) ≤ 2. Counting the number of edges, the smallest planar graphG with lva(G) ≥ 3
is depicted in Fig. 7.

3.2 Placing Vertices on Few Lines in the Plane (π1
2)

We start showing lower bounds for the parameter π1
2(G). Recall that the dual of a 3-

connected planar graph G is a graph G∗ whose vertices are the faces of G (represented by
their facial cycles). The definition does not depend on a particular embedding of G in the
plane by Whitney’s theorem, which says that all embeddings of a 3-connected planar graph
in the sphere are equivalent up to a homeomorphism (therefore, the set of facial cycles of G
does not depend on a particular plane embedding). Two faces are adjacent in G∗ if and
only if they share a common edge. The dual graph G∗ is also a 3-connected planar graph,
and (G∗)∗ is isomorphic to G. Note that the dual of any cubic 3-connected planar graph is
a triangulation. Conversely, the dual of a triangulation is a cubic graph.
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Recall that the circumference of a graph G, denoted by c(G), is the length of a
longest cycle in G. For a planar graph G, let v̄(G) denote the maximum k such that G has
a straight-line plane drawing with k collinear vertices.

Lemma 3.3. For any planar graph G with n vertices, the following holds:

(a) π1
2(G) ≥ n/v̄(G).

(b) If G is a triangulation, then π1
2(G) ≥ (2n− 4)/c(G∗).

Proof. Since part (a) is obvious, we only prove part (b). Let γ(G) denote the mini-
mum number of cycles in the dual graph G∗ sharing a common vertex and covering every
vertex of G∗ at least twice. Note that, as G is a triangulation, γ(G) ≥ (4n− 8)/c(G∗),
where 2n− 4 is the number of vertices in G∗ (as a consequence of Euler’s formula). We now
show π1

2(G) ≥ γ(G)/2, which implies the claimed result.

Given a drawing realizing π1
2(G) with line set L, for every line ` ∈ L, draw two

parallel lines `′, `′′ sufficiently close to ` such that they together intersect the interiors of all
faces touched by ` and do not go through any vertex of the drawing. Note that `′ and `′′

cross boundaries of faces only via inner points of edges. Each such crossing corresponds to
a transition from one vertex to another along an edge in the dual graph G∗. Since all inner
faces of G are triangles, each of them is visited by each of `′ and `′′ at most once. Therefore,
the faces crossed along `′ and the faces crossed along `′′, among them the outer face of G,
each form a cycle in G∗. It remains to note that every face f of the graph G is crossed at
least twice, because the boundary of f is intersected by at least two different lines from L
and each of these two lines has a parallel copy that crosses f .

An infinite family of triangulations G with v̄(G) ≤ n0.99 was constructed by Ravsky
and Verbitsky [72]. By Lemma 3.3(a) this implies that there are infinitely many trian-
gulations G with π1

2(G) ≥ n0.01. Lemma 3.3(b) along with an estimate of Grünbaum and
Walther [49] (that was used also by Ravsky and Verbitsky [72]) yields a stronger result.

Theorem 3.4. There are infinitely many triangulations G with ∆(G)≤12 and π1
2(G)≥n0.01.

Proof. The shortness exponent σG of a class G of graphs describes the length of the longest
cycle in relation to the number of vertices for the graphs in the class. Formally, σG is the infi-
mum of the set of the reals lim infi→∞ log c(Hi)/log |V (Hi)| for all sequences of Hi ∈ G such
that |V (Hi)| < |V (Hi+1)| [49]. Thus, for each ε > 0, there are infinitely many graphs H ∈ G
with c(H) < |V (H)|σG+ε. The dual graphs of triangulations with maximum vertex degree at
most 12 are exactly the cubic 3-connected planar graphs with each face incident to at most
12 edges (this parameter is well defined by Whitney’s theorem). Let σ denote the shortness
exponent for this class of graphs. It is known [49, Theorem 7] that σ ≤ log 26

log 27 < 0.989. The
theorem follows from this bound by Lemma 3.3(b).

This lower bound proves that we cannot get a constant upper bound for the weak
line cover number in 2D. A similar result of Firman et al. [43] says that there is an infinite
family of planar graphs with maximum degree 6, treewidth 3, and unbounded (logarithmic)
π1

2-value. In subsequent work, Eppstein [40] showed that for infinitely many values of n,
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Figure 9. For the proof of Theorem 3.5.

there is a cubic, 3-connected, bipartite planar graph G with n vertices and π1
2(G) ∈ Ω( 3

√
n).

All three results, however, leave a gap to the trivial O(n) upper bound for π1
2. So we ask

the following question.

Problem 4. Does π1
2(G) = o(n) hold for every (constant-degree) planar graph G?

Similarly to the weak line cover numbers in 3D, we can show constant upper bounds
for some subclasses of planar graphs. A graph is weakly leveled planar3 [3] if it has a plane
drawing in which the vertices are placed on a sequence of parallel lines, called tracks, such
that every edge either lies on one of the tracks or its endpoints lie on two consecutive tracks.
Obviously, the minimum number of tracks needed for a weakly leveled planar drawing of G is
an upper bound for π̄1

2(G) (and thus also for π1
2(G)) for any weakly leveled planar graph G.

The following theorem is similar to a lemma of Bannister et al. [3, Lemma 2] who
say it is implicit in the earlier work of Felsner et al. [42].

Theorem 3.5. Any weakly leveled planar graph G satisfies π1
2(G) ≤ 2.

Proof. We consider a weakly leveled plane drawing of G and show how to transform it into
a drawing on two intersecting lines; see Fig. 9. Put the tracks consecutively along a spiral so
that they correspond to disjoint intervals on the half-lines as depicted on the right. Tracks
whose indices are equal modulo 4 are placed on the same half-line. (Bannister et al. [3, Fig. 2]
use three half-lines meeting in a point.)

Observe that any tree is weakly leveled planar: two vertices are aligned on the same
track if and only if they are at the same distance from an arbitrarily assigned root. Moreover,
any outerplanar graph is weakly leveled planar [42, Lemma 5]. This yields an improvement
over the bound π1

3(G) ≤ 2 for outerplanar graphs stated in the previous section.

Corollary 3.6. Any outerplanar graph G satisfies π1
2(G) ≤ 2.

3Felsner et al. [42] call this property track drawable; Suderman [80] calls it short layered drawable.
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Table 2. Summary of our results regarding the gaps between various graph parameters for certain
planar graph classes.

graph G slope(G) ≤ ρ1
2(G) ≤ seg(G) Reference

Tk = C3 × Pk O(1) Ω(n) Theorem 3.13
mK2 1 m
caterpillar of degree 3 2 Θ(

√
n) Ω(n) Example 3.7

certain triangulations O(
√
n) Ω(n) Example 3.8

any connected planar graph O((ρ1
2(G))2) Theorem 3.11(a)

graph G la(G) ≤ ρ1
3(G) ≤ ρ1

2(G) Reference

cubic graph 2 Ω(
√
n) Remark 2.8

Tk = C3 × Pk O(n2/3) Ω(n) Theorem 3.13

As is well known, the treewidth of an outerplanar graph is at most 2, and all graphs
of treewidth 2 are planar but not all of them are weakly leveled planar. So one may wonder
whether there is a constant c ≥ 2 such that π1

2(G) ≤ c for every graph G of treewidth 2. In
subsequent work, however, Eppstein [40] constructed, for any k > 0, a series-parallel graph G
with π1

2(G) > k and an apex-tree T with π1
2(T ) > k. Both results show that there are graphs

of treewidth 2 whose vertices cannot be covered by a constant number of lines.

3.3 Placing Edges on Few Lines (ρ1
2 and ρ1

3)

The parameter ρ1
2(G) of a graph G is related to the parameters segment number seg(G)

and slope number slope(G) introduced by Dujmović et al. [29]. Clearly, we have the re-
lation slope(G) ≤ ρ1

2(G) ≤ seg(G), but these parameters can be far away from each other.
Our results are summarized in Table 2. Figure 10 shows an example of a graph sequence
with slope(G) = O(1) and ρ1

2(G) = Ω(n) (see the proof of Theorem 3.13 below). On the
other hand, note that ρ1

2(mK2) = 1 while seg(mK2) = m, where mK2 denotes the graph
consisting of m isolated edges. The gap between ρ1

2(G) and seg(G) can be large even for
connected graphs.

Example 3.7. For any k, let Gk be the caterpillar with k vertices of degree 3 and k + 2
leaves. We have seg(Gk) ≥ n/2, ρ1

2(Gk) = Θ(
√
n), and slope(Gk) = 2 where n = 2k + 2 is

the number of vertices of Gk.

Proof. It is not hard to see that, for any graph G, seg(G) is bounded from below by
half the number of odd-degree vertices (see [29] for details). Therefore, seg(Gk) ≥ n/2,
whereas ρ1

2(Gk) = O(
√
n). This is due to the fact that Gk has a straight-line orthogo-

nal drawing in a square grid of area O(n). The lower bound ρ1
2(Gk) >

√
n− 2 follows by

Lemma 2.7(a). Finally, slope(Gk) = 2 as Gk is a binary tree, which can be drawn on or-
thogonal lines.
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Figure 10. The nested-triangles
graph Tk = C3 × Pk (here for k = 4).

Figure 11. The main body of a triangulation G
with ρ12(G) = O(

√
n) and seg(G) = Ω(n).

It turns out that a large gap between ρ1
2(G) and seg(G) can also be shown for 3-

connected planar graphs and even for triangulations. Note that the following gap is the
best possible because any 3-connected graph G has minimum vertex degree at least 3 and,
hence, ρ1

2(G) ≥ ρ1
3(G) >

√
2n by Lemma 2.7(a).

Example 3.8. There are triangulations with ρ1
2(G) = O(

√
n) and seg(G) = Ω(n).4

Proof. Consider the graph shown in Fig. 11. Its vertices are placed on the standard or-
thogonal grid and two slanted grids, which implies that at most O(

√
n) lines are involved.

The pattern can be completed to a triangulation by adding three vertices around it and
connecting them to the vertices on the pattern boundary. Since the pattern boundary con-
tains O(

√
n) vertices, O(

√
n) new lines suffice for this. Thus, we have ρ1

2(G) = O(
√
n) for

the resulting triangulation G. Note that the vertices drawn fat in Fig. 11 have degree 5, and
there are linearly many of them. This implies that seg(G) = Ω(n).

Somewhat surprisingly, seg(G) = O(ρ1
2(G)2) and even seg(G) = O(ρ1

3(G)2) for every
connected graph G. The first bound follows from the following observation5, but for the
second we need a more subtle analysis of the structure of G.

Lemma 3.9. Every drawing of a connected graph covered by r ≥ 2 lines consists of at
most r(r − 1) segments.

Proof. As the graph is connected, each segment in the drawing is intersected by at least
one other segment. Thus each segment contains a crossing point of two lines covering the
drawing. It follows that each of the r straight lines can contain at most r − 1 segments (one
for each crossing) and, therefore, the drawing contains at most r(r − 1) segments.

It is easy to determine the segment number of graphs with maximum degree 2. For
all other graphs we show the following upper bound on their segment number.

4A triangulation G with seg(G) = O(
√
n) has been found by Dujmović at al. [29, Fig. 12].

5Though we need Lemma 3.9 for 2-dimensional drawings, note that it holds true with literally the same
proof also in the 3-dimensional case.
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Lemma 3.10. For any connected planar graph G with ∆(G) ≥ 3, we have

seg(G) ≤
∑

v∈V (G)
deg v≥3

deg v .

Proof. Call a vertex v of the graph G branching if its degree is at least three. A path between
vertices of the graph G will be called straight if it has no branching vertices other than its
endpoints.

Reduce the graph G to a graph G′ as follows. The set of vertices of G′ is the set
of branching vertices in G, and two vertices are adjacent in G′ if they are connected by a
straight path in G. Being a planar graph, G′ has a straight-line drawing.

Since G is connected, every vertex in it is connected to a branching vertex by a
straight path (possibly of zero length). Thus, we can construct a straight-line drawing of G
from a straight-line drawing of G′ as follows. Note that an edge e of G′ corresponds to a
bond of paths in G connecting the incident vertices of e. We draw one path in the bond
on the segment e, and each other is drawn as a pair of two segments that are close to e. A
branching vertex v in G can be connected by a straight path to a degree-1 vertex (which
disappears in G′). We restore each such path by drawing it as a small segment. Moreover, v
can belong to a cycle whose all vertices except v have degree 2. We draw each such cycle as
a small triangle.

Note that the segments incident to the branching vertex v are split into three parts: bv
segments which belong to the edge bonds, lv segments going to leaves, and tv segments that
are sides of the small triangles. Unless lv = 0 and tv = 2, we can ensure that the last lv + tv
segments are drawn in at most d(lv + tv)/2e lines all crossing at the point v. Therefore, the
vertex v is incident to at most bv + d(lv + tv)/2e segments. This holds true even if lv = 0
and tv = 2; we need to use the fact that in this case bv 6= 0 since deg v ≥ 3. We will say that
these segments are related to v. We also relate to v the opposite sides of the corresponding
small triangles; there are tv/2 of them. Thus, the vertex v has at most

bv +

⌈
lv + tv

2

⌉
+
tv
2
≤ bv +

⌈
lv + tv

2

⌉
+

⌊
lv + tv

2

⌋
= bv + lv + tv = deg v

segments. Since every segment of the constructed drawing of G is related to some branching
vertex, the total number of segments is bounded by

∑
v∈V (G), deg v≥3 deg v.

Theorem 3.11. For any connected planar graph G with at least two vertices, we have

(a) seg(G) ≤ ρ1
2(G)2, and

(b) seg(G) < 2ρ1
3(G)2.

Proof. (a) The relation is an immediate consequence of Lemma 3.9.

(b) Suppose first that ∆(G) ≥ 3. Then Lemma 3.10 implies that

seg(G) ≤
∑

v∈V (G)
deg v≥3

deg v ≤ 2
∑

v∈V (G)
deg v≥3

⌈
deg v

2

⌉(⌈
deg v

2

⌉
− 1

)
≤ 2ρ1

3(G)(ρ1
3(G)− 1) ,
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where the last estimation follows from the first inequality in the proof of Lemma 2.7(b).

If ∆(G) ≤ 2, then G is a path or a cycle. The theorem holds true because we
have seg(G) = ρ1

3(G) = 1 in the former case and seg(G) = ρ1
3(G) = 3 in the latter case.

In the inequality in the proof above, we upper bound deg v by a term quadratic
in deg v. It might look as if this bound is not tight, but in fact there is a quadratic gap
between seg(G) and ρ1

3(G). For example, the caterpillars Gk mentioned in Example 3.7 have
seg(Gk) = Ω(n) and ρ1

3(Gk) ≤ ρ1
2(Gk) = O(

√
n).

Remark 3.12. For general, not necessarily connected, planar graphs, Lemma 3.10 implies
the relation

seg(G) < p(G) + 3 c(G) + 2 ρ1
3(G)2 < p(G) +

5

2
ρ1

3(G)2

where p(G) and c(G) denote the number of connected components of G that are paths and
cycles, respectively.

Note that la(G) ≤ ρ1
3(G) ≤ ρ1

2(G) ≤ seg(G) ≤ m for any planar graph G. For all
inequalities here except the second one, we already know that the gap between the respective
pair of parameters can be very large (by Remark 2.8, by Example 3.8, and by considering
the path graph Pn, for which seg(Pn) = 1). The following theorem shows a large gap also
between the parameters ρ1

3(G) and ρ1
2(G), that is, some planar graphs can be drawn much

more efficiently, with respect to the line cover number, in 3-space than in the plane.

Theorem 3.13. For each k, there is a planar graph G on n = 3k vertices with ∆(G) ≤ 4,
tw(G) ≤ 3, ρ1

2(G) = Ω(n), and ρ1
3(G) = O(n2/3).

Proof. Consider the nested-triangles graph Tk = C3 × Pk shown in Fig. 10. The graph Tk
has n = 3k vertices. To prove the statement, it suffices to establish the following bounds:

(i) ρ1
2(Tk) ≥ n/2 and

(ii) ρ1
3(Tk) = O(n2/3).

To see the linear lower bound (i), note that Tk is 3-connected. Hence, Whitney’s theorem
implies that, in any plane drawing of Tk, there is a sequence of nested triangles of length at
least k/2. The sides of the triangles in this sequence must belong to pairwise different lines.
Therefore, ρ1

2(Tk) ≥ 3k/2 = n/2.

For the sublinear upper bound (ii), consider first the graph C4 × Pk. We build
wireframe rectangular prisms that are stacks of O( 3

√
n) cubes each. These prisms are put

onto the base plane in an O( 3
√
n)×O( 3

√
n) grid. They allow us to place most of the edges

of C4 × Pk on the O(n2/3) lines of the 3D cubic grid of volume O(n); see Fig. 12. Next, we
fix a path that traverses all cubes by passing through the prisms from top to bottom (or vice
versa) and connecting neighboring prisms. We add O(n2/3) intermediate edges connecting
the neighboring prisms according to this path. For this “bending” we need O(n2/3) additional
lines. The same approach works for the graph Tk = C3 × Pk. In addition to the standard
3D grid, here we need also its slanted, diagonal version (and, again, additional lines for
bending in the cubic box of volume O(n)). The number of lines increases just by a constant
factor.
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Problem 5. Recall that, by Theorem 2.9, graphs of bounded degree can have linearly large
parameter ρ1

3(G). If a planar graph G has bounded degree, is it true that ρ1
3(G) = o(n)?

In Example 2.13(b) we showed that ρ1
2(K2,q) = d(3m− 2)/4e for any q ≥ 2, where m

is the number of edges in the complete bipartite graph K2,q. Motivated by this result, we
ask:

Problem 6. What is the smallest c such that ρ1
2(G) ≤ (c+ o(1))m for any planar graph G?

Example 2.13(b) shows that c ≥ 3/4.

It has been known for some time that any binary tree has a straight-line orthogonal
drawing on a grid of size O(

√
n log logn)×O(

√
n log log n) [15,79]. Recently this area bound

was improved by Chan [14] to n · 2O(log∗ n) by using the old algorithm as the base case of a
new recursive algorithm. The width and height of the drawing can be balanced (by plugging
the width functionW0(n) = 2O(log∗ n)n/ log n and the height functionH0(n) = 2O(log∗ n) log n
that follow from Chan’s Theorem 11 into Chan’s Lemma 10, using A =

√
n log n). Hence,

for any binary tree T , it holds that ρ1
2(T ) =

√
n · 2O(log∗ n). For the special case of complete

binary trees, we give the following lower and upper bounds.

Example 3.14. If G is the complete binary tree of height h ≥ 1 consisting of n = 2h+1 − 1
vertices, then ρ1

2(G) >
√
n− 3. On the other hand, ρ1

2(G) ≤ 2
√

2
√
n+ 1− 3 if h is even

and ρ1
2(G) ≤ 3

√
n+ 1− 3 otherwise.

O( 3
√
n)

O( 3
√
n)

Figure 12. The graph C4 × Pk drawn into a 3D grid of linear volume on O(n2/3) lines (see the
proof of Theorem 3.13).
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Figure 13. Binary tree of height 4 drawn using the approach by Shiloach [78, Fig. 31].

Proof. Indeed, since G has (n− 3)/2 vertices of degree 3, ρ1
2(G) >

√
n− 3 by Lemma 2.7(a).

There are various ways to draw (complete) binary trees in an area-efficient way
(e.g., by Crescenzi et al. [21, Section 4]). We use an approach presented by Shiloach in his
thesis [78, page 95], providing the best known upper bounds. An example for a drawing
using his layout is given in Figure 13. He draws the tree G on a rectangular grid of size
Wh × Lh, where Wh and Lh are defined by the following formulas.

Wh =

{
2

h+2
2 − 1 if h is even

2
h+1
2 − 1 if h is odd

Lh =

{
2

h+2
2 − 1 if h is even

2
h+3
2 − 1 if h is odd

Since n = 2h+1 − 1 and one of the grid lines through the root is redundant, we get the
claimed upper bounds.

Complete binary trees and caterpillars of maximum degree 4 are the first non-trivial
examples of bounded-degree trees. Both can be drawn on O(

√
n) lines. Can this be gener-

alized to arbitrary binary trees?

Problem 7. Is it true that trees of bounded degree have a sublinear ρ1
2-value? More

specifically, is there a constant c > 0 such that, for any tree T , ρ1
2(T ) ≤ cn1−1/∆(T )? Even

more specifically, is there a constant c′ > 0 such that, for any binary tree T , ρ1
2(T ) ≤ c′

√
n?

It seems that, for weakly connected graphs such as trees, we cannot exploit the
additional freedom that we have in 3D to get better bounds on the line cover number, so
we conjecture that the following problem admits a positive answer.

Problem 8. Are ρ1
3(T ) and ρ1

2(T ) equal for every tree T?

4 The Parallel Line Cover Numbers

In this section we add the additional constraint that the lines that cover the drawing of the
graph have to be parallel. First, we consider the parallel line cover number in 3-space and
show its relation to the treewidth. We also state some relations to the affine cover numbers
that we considered in the previous sections. Again, we show exact values for the parallel line
cover numbers of complete (bipartite) graphs. Finally, we consider the parallel line cover
number in the plane and show that there can be a linear gap compared to the (non-parallel)
line cover number in the plane.

Note that the parallel plane cover number is discussed in Section 2.2 where we show
in Theorem 2.4 that, for any graph G, π̄2

3(G) = π2
3(G).
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4.1 Placing Vertices on Few Parallel Lines in 3-Space (π̄1
3)

Although similar concepts had implicitly been studied in several earlier works [26, 42, 52],
the concept of a proper track drawing was formally introduced by Dujmović et al. [33]
in combinatorial terms with the following geometric meaning. We call a 3D drawing of a
graph G a proper track drawing if there are parallel lines, called tracks, such that every vertex
of G lies on one of the tracks and every edge connects vertices lying on two different tracks.
Edges between the same two tracks are not allowed to cross each other. Furthermore, we
call a drawing of G an improper track drawing if we allow edges between consecutive vertices
of the same track. The proper track number tnp(G) (improper track number tni(G)) of G
is the minimum number of tracks in a proper (improper) track drawing of G. Originally,
track layouts have been studied in the context of minimizing the volume of 3D grid drawings
where the following connection was discovered: An n-vertex graph has a 3D grid drawing of
size O(1)×O(1)×O(n) if and only if its proper track number is O(1) [33,34]. Note that the
definition of track drawings is different from the concept of weakly leveled planar drawings
(also called track drawings by some authors), which were introduced on page 23. While the
definition above does not exclude crossings of two edges if they are between disjoint pairs of
tracks, note that all such crossings can be removed by slightly shifting the vertices within
each track. We, therefore, have

π̄1
3(G) = tni(G)

for any graph G. A simple argument [33, Lemma 2.2] shows the following relationship
between the proper and improper track number of any graph G:

tnp(G)/2 ≤ tni(G) ≤ tnp(G) .

Therefore, the upper bounds for tnp(G) surveyed by Dujmović et al. [34, Table 1] imply also
upper bounds on π̄1

3(G) for different classes of graphs G. In particular, Dujmović at al. [33]
proved that

tnp(G) ≤ 3tw(G) · 6(4tw(G)−3tw(G)−1)/9

for any graph G. Note that any upper bound for π̄1
3(G) implies also an upper bound

for ρ2
3(G).

Lemma 4.1. For any graph G, ρ2
3(G) ≤

(π̄1
3(G)
2

)
.

Proof. Any two parallel lines of the drawing lie in a plane, and all the edges are located in
these planes.

Since π̄1
3(G) ≤ tnp(G), Lemma 4.1 implies that the parameter ρ2

3(G) is bounded from
above by a function of the treewidth of G.

Whether or not tnp(G) and, hence, π̄1
3(G) is bounded for the class of planar graphs

was a long-standing open problem [33]; it was also mentioned by Dujmović and White-
sides [36, Open Problem 14.2]. It was finally solved by Dujmović et al. [31, Theorem 53].

Later Pupyrev [70, Theorem 2] improved their bound considerably, showing that
tnp(G) ≤ 225 for any planar graph G. The best known lower bounds are π̄1

3(G) = tni(G) ≥ 7
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for a planar graph G [34, Cor. 10] and tnp(T ) ≥ 8 for a planar 3-tree T [70, Corollary 1].
On the other hand, for any planar 3-tree T , tnp(T ) ≤ 25 [70, Theorem 1]. Pupyrev also
improved and tightened bounds on the proper track number of several families of planar
graphs. Among others, he gave lower-bound constructions of outerplanar and weakly leveled
planar graphs matching existing upper bounds (of 5 and 6, respectively).

Wood [85, Theorem 2] proved that for all ∆ ≥ 3 and for all sufficiently large n
(depending on ∆), there is a ∆-regular n-vertex graph with tnp(G) ≥ c

√
∆n1/2−1/∆ for

some absolute constant c, which implies that π̄1
3(G) is unbounded even for graphs of bounded

degree. On the other hand, Dujmović and Wood [37] showed that every graph with bounded
maximum degree has a 3-dimensional grid drawing with volume O(n3/2), and the same
bound holds for graphs from a proper minor-closed class. The latter bound was recently
improved to O(n) by Dujmović et al. [31, Theorem 40].

Theorem 4.2. Let G be a graph. The following statements hold.

(a) If π̄1
3(G) ≤ 3, then G is planar and π1

2(G) ≤ π̄1
3(G).

(b) If G is planar and π1
2(G) ≤ 2, then π̄1

3(G) ≤ 4.

(c) If G is, moreover, weakly leveled planar, then π̄1
3(G) ≤ 3.

Proof. (a) The case of π̄1
3(G) = 2 is obvious. Suppose that π̄1

3(G) = 3. Since any two parallel
lines in R3 define a plane, the graph G can be drawn on the three rectangular faces of a
triangular prism in R3, created by the three parallel tracks. Therefore, G is planar. Now
pick a point outside of the prism, but close to its triangular base. Project the drawing of G
onto a plane that does not intersect the prism and that is close and parallel to the other
triangular face of the prism. This yields a 2D drawing of G whose vertices lie on 3 lines.

(b) Assume that the graph G is drawn on two lines `1 and `2. If these lines are
parallel then π̄1

3(G) ≤ π̄1
2(G) ≤ 2 and we are done. If the lines `1 and `2 intersect in a

point O, then the union `1 ∪ `2 is split into three open rays and one half-open ray. We
can put the vertices from the rays into four parallel tracks, preserving their order from the
point O to infinity along the rays.

(c) Felsner et al. [42, Theorem 5] showed how any outerplanar graph can be drawn
on a triangular prism by wrapping it around, which is an approach similiar to that in
Theorem 3.5. They remarked that their construction can also be applied to weakly leveled
planar graphs. The vertices of the drawing lie on the edges of the prism, which are the three
parallel lines of our 3D drawing.

Example 4.3. The parallel line cover number of complete (bipartite) graphs is as follows.

(a) π̄1
3(Kn) = n− 1 for any n ≥ 2.

(b) π̄1
3(Kp,q) = p+ 1 for any p ≤ q and q ≥ 3.

Proof. (a) Suppose that Kn is drawn in R3. Obviously, no line in R3 contains more than
two vertices of the drawing. Moreover, there are no two parallel lines containing two ver-
tices each as this would imply that a pair of edges cross. We conclude that any set of

http://jocg.org/


JoCG 11(1), 433–475, 2020 464

Journal of Computational Geometry jocg.org

parallel lines has at most one line containing more than one vertex, which implies the lower
bound π̄1

3(Kn) ≥ n− 1.

The upper bound π̄1
3(Kn) ≤ n− 1 is provided by an arbitrary 3D drawing of the

graph Kn. Indeed, we can cover two arbitrary vertices by a line `, and then n− 2 lines
parallel to ` are enough to cover the remaining n− 2 vertices.

(b) (for the proper track number, the case p = q was also considered by Dujmović
and Whitesides [36]). To show the upper bound π̄1

3(Kp,q) ≤ p+ 1, we put the independent
set of q vertices on a straight line and use a separate straight line for each of the other p
vertices. To show the lower bound, let L be an optimal set of straight lines. We assume that
our bipartition is defined by p white and q black vertices. First, suppose that one straight
line ` ∈ L contains a pair of vertices of the same color. Since our straight lines are parallel,
no other straight line may contain two vertices of the other color as this would produce a
crossing of the edges in between. Clearly, if ` is monochromatic, there are at least p+ 1
straight lines. If ` is not monochromatic, then ` contains exactly three vertices, where the
monochromatic pair is separated by the other vertex. However, now, every line `′ ∈ L \ {`}
must be monochromatic, otherwise the edges spanning between ` and `′ will produce a
crossing. Since q ≥ 3, the total number of straight lines is at least 1 + p− 1 + q − 2 ≥ p+ 1.

In the other case, no line contains two monochromatic vertices. If p < q, then we
already have our lower bound of p+ 1. However, if p = q, we need to argue a little more
carefully. Here, we note that there cannot be three lines with two vertices each since this
would imply a crossing. Note that, in order to avoid a crossing between the pair of edges
connecting two lines, the order of the colors on the first line must be reversed on the second.
In particular, with three lines, some pair of lines will violate this condition. Thus the total
number of lines is at least 2 + q − 2 + p− 2 ≥ p+ 1, because q ≥ 3.

4.2 Placing Vertices on Few Parallel Lines in the Plane (π̄1
2)

In this subsection, we consider only planar graphs.

If ∆(G) ≤ 2, then G is a union of cycles and paths and, hence, π1
2(G) = π̄1

2(G) ≤ 2.
When we relax the degree restriction to ∆(G) ≤ 3, the parameters π1

2(G) and π̄1
2(G) can be

different. As a simplest example, note that π1
2(K4) = 2 while π̄1

2(K4) = 3. In general, the
gap is unbounded. For example, for any tree G, we have π1

2(G) ≤ 2 by Theorem 3.5. On the
other hand, Felsner et al. [42] showed that π̄1

2(G) ≥ log3(2n+ 1) for every complete ternary
tree G.

For graphs of maximum vertex degree 3 as well as for differently restricted graphs,
we can show a much larger gap. We need the following notions. In a poly-line drawing of a
graph the edges are represented by polygonal chains. The bends of an edge are the points
where the edge changes its slope, that is, bends are points common to two consecutive
segments of the polygonal chain. In a poly-line grid drawing both vertices and bends have
integer coordinates. The height of a poly-line grid drawing is the height of its bounding box.
Given a graph G, we denote by ĥ(G) the smallest height of a poly-line grid drawing of G.

Lemma 4.4. For any non-empty planar graph G, π̄1
2(G) ≥ ĥ(G).
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Proof. To prove the lemma, it suffices to convert a given drawing of G with vertices covered
by horizontal lines `1, . . . , `r (ordered from bottom to top) to a poly-line grid drawing of G
on a grid of height r. Let Ĝ be a geometric graph obtained from G by subdividing each
edge e in the drawing of G at the intersection points of e with the covering lines `1, . . . , `r,
that is, each edge is replaced by a path whose length depends on the number of covering lines
intersected by the edge. For each i ∈ {1, . . . , r}, let vi,1, . . . , vi,n(i) be the vertices of Ĝ drawn
on `i and ordered from left to right. Consider a straight-line drawing of Ĝ on the grid where
a vertex vi,j is placed at the point (i, j) of the plane for each pair (i, j) with 1 ≤ j ≤ n(i).
Since we keep the order of the vertices on each horizontal line, this drawing is crossing-free,
so it induces a poly-line grid drawing of G.

A planar drawing of a graph has k 1-fused stacked cycles C1, . . . , Ck if the cycles
are nested in this order and each pairwise intersection of two cycles consists of at most one
vertex, that is, for 1 ≤ i < k, Ci surrounds Ci+1 and |Ci ∩ Ci+1| ≤ 1. If the cycles are fully
vertex-disjoint, we call them also just stacked cycles. See Fig. 14 for examples of 1-fused
stacked cycles and stacked cycles.

The stacked cycle argument (see, for instance, [9, 23, 63]) allows Biedl [5, 8] to show
the following:

Lemma 4.5 (Biedl [5,8]). The bounding box of any planar poly-line drawing has width and
height at least 2k if it has k stacked cycles, and it has width and height at least k + 1 if it
has k 1-fused stacked cycles.

The lemma immediately leads to the following results on 3-connected planar graphs.
Recall that a graph is called k-outerplanar if it has a planar drawing that becomes outer-
planar when repeatedly removing the outer face k − 1 times.

Theorem 4.6. For each k, there are 3-connected planar graphs Gk1, G
k
2, and G

k
3 on n1 =

2k+1, n2 = 3k and n3 = 6(k−1) vertices, respectively, such that π1
2(Gk1), π1

2(Gk2), π1
2(Gk3) ≤ 3

and

1. Gk1 is 2-outerplanar and π̄1
2(Gk1) ≥ (n1 + 3)/4,

2. ∆(Gk2) ≤ 4 and π̄1
2(Gk2) ≥ n2/3,

3. ∆(Gk3) ≤ 3 and π̄1
2(Gk3) ≥ n3/6 + 1.

Proof. Figure 14 depicts our choices for Gk1, Gk2 (the nested-triangles graph Tk), and Gk3.
The drawings certify that π1

2(Gk1), π1
2(Gk2), and π1

2(Gk3) are all bounded from above by 3.
(Note that the bent edges in the drawing of Gk3 can easily be straightened.)

Biedl [5,8] observed the following. The depicted drawings consist of k 1-fused stacked
cycles in the case of Gk1 and of k stacked cycles in the case of Gk2 and Gk3. Since the graphs
are 3-connected, Whitney’s theorem implies that all planar drawings of each of the three
graphs are homeomorphic up to the choice of the outer face. Thus, any planar drawing
of Gk1 consists of at least k/2 1-fused stacked cycles and any planar drawing of Gk2 or Gk3
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(a) Gk
1 (b) Gk

2 (c) Gk
3

Figure 14. Planar 3-connected graphs containing many (here k = 4) nested cycles and therefore
requiring Ω(k) parallel lines [5, 8].

Figure 15. The nested-squares
graph Sk (here for k = 5) [82].

G

u

v

C

G

u

v

C

Figure 16. An example of a flipping operation.

consists of at least k/2 stacked cycles. Consequently, by Lemma 4.5, we obtain

ĥ(Gk1) ≥ k / 2 + 1 = (n1 + 3)/4,

ĥ(Gk2) ≥ k = n2/3, and
ĥ(Gk3) ≥ k = n3/6 + 1.

Lemma 4.4 implies the theorem.

Now we turn our attention to 2-connected planar graphs.

Theorem 4.7. For each k, there is a planar graph G on n = 4k vertices with ∆(G) ≤ 3,
π1

2(G) = 2, and π̄1
2(G) ≥ n/4.

Proof. Consider the graph Sk (see also Valiant [82, Fig. 3]) consisting of k = n/4 nested
copies of C4 connected as depicted in the drawing Hk in Fig. 15.

Hence, this drawing consists of k stacked cycles. Below we prove that any plane
representation of Sk consists of at least k/2 stacked cycles. By Lemma 4.5, ĥ(Sk) ≥ k and
by Lemma 4.4, π̄1

2(Sk) ≥ k = n/4. Figure 15 also certifies that π1
2(Sk) = 2.

Note that Sk is 2-connected. We use general facts about plane embeddings of 2-
connected graphs; here we do not restrict ourselves to straight-line drawings only. A 2-
connected planar graph G can have many plane representations, but all of them are obtain-
able from each other by a sequence of simple transformations. Specifically, let H be a plane
representation of G, and let C be a cycle in H containing only two vertices, u and v, that are
incident to some edges outside the region surrounded by C. We can obtain another plane
embedding H ′ of G by flipping G with respect to C, that is, by replacing the interior of C
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with its mirror version (up to homeomorphism); see Fig. 16. The rest of G is unchanged; in
particular, u and v keep their location. It turns out [64, Theorem 2.6.8] that, for any other
plane representation H1 of G, H can be transformed into H1 by a sequence of flippings that
is followed, if needed, by re-assigning the outer face and applying a plane homeomorphism.

Let us apply this to Sk and its plane representation Hk of Fig. 15. First we need
to identify all cycles in Hk for which the flipping operation is possible. Recall that such a
cycle C is connected to its exterior only at two vertices u and v. Clearly, the removal of
these vertices disconnects the graph. This is possible only if u and v belong to two diagonal
edges forming a centrally symmetric pair of edges. If the last condition is true for u and v,
then an appropriate cycle C exists only if the pair {u, v} is centrally symmetric. It readily
follows from here that flipping is possible only with respect to square cycles except the outer
one.

Note now that, for each such cycle C, the interior of C is symmetric with respect to
the axis passing through the corresponding vertices u and v. This implies that flipping Hk

with respect to C can be also seen just as a relabeling of vertices. Thus, the flipped graph
has the same number of stacked cycles as before. Therefore, any further flipping also does
not change the number of stacked cycles which remains to be k. Finally, by re-assigning the
outer face and applying a plane homeomorphism, we obtain a plane representation of Sk
having at least k/2 stacked cycles.

The following fact is straightforward (recall that a 2D grid drawing is straight-line).

Lemma 4.8. For any graph G, it holds that π̄1
2(G) ≤ h(G), where h(G) denotes the mini-

mum height of a 2D grid drawing of G.

Using results by Biedl, we can apply this lemma to achieve results on series-parallel
and outerplanar graphs.

Corollary 4.9.

(a) For any series-parallel graph G with n vertices, it holds that π̄1
2(G) = O(

√
n).

(b) For any outerplanar graph G with n vertices, it holds that π̄1
2(G) = O(log n).

Proof. (a) Biedl [5, Theorem 1] showed that any series-parallel graph has a so-called flat
visibility representation of area O(n3/2) and height O(

√
n). She [6] also showed that a flat

visibility representation can be transformed into a straight-line grid drawing of the same
height.

(b) Biedl [5, Corollary 2] proved that every outerplanar graph has a flat visibility
representation of area O(n log n) without explicitly bounding the height. To bound the
height and thus to be able to apply our Lemma 4.8 again, we need to look in her results
in more detail. She defines the fan-out of a series-parallel graph as the maximum number
of subgraphs used in a parallel composition. We augment the given graph G to make it
maximal outerplanar by adding additional edges. Those edges can be removed afterwards
in the resulting straight-line drawing without increasing π̄1

2(G). Biedl [5, Lemma 4.1] also
proved that any maximal outerplanar graph is a series-parallel graph with fan-out at most 2.

http://jocg.org/


JoCG 11(1), 433–475, 2020 468

Journal of Computational Geometry jocg.org

According to Biedl [5, Theorem 2], her construction produces, given an n-vertex series-
parallel graph with fan-out f , a visibility representation of height O(f log n). This reduces
to O(log n) in the case of outerplanar graphs. Although Biedl did not claim this explicitly,
her representation is actually a flat visibility representation. (This fact is also mentioned in
the proof of her Theorem 1). Again, this implies a straight-line grid drawing of the same
height.

We remark that Frati [45] constructed a family of series-parallel graphs requiring a
height of Ω(2

√
logn) in any poly-line grid drawing. By Lemma 4.4, these graphs have the

same lower bound for π̄1
2.

We close this section by relating π̄1
2 to another well-known graph parameter; the

pathwidth, which is defined similarly to treewidth (see, for example, [27]). For a given
graph G, we denote its pathwidth by pw(G). Based on [42, Theorem 1], Suderman [80,
Lemma 25] notes that for every graph G, any unconstrained layered drawing of G occupies
at least pw(G) layers. In our notation, this means that pw(G) ≤ π̄1

2(G). On the other hand,
Dujmović et al. [33] showed that tnp(G) ≤ pw(G).

For trees, the pathwidth provides a constant-factor approximation of π̄1
2, because

Suderman [80, Theorem 3] showed that π̄1
2(T ) ≤ d3 pw(T )/2e for any tree T . Other classes

of planar graphs with bounded pathwidth, however, can have an unbounded π̄1
2-value. For

instance, this is the case for the graphs of Theorem 4.6 (see Fig. 14) as their π̄1
2-values are

in Ω(n) whereas their pathwidth is 3 [5, Theorems 4 and 5].

5 Conclusion

We have studied nine geometric graph parameters – ρ1
2, ρ1

3, ρ2
3, π1

2, π1
3, π2

3, π̄1
2, π̄1

3, π̄2
3.

As it turned out, for any graph G, the following identities hold: π1
3(G) = lva(G) (Theo-

rem 2.1), π2
3(G) = π̄2

3(G) = vt(G) (Theorem 2.4), π̄1
2(G) is the minimum number of lay-

ers in an unconstrained layered drawing of G (which Suderman [80] studied for trees),
and π̄1

3(G) = tni(G) (page 30), so only four of the parameters are new.

We have compared them among each other and with existing graph parameters.
We have shown lower and upper bounds on some of the new parameters for certain graph
classes such as trees, (outer)planar graphs, and complete (bipartite) graphs. In a companion
paper [18] we have investigated, for some of the new parameters, the complexity of computing
them for a given graph. In our study of the new parameters, we have identified eight open
problems that could trigger further research in this area.
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