Skip to main content

Experimental Analysis of Human Control Strategies in Contact Manipulation Tasks

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

Abstract

Here, we present insights into human contact-control strategies by defining conditions to determine whether a human controls a contact state, empirically analyzing object-to-environment contact geometry data obtained from human demonstrations in a haptic simulation environment, and testing hypothesess about underlying human contact-control strategies. Using haptic demonstration data from eleven subjects who inserted non-convex objects into occluded holes, we tested the following human contact-control hypotheses: (h1) humans follow a task trajectory that tracks pre-planned contact-state waypoints organized in a contact-state graph (contact-waypoint hypothesis); (h2) humans traverse the contact-state graph, explicitly controlling some contact states or subsets of contact states, in addition to the pre-determined initial and final goal states (controlled subgraph hypothesis); (h3) humans use a control policy where the only controlled states are the starting state for the task and the goal state (state policy hypothesis). Notably, we found that humans tend to visit a select few contact states once they enter each state’s vicinity in the graph, which is evidence against h3. Yet humans do not always visit said states (visit probability \(<40\%\)), which is, in addition, evidence against h1 provided different humans adopt similar strategies. We show that a classifier to determine when humans control their trajectories to visit specific contact states, when parameterized correctly, is invariant to graph aggregation operations across the false-positive to false-negative tradeoff spectrum. This indicates our results are robust given the data we obtained and suggests that efforts to characterize human motion should focus on h2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we ignore contact states consisting of \((\{\mathbb {V}\}_{object} \times \{\mathbb {V}\}_{environment})\) and \((\{\mathbb {E}\}_{object} \times \{\mathbb {E}\}_{environment})\) where the edges are parallel, since they are degenerate cases.

  2. 2.

    In [10], the contact graph transition function was specifically defined to return a 1 if a given state can be reached by another without losing contact.

  3. 3.

    Human Subjects: Healthy, right-handed subjects with no history of motor disorders: 20m:6’0", 28m:5’9", 31f:5’4", 20m:6’0", 19m:6’0", 20m:5’7", 29m:5’11", 21f:5’2", 32m:5’11", 30m:5’8", 29m:5’8". Informed consent obtained in advance on a protocol approved by Stanford University’s Institutional Review Board (IRB).

References

  1. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives. In: Dario, P., Chatila, R. (eds.) Robotics Research. STAR, vol. 15, pp. 561–572. Springer, Heidelberg (2005). doi:10.1007/11008941_60

    Google Scholar 

  2. Khatib, O.: The potential field approach and operational space formulation in robot control. In: Narendra, K.S. (ed.) Adaptive and Learning Systems, pp. 367–377. Springer, New York (1986)

    Chapter  Google Scholar 

  3. Ruspini, D., Khatib, O.: Haptic display for human interaction with virtual dynamic environments. J. Rob. Syst. 18(12), 769–783 (2001)

    Article  MATH  Google Scholar 

  4. Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11(6), 418–432 (1981)

    Article  Google Scholar 

  5. Whitney, D.E.: Historical perspective and state of the art in robot force control. Int. J. Rob. Res. 6(1), 3–14 (1987)

    Article  Google Scholar 

  6. Hogan, N.: Stable execution of contact tasks using impedance control. In: Proceedings of the 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1047–1054. IEEE (1987)

    Google Scholar 

  7. Featherstone, R., Thiebaut, S.S., Khatib, O.: A general contact model for dynamically-decoupled force/motion control. In: ICRA, vol. 4, pp. 3281–3286 (1999)

    Google Scholar 

  8. Park, J., Khatib, O.: A haptic teleoperation approach based on contact force control. Int. J. Rob. Res. 25(5–6), 575–591 (2006)

    Article  Google Scholar 

  9. Wang, D., Zhang, X., Zhang, Y., Xiao, J.: Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 906–912 (2011)

    Google Scholar 

  10. Ji, X., Xiao, J.: Planning motions compliant to complex contact states. Int. J. Rob. Res. 20(6), 446–465 (2001)

    Article  Google Scholar 

  11. Xiao, J., Ji, X.: Automatic generation of high-level contact state space. Int. J. Rob. Res. 20(7), 584–606 (2001)

    Article  Google Scholar 

  12. Kwak, S.J., Chung, S.Y., Hasegawa, T.: Generating a contact state graph of polyhedral objects for robotic application. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4522–4527 (2010)

    Google Scholar 

  13. Meeussen, W., Staffetti, E., Bruyninckx, H., Xiao, J., De Schutter, J.: Integration of planning and execution in force controlled compliant motion. Rob. Auton. Syst. 56(5), 437–450 (2008)

    Article  Google Scholar 

  14. Meeussen, W., Rutgeerts, J., Gadeyne, K., Bruyninckx, H., De Schutter, J.: Contact-state segmentation using particle filters for programming by human demonstration in compliant-motion tasks. IEEE Trans. Rob. 23(2), 218–231 (2007)

    Article  Google Scholar 

  15. Skubic, M., Volz, R.A.: Acquiring robust, force-based assembly skills from human demonstration. IEEE Trans. Rob. Autom. 16(6), 772–781 (2000)

    Article  Google Scholar 

  16. Bruyninckx, H., De Schutter, J.: Specification of force-controlled actions in the “task frame formalism”-a synthesis. IEEE Trans. Rob. Autom. 12(4), 581–589 (1996)

    Article  Google Scholar 

  17. Onda, H., et al.: Assembly motion teaching system using position/force simulator-generating control program. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 938–945, September 1997

    Google Scholar 

  18. Gadeyne, K., Lefebvre, T., Bruyninckx, H.: Bayesian hybrid model-state estimation applied to simultaneous contact formation recognition and geometrical parameter estimation. Int. J. Rob. Res. 24(8), 615–630 (2005)

    Article  Google Scholar 

  19. Klingbeil, E., Menon, S., Go, K.C., Khatib, O.: Using haptics to probe human contact control strategies for six degree-of-freedom tasks. In: IEEE Haptics Symposium (HAPTICS), pp. 93–95 (2014)

    Google Scholar 

  20. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, vol. 4. McGraw-Hill, Health Professions Division, New York (2000)

    Google Scholar 

  21. Xiao, J.: Automatic determination of topological contacts in the presence of sensing uncertainties. In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, vol. 1, pp. 65–70, May 1993

    Google Scholar 

  22. Tobergte, A., Helmer, P., Hagn, U., Rouiller, P., Thielmann, S., Grange, S., Albu-Schaffer, A., Conti, F., Hirzinger, G.: The sigma.7 haptic interface for mirosurge: a new bi-manual surgical console. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3023–3030 (2011)

    Google Scholar 

  23. Smith, R.: Open dynamics engine (2010)

    Google Scholar 

  24. Tan, H.Z., Srinivasan, M.A., Eberman, B., Cheng, B.: Human factors for the design of force-reflecting haptic interfaces. Dyn. Syst. Control 55(1), 353–359 (1994)

    Google Scholar 

  25. Ruspini, D., Khatib, O.: A framework for multi-contact multi-body dynamic simulation and haptic display. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 2, pp. 1322–1327. IEEE (2000)

    Google Scholar 

  26. McLaughlin, M.L., Hespanha, J.P., Sukhatme, G.S.: Touch in Virtual Environments. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  27. Salisbury, J.K., Conti, F., Barbagli, F.: Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2), 24–32 (2004)

    Article  Google Scholar 

  28. McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic rendering using voxel sampling. In: ACM SIGGRAPH 2005 Courses, p. 42. ACM (2005)

    Google Scholar 

  29. Kuchenbecker, K., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph. 12(2), 219–230 (2006)

    Article  Google Scholar 

  30. Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans, vol. 38. SIAM, Philadelphia (1982)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Keegan Go for his assistance with developing the haptic simulation environment. The project was supported by National Science Foundation National Robotics Initiative grant (IIS-1427396, O. Khatib and R. Bajcsy) and a grant from the SAIL-Toyota Center for AI Research at Stanford (O. Khatib).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Klingbeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Klingbeil, E., Menon, S., Khatib, O. (2017). Experimental Analysis of Human Control Strategies in Contact Manipulation Tasks. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics