Skip to main content

Textile Building Blocks: Toward Simple, Modularized, and Standardized Smart Textile

  • Chapter
  • First Online:

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Textiles are pervasive in our life, covering human body and objects, as well as serving in industrial applications. In its everyday use of individuals, smart textile becomes a promising medium for monitoring, information retrieval, and interaction. While there are many applications in sport, health care, and industry, the state-of-the-art smart textile is still found only in niche markets. To gain mass-market capabilities, we see the necessity of generalizing and modularizing smart textile production and application development, which on the one end lowers the production cost and on the other end enables easy deployment. In this chapter, we demonstrate our initial effort in modularization. By devising types of universal sensing fabrics for conductive and non-conductive patches, smart textile construction from basic, reusable components can be made. Using the fabric blocks, we present four types of sensing modalities, including resistive pressure, capacitive, bioimpedance, and biopotential. In addition, we present a multi-channel textile–electronics interface and various applications built on the top of the basic building blocks by ‘cut and sew’ principle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cheng, J., Lukowicz, P., Henze, N., Schmidt, A., Amft, O., Salvatore, G.A., Tröster, G.: Smart textiles: from niche to mainstream. IEEE Pervasive Comput. 12(3), 0081–84 (2013)

    Article  Google Scholar 

  2. Farringdon, J., Moore, A.J., Tilbury, N., Church, J., Biemond, P.D.: Wearable sensor badge and sensor jacket for context awareness. In: Wearable Computers. The Third International Symposium on Digest of Papers, pp. 107–113. IEEE (1999)

    Google Scholar 

  3. Lorussi, F., Scilingo, E.P., Tesconi, M., Tognetti, A., Rossi, D.D.: Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed. 9(3), 372–381 (2005)

    Article  Google Scholar 

  4. Mattmann, C., Amft, O., Harms, H., Trster, G., Clemens, F.: Recognizing Upper Body Postures using Textile Strain Sensors. In: ISWC 2007: Proceedings of the 11th IEEE International Symposium on Wearable Computers, pp. 29–36 Recipient of the IEEE ISWC 2007 Best Paper Award. IEEE (2007)

    Google Scholar 

  5. Di Rienzo, M., Rizzo, F., Parati, G., Brambilla, G., Ferratini, M., Castiglioni, P.: Magic system: a new textile-based wearable device for biological signal monitoring. applicability in daily life and clinical setting. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society. IEEE-EMBS 2005, pp. 7167–7169. IEEE (2005)

    Google Scholar 

  6. Paradiso, R., Loriga, G., Taccini, N.: A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed. 9(3), 337–344 (2005)

    Article  Google Scholar 

  7. Amft, O., Habetha, J.: Smart medical textiles for monitoring patients with heart conditions. In: Langenhove, L.v. (ed.) Book Chapter in: Smart Textiles for Medicine and Healthcare, pp. 275–297. Woodhead Publishing Ltd, Cambridge, England (2007) ISBN 1 84569 027 3

    Google Scholar 

  8. Lee, Y.D., Chung, W.Y.: Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sens. Actuators B: Chem. 140(2), 390–395 (2009)

    Article  Google Scholar 

  9. Rajamanickam, R., Park, S., Jayaraman, S.: A structured methodology for the design and development of textile structures in a concurrent engineering framework. J. Text. Inst. 89(3), 44–62 (1998)

    Article  Google Scholar 

  10. Gopalsamy, C., Park, S., Rajamanickam, R., Jayaraman, S.: The wearable motherboard: the first generation of adaptive and responsive textile structures (arts) for medical applications. Virtual Real. 4(3), 152–168 (1999)

    Article  Google Scholar 

  11. Harms, H., Amft, O., Roggen, D., Trster, G.: Rapid prototyping of smart garments for activity-aware applications. J. Ambient Intell. Smart Environ. 1(2), 87–101 (2009). Thematic issue: Wearable Sensors

    Google Scholar 

  12. SEFAR: Sefar official website. Accessed Jan. 2016. http://www.sefar.com

  13. SEFAR: Sefar carbontex. Accessed Jan.2016. http://techlist.sefar.com/cms/newtechlistpdf.nsf/vwWebPDFs/carbotex_EN.pdf

  14. Tekscan: Pressure mapping, force measurement and tactile sensors. Accessed Jan. 2016. https://www.tekscan.com

  15. website, V.M.: Vista medical. Acceseed Jan. 2016. http://www.pressuremapping.com

  16. Cheng, J., Amft, O., Bahle, G., Lukowicz, P.: Designing sensitive wearable capacitive sensors for activity recognition. IEEE Sens. J. 13(10), 3935–3947 (2013)

    Article  Google Scholar 

  17. Martinsen, O.G., Grimnes, S.: Bioimpedance and Bioelectricity Basics. Academic press, Massachusetts (2011)

    Google Scholar 

  18. Pallas-Areny, R., Webster, J.G.: Sensors and Signal Conditioning. Wiley, New York (2001)

    Google Scholar 

  19. Bragos, R., Rosell, J., Riu, P.: A wide-band ac-coupled current source for electrical impedance tomography. Physiol. Meas. 15(2A), A91 (1994)

    Article  Google Scholar 

  20. Ross, A.S., Saulnier, G., Newell, J., Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24(2), 509 (2003)

    Article  Google Scholar 

  21. Lee, K., Cho, S., Oh, T., Woo, E.: Constant current source for a multi-frequency eit system with 10 to 500 kHZ operating frequency. In: IFMBE World Congress on Medical Physics and Biomedical Engineering (2006)

    Google Scholar 

  22. Seoane, F., Bragós, R., Lindecrantz, K., Riu, P.: Current source design for electrical bioimpedance spectroscopy. In: Encyclopedia of Healthcare Information Systems, pp. 359–367 (2008)

    Google Scholar 

  23. Seoane, F., Macias, R., Bragós, R., Lindecrantz, K.: Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations. Meas. Sci. Technol. 22(11), 115801 (2011)

    Article  Google Scholar 

  24. Mohino-Herranz, I., Gil-Pita, R., Ferreira, J., Rosa-Zurera, M., Seoane, F.: Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones. Sensors 15(10), 25607–25627 (2015)

    Article  Google Scholar 

  25. Seoane, F., Ferreira, J., Sanchéz, J.J., Bragós, R.: An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiol. Meas. 29(6), S267 (2008)

    Article  Google Scholar 

  26. Ferreira, J., Seoane, F., Ansede, A., Bragos, R.: Ad5933-based spectrometer for electrical bioimpedance applications. In: Journal of Physics: Conference Series, vol. 224, p. 012011. IOP Publishing (2010)

    Google Scholar 

  27. Ferreira, J., Seoane, F., Lindecrantz, K.: Ad5933-based electrical bioimpedance spectrometer. towards textile-enabled applications. In: EMBC, 2011 Annual International Conference of the IEEEEngineering in Medicine and Biology Society, pp. 3282–3285. IEEE (2011)

    Google Scholar 

  28. Clark Jr, J.W.: The origin of biopotentials. In: Webster, J.G. (ed.) Medical I nstrumentation: A pplication and Design, vol. 1 (1998)

    Google Scholar 

  29. Hall, J.E., Guyton, A.C.: Textbook of Medical Physiology. Saunders, London (2011)

    Google Scholar 

  30. Robinson, B.F., Epstein, S.E., Beiser, G.D., Braunwald, E.: Control of heart rate by the autonomic nervous system studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ. Res. 19(2), 400–411 (1966)

    Article  Google Scholar 

  31. Levy, M.N., Martin, P.J.: Neural regulation of the heart beat. Ann. Rev. Physiol. 43(1), 443–453 (1981)

    Article  Google Scholar 

  32. Jalife, J., Michaels, D.: Vagal Control of The Heart: Experimental Basis And Clinical Implications. Neural control of sinoatrial pacemaker activity, pp. 173–205. Armonk, Futura (1994)

    Google Scholar 

  33. Oberlander, T.F., et al.: Task Force of the European Society of Cardiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Eur Heart J 17, 354–381 (1996)

    Google Scholar 

  34. Köhler, B.U., Hennig, C., Orglmeister, R.: The principles of software qrs detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  35. Pan, J., Tompkins, W.J.: A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. BME–32(3), 230–236 (1985)

    Google Scholar 

  36. Lehn, D., Neely, C., Schoonover, K., Martin, T., Jones, M.: e-tags: e-textile attached gadgets. In: Proceedings of Communication Networks and Distributed Systems: Modeling and Simulation, Citeseer (2004)

    Google Scholar 

  37. Ohmatex: Ohmatex washable textile connector. Accessed Jan. 2016. http://www.ohmatex.dk/?page_id=101

  38. Ohno, H., Narui, F., Hayashi, S.: Zipper-type electrical connector. US Patent 5,499,927 Mar 19 1996

    Google Scholar 

  39. Seager, R.D., Chauraya, A., Zhang, S., Whittow, W., Vardaxoglou, Y.: Flexible radio frequency connectors for textile electronics. Electron. Lett. 49(22), 1371–1373 (2013)

    Article  Google Scholar 

  40. Scheulen, K., Schwarz, A., Jockenhoevel, S.: Reversible contacting of smart textiles with adhesive bonded magnets. In: Proceedings of the 2013 International Symposium on Wearable Computers, pp. 131–132. ACM (2013)

    Google Scholar 

  41. Mehmann, A., Varga, M., Gönner, K., Tröster, G.: A ball-grid-array-like electronics-to-textile pocket connector for wearable electronics. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 57–60. ACM (2015)

    Google Scholar 

  42. Schneegass, S., Hassib, M., Zhou, B., Cheng, J., Seoane, F., Amft, O., Lukowicz, P., Schmidt, A.: Simpleskin: Towards multipurpose smart garments. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. UbiComp/ISWC’15 Adjunct, pp. 241–244. ACM, New York, NY, USA (2015)

    Google Scholar 

  43. Zhang, R., Freund, M., Amft, O., Cheng, J., Zhou, B., Lukowicz, P., Fernando, S., Chabrecek, P.: A generic sensor fabric for multi-modal swallowing sensing in regular upper-body shirts. In: Proceedings of the 2016 ACM International Symposium on Wearable Computers. ISWC ’16, pp. 46–47. ACM, New York, NY, USA (2016)

    Google Scholar 

  44. Schneegass, S., Olsson, T., Mayer, S., van Laerhoven, K.: Human computer interaction. Mobile Interact. Augment. Wearable Comput.: Int. J. Mobile 8(4), 104–114 (2016)

    Article  Google Scholar 

  45. Cheng, J., Zhou, B., Sundholm, M., Lukowicz, P.: Smart chair: What can simple pressure sensors under the chairs legs tell us about user activity. In: UBICOMM13: The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (2013)

    Google Scholar 

  46. Cheng, J., Sundholm, M., Zhou, B., Kreil, M., Lukowicz, P.: Recognizing subtle user activities and person identity with cheap resistive pressure sensing carpet. In: 2014 International Conference on Intelligent Environments (IE), pp. 148–153. IEEE (2014)

    Google Scholar 

  47. Cheng, J., Sundholm, M., Hirsch, M., Zhou, B., Palacio, S., Lukowicz, P.: Application exploring of ubiquitous pressure sensitive matrix as input resource for home-service robots. In: Robot Intelligence Technology and Applications, vol. 3, pp. 359–371. Springer (2015)

    Google Scholar 

  48. Cheng, J., Sundholm, M., Zhou, B., Hirsch, M., Lukowicz, P.: Smart-surface: Large scale textile pressure sensors arrays for activity recognition. Pervasive and Mobile Computing (2016)

    Google Scholar 

  49. Zhou, B., Cheng, J., Lukowicz, P., Reiss, A., Amft, O.: Monitoring dietary behavior with a smart dining tray. IEEE Pervasive Comput. 14(4), 46–56 (2015)

    Article  Google Scholar 

  50. Schneegass, S., Voit, A.: Gesturesleeve: Using touch sensitive fabrics for gestural input on the forearm for controlling smartwatches. In: Proceedings of the 2016 ACM International Symposium on Wearable Computers. ISWC ’16, pp. 108–115. ACM, New York, NY, USA (2016)

    Google Scholar 

  51. Sundholm, M., Cheng, J., Zhou, B., Sethi, A., Lukowicz, P.: Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 373–382. ACM (2014)

    Google Scholar 

  52. Zhou, B., Sundholm, M., Cheng, J., Cruz, H., Lukowicz, P.: Never skip leg day: A novel wearable approach to monitoring gym leg exercises. In: 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE (2016)

    Google Scholar 

  53. Cheng, J., Zhou, B., Kunze, K., Rheinländer, C.C., Wille, S., Wehn, N., Weppner, J., Lukowicz, P.: Activity recognition and nutrition monitoring in every day situations with a textile capacitive neckband. In: Proceedings of the 2013 ACM conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 155–158. ACM (2013)

    Google Scholar 

  54. Cheng, J., Bahle, G., Lukowicz, P.: A simple wristband based on capacitive sensors for recognition of complex hand motions. In: 2012 IEEE Sensors, pp. 1–4. IEEE (2012)

    Google Scholar 

  55. Hirsch, M., Cheng, J., Reiss, A., Sundholm, M., Lukowicz, P., Amft, O.: Hands-free gesture control with a capacitive textile neckband. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 55–58. ACM (2014)

    Google Scholar 

  56. Sinton, A., Suntheralingam, R.: Respiratory inductance plethysmography with an electrical impedance plethysmograph. Med. Biol. Eng. Comput. 26(2), 213–217 (1988)

    Article  Google Scholar 

  57. Seppä, V.P.: Development and clinical application of impedance pneumography. Tampereen teknillinen yliopisto. Julkaisu-Tampere University of Technology. Publication; 1253 (2014)

    Google Scholar 

  58. Sanchez, B., Li, J., Yim, S., Pacheck, A., Widrick, J.J., Rutkove, S.B.: Evaluation of electrical impedance as a biomarker of myostatin inhibition in wild type and muscular dystrophy mice. PloS one 10(10), e0140521 (2015)

    Article  Google Scholar 

  59. Rutkove, S.B.: Electrical impedance myography: background, current state, and future directions. Muscle Nerve 40(6), 936–946 (2009)

    Article  Google Scholar 

  60. Chlan, L.L.: Feasibility of bioelectric impedance as a measure of muscle mass in mechanically ventilated icu patients. Open J. Nurs. 4(1), 51 (2014)

    Article  Google Scholar 

  61. Mccullagh, W.: Bioelectrical impedance analysis of muscle function and activity:(biodynamic analysis) (2008)

    Google Scholar 

  62. McIlduff, C., Yim, S., Pacheck, A., Geisbush, T., Mijailovic, A., Rutkove, S.B.: An improved electrical impedance myography (eim) tongue array for use in clinical trials. Clin. Neurophysiol. 127(1), 932–935 (2016)

    Article  Google Scholar 

  63. Nescolarde, L., Yanguas, J., Medina, D., Rodas, G., Rosell-Ferrer, J.: Assessment and follow-up of muscle injuries in athletes by bioimpedance: preliminary results. In: EMBC, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1137–1140. IEEE (2011)

    Google Scholar 

  64. Paradiso, R., Belloc, C., Loriga, G., Taccini, N.: Wearable healthcare systems, new frontiers of e-textile. Stud. Health Technol. Inf. 117, 9–16 (2005)

    Google Scholar 

  65. Polar: H7 heart rate sensor. Accessed Jan. 2016. https://www.polar.com/us-en/products/accessories/H7_heart_rate_sensor

  66. Nuubo, w.m.t.: necg l1 shirt. Accessed Jan. 2016. http://www.nuubo.com/sites/default/themes/nuubo2/pdf/DATASHEETS_EN_shirt.pdf

  67. LTD, H.T.: hwear digital garments. Accessed Jan. 2016. http://www.personal-healthwatch.com/hwear-health-sensing-garments.aspx

  68. Zimetbaum, P., Goldman, A.: Ambulatory arrhythmia monitoring choosing the right device. Circulation 122(16), 1629–1636 (2010)

    Article  Google Scholar 

  69. Pagani, M., Mazzuero, G., Ferrari, A., Liberati, D., Cerutti, S., Vaitl, D., Tavazzi, L., Malliani, A.: Sympathovagal interaction during mental stress. a study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction. Circulation 83(4 Suppl), II43–51 (1991)

    Google Scholar 

  70. Choi, J., Gutierrez-Osuna, R.: Using heart rate monitors to detect mental stress. In: BSN 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 219–223. IEEE (2009)

    Google Scholar 

  71. Seoane, F., Mohino-Herranz, I., Ferreira, J., Alvarez, L., Buendia, R., Ayllón, D., Llerena, C., Gil-Pita, R.: Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14(4), 7120–7141 (2014)

    Article  Google Scholar 

  72. Merati, G., Maggioni, M.A., Invernizzi, P.L., Ciapparelli, C., Agnello, L., Veicsteinas, A., Castiglioni, P.: Autonomic modulations of heart rate variability and performances in short-distance elite swimmers. Eur. J. Appl. Physiol. 115(4), 825–835 (2015)

    Article  Google Scholar 

  73. Chen, S.W., Liaw, J.W., Chang, Y.J., Chuang, L.L., Chien, C.T.: Combined heart rate variability and dynamic measures for quantitatively characterizing the cardiac stress status during cycling exercise. Comput. Biol. Med. 63, 133–142 (2015)

    Article  Google Scholar 

  74. Thomson, R.L., Bellenger, C.R., Howe, P.R., Karavirta, L., Buckley, J.D.: Improved heart rate recovery despite reduced exercise performance following heavy training: A within-subject analysis. J. Sci. Med. Sport (2015)

    Google Scholar 

  75. Schäfer, D., Gjerdalen, G., Solberg, E., Khokhlova, M., Badtieva, V., Herzig, D., Trachsel, L., Noack, P., Karavirta, L., Eser, P., Saner, H., Wilhelm, M.: Sex differences in heart rate variability: a longitudinal study in international elite cross-country skiers. Eur. J. Appl. Physiol. 115(10), 2107–2114 (2015)

    Article  Google Scholar 

  76. Schneegass, S.: There is more to interaction with public displays than kinect: using wearables to interact with public displays. In: Proceedings of the 4th International Symposium on Pervasive Displays. PerDis ’15, pp. 243–244. ACM, New York, NY, USA (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the collaborative project SimpleSkin under contract with the European Commission (#323849) in the FP7 FET Open framework. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cheng, J. et al. (2017). Textile Building Blocks: Toward Simple, Modularized, and Standardized Smart Textile. In: Schneegass, S., Amft, O. (eds) Smart Textiles. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50124-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50124-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50123-9

  • Online ISBN: 978-3-319-50124-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics