Texts in Computer Science

Series editors

David Gries, Dept of Computer Science, Cornell University, Ithaca, New York, USA

Orit Hazzan, Faculty of Education in Technology and Science, Technion–Israel Institute of Technology, Haifa, Israel

Fred B. Schneider, Cornell University, Ithaca, New York, USA

More information about this series at http://www.springer.com/series/3191

Claudio Cioffi-Revilla

Introduction to Computational Social Science

Principles and Applications

Second Edition

Claudio Cioffi-Revilla George Mason University Fairfax, VA USA

ISSN 1868-0941 Texts in Computer Science ISBN 978-3-319-50130-7 DOI 10.1007/978-3-319-50131-4 ISSN 1868-095X (electronic) ISBN 978-3-319-50131-4 (eBook)

Library of Congress Control Number: 2016959534

© Springer International Publishing AG 2014, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed."

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my Lady Jean, L.G.C.H.S., on our XLIV anniversary

Preface to the Second Edition

Numerous developments have taken place in Computational Social Science (CSS) in the short time since the first edition of this textbook appeared in 2014. They include new university and college programs and curricula, in addition to many exciting research directions offered by big data analytics, advances in social complexity, and innovations in computational modeling tools. Reviews and comments by readers of the first edition have been encouraging, so this second edition provides a number of useful enhancements and corrections to the first.

This edition contains sets of questions, problems, and exercises in each chapter. Their purpose is multifaceted: to test what has been learned; to develop deeper understanding through problem-solving; to exercise critical thinking in support of scientific learning; to test or write code to implement ideas learned or in need of further exploration; or to apply principles in diverse social domains, in different situational contexts, or in particular disciplines.

If you are inclined, send me your responses to exercises and problems. I am happy to acknowledge and select the best for mention in the next edition.

Questions and problems are queries with exact answers, whereas exercises are more open-ended scientific inquiries for exploring and discussing various facets of the material covered in each chapter. Both are intended to solidify and extend knowledge, and to test understanding concerning some of the most important ideas presented in the main content of each chapter. Another function of problems and exercises is to delve deeper into the foundations of CSS, through special topics that could seem to branch off from or interrupt the main flow of the chapter. The answers to most questions and problems are provided in a separate section at the end of the book.

In each chapter, problems and exercises are presented in approximately the same order as the subject matter in the chapter, with very few exceptions. These include cases where knowledge is tested cumulatively, based on a combination of material drawn from two or more sections.

There are many more questions, problems, and exercises than can be assigned in a single semester-long course, or perhaps even in a year-long course. The purpose for this is to allow each instructor some flexibility in selecting the items, and students the opportunity to investigate additional ideas. A number of the exercises also provide ideas for more advanced exams, research papers, or theses. Quite a number of them can also be used for group assignments to practice collaboration among students and assistance in coordination or mentoring by the instructor. Many exercises also lend themselves to creating interesting posters, which can then adorn a CSS learning environment by integrating research and teaching.

The first draft of these problems and exercises was written during the 2015 Lipari Summer School in Computational Social Science, in the last week of July, and completed during a sabbatical leave in the spring and summer of 2016. I am grateful to colleagues, students, and several readers of the first edition, especially Rob Axtell, Andrew Crooks, Harsh Gupta, Chenyi Hu, František Kalvas, Bill Kennedy, and Dan Rogers for their comments and suggestions.

Alexandria, VA, USA

Claudio Cioffi-Revilla

Preface to the First Edition

This textbook provides an introduction to Computational Social Science (CSS), an emerging field at the intersection of traditional social science disciplines, computer science, environmental science, and engineering sciences. CSS is inspired by 20th century pioneers such as Herbert A. Simon, who saw essentially a new way of doing social science enabled by computational science and technology. Scientist and visionary Peter J. Denning once said that "the science of the 21st century will be computational," so this book is proof of that idea in social science domains.

As a textbook, this is intended as a systematic introductory survey to familiarize the reader with the overall landscape of CSS, including its main concepts, principles, applications, and areas of research. CSS investigates social complexity at all levels of analysis—cognitive, individual, group, societal, and global—through the medium of computation, as we will examine in greater detail in Chap. 1. This book is not intended as an advanced, specialized monograph to develop deep expertise.

The need for this book arose from the lack of unified treatment of the various areas of theory and research in CSS. As a consequence, those of us involved in teaching this new subject have been constrained to use a disparate library of readings without a single, unified framework. This book aims to be both comprehensive (include all major areas of CSS) and scientifically integrated by an overarching framework inspired by the paradigm of complex adaptive systems, as developed by Simon and his contemporaries in what may now be called the Founders's Generation (described in Chap. 1).

This project originated from the course on Introduction to CSS that has been taught at George Mason University for the past ten years. It is the core course in CSS, required of all students entering our graduate program in the Department of Computational Social Science. Initially, I taught the course, then other colleagues joined. Approximately ten students have taken the course each year, mostly from the CSS program, but also from other departments across the social sciences, computer science, environmental science, and engineering sciences.

This book is intended for two types of readers, which reflect the diverse student communities who have taken this course over the years. Some students will use it as a one-time, comprehensive exposure to the field of CSS. Other students might use it as foundation for further study through more advanced, specialized work in one or more of the areas surveyed here. This book should also be helpful to students preparing for their doctoral examination in CSS, as a review of basic ideas and a way to integrate knowledge.

The background assumed of the reader consists of some familiarity with one or more of the social sciences at a level equivalent to undergraduate study, basic knowledge of programming in any language (nowadays Python has become quite popular and is an excellent language for learning about computation), and some ability to follow mathematical modeling using logic, elementary probability, and basic calculus. Higher mathematics are unnecessary for introducing CSS.

The plan of the book is as follows: Chapter 1 provides an introduction, focusing primarily on the meaning of complex adaptive systems in social domains, including the significance of Herbert A. Simon's seminal theory and the paradigm it provides for CSS. This initial chapter also explains the main areas of CSS covered in this textbook, which are taken up in Chaps. 3 to 10. Chapter 2 provides a review of basic ideas in computing from a social science perspective, or computation as a paradigm for developing social science; it is *not* intended as a substitute for formal instruction on computation and programing for social scientists.

The following chapters cover major areas of CSS, corresponding to four distinct methodological approaches, as summarized in Sect. 1.6:

- Automated information extraction (Chap. 3)
- Social networks (Chap. 4)
- Social complexity:
 - Origins and measurement (Chap. 5)
 - Laws (Chap. 6)
 - Theories (Chap. 7)
- Social simulation:
 - Methodology (Chap. 8)
 - Variable-based models (Chap. 9)
 - Object-based (Chap. 10)

Each chapter contains a brief opening section introducing and motivating the chapter. This is followed by a section summarizing some of the history of CSS in the chapter's area, based on significant milestones. The purpose of these historical chronologies associated with each chapter's theme is to make the reader aware of significant scientific roots of the field of CSS, including its braided development with related disciplines; it does not provide a systematic history. Each chapter also includes a list of Recommended Readings, primarily intended as a guide for deepening understanding of each chapter, not as exhaustive bibliographies.

The style of the textbook attempts to strike a balance between an informal, reader-friendly, narrative tone, and a more formal tone that is necessary for high-lighting rigorous concepts and results. Concept formation is a major emphasis, as is the statement of laws and principles from theory and research in quantitative social science, especially formal theory and empirically validated models. Along these lines, an effort is made, beginning in Chap. 2, to provide CSS with systematic,

scientific, graphic notation that has been so sadly lacking in traditional social science. This is done by adopting the Unified Modeling Language (UML) as a viable system for describing social complexity through graphic models that have powerful analytical meaning, as well as having direct correspondence with computation and code. Mathematical notation used in this book is standard and aims at maintaining consistency across chapters.

Finally, in terms of possible uses of this textbook, instructors may consider the following options. The ten chapters of this textbook are normally more than sufficient for a one-semester course, because some chapters will require more than one week to work through. Chapter 1 is best covered in a single session. Chapter 2 can easily be covered in two sessions, by dedicating the second session to UML. Chapters 4, 5, 6, 7, 9, and 10 can also each be covered in two sessions, by dividing the material into the main sections composing each chapter. Hence, another option is to use this textbook for a two-semester sequence, as is done in many other fields. This extended format would also permit more use of Recommended Readings, supplemented by additional bibliography, and spending more time analyzing examples to deepen understanding of concepts and principles. Readers are strongly encouraged to use the list of Recommended Readings to study the classic works, which are highlighted in the historical section at the beginning of each chapter.

This book has benefited from significant feedback from students, so I welcome future suggestions for corrections and improvements. I hope you, the reader, enjoy learning from this book at least as much as I have enjoyed writing it.

Washington, DC September 2013 Claudio Cioffi-Revilla

Acknowledgements

During the past four decades I have benefited from scientific discussions with mentors, colleagues, and students who have influenced my research and teaching in Computational Social Science. Much of my original interest in the field came from discussions with Herbert ("Herb") A. Simon and members of the Triple-I Seminar on Complex Systems during the 1980s, including Elinor ("Lin") and Vince Ostrom and Harvey Starr from Indiana University, Dina A. Zinnes, Dick Merritt, Bob Muncaster, Jim Kuklinsky, and Mike Krassa from the Merriam Lab at the University of Illinois at Urbana-Champaign, and Bob Boynton from the University of Iowa. Discussions with Karl Deutsch, Ed Azar, Andy Scott, Harold Guetzkow, Bruce Russett, Hayward Alker, Raoul Narroll, Steve Wolfram, Larry Smarr, Benoit Mandeldrot, Ray Dacey, Martin Shubik, DwainMeford, Jim Rosenau, Pierre Allan, Giorgio Natalicchi, Sam Kotz, and Kurt Johnson from the earlier phase of my academic career are still memorable. Craig Murphy, Doug Nelson, Chuck Taber, Kelly Kadera, Terry Clark, and Paul Pudiate were among my earliest students. When I moved to the University of Colorado at Boulder I learned a great deal from John Rundle and colleagues at the Colorado Center for Chaos and Complexity (C4), especially V.J. Gupta and Liz Bradley.

This textbook grows out of the interdisciplinary Program in Computational Social Science at George Mason University, which I founded in 2002 through joint teamwork with numerous students, faculty, staff, and administrators from the Mason campus. At the risk of unintentionally omitting someone, I wish to thank the many who have helped me in myriad ways: Giorgio Ascoli, Rob Axtell, Peter Balint, Jacquie Barker, Ernie Barreto, Andrea Bartoli, Jeff Bassett, Sheryl Beach, Jim Beall, Pete Becker, Tony Bigbee, Christina Bishop, Kim and Sharon Bloomquist, Gary Bogle, Annetta Burger, Joey Carls, Randy Casstevens, Gabriel Catalin Balan, Debbie Boehm-Davis, Dan Carr, Jack Censer, Guido Cervone, Kai-Kong Chan, Barbara Cohen, Marc Coletti, Jim Conant, Tim Conlan, Chenna Cotla, Julie Christensen, Andrew Crooks, Paul Cummings, David Davis, Ken De Jong, Dan Druckman, Bob Dudley, Debbie V. Duong, Kim Eby, Allan Falconer, Win Farrell, Tatiana Filatova, Kim Ford, Jennifer Fortney, Aaron Frank, Brendon Fuhs, Jim Gentle, Aldona Gozikowski, Omar Guerrero, Cathy Gallagher, Jack Goldstone, Jon Gould, John Grefenstette, Beth Grohnke, Greg Guagnano, Renate Guilford, Tim Gulden, Ates Hailegiorgis, Joey Harrison, Melissa Hayes, Kingsley Haynes, Dee Holisky, Bill Honeychurch, Dan Houser, Chris Hyungsik Shin, Bob Jonas, Chris Jones, Mark Katz, Bill Kennedy, Matt Koehler, Maction Komwa, Dorothy Kondal, Raj Kulkarni, Mike Laskofski, Maciej Latek, Randy Latimer, Kate Leonard, Alex Levis, Collette Lawson, Ann Ludwick, Cynthia Lum, José Manuel Magallanes, Julie Mahler, Michelle Marks, David Masad, Steve Mastrofski, Kevin McCabe, Mike McDonald, Hugh McFarlane, Danny Menascé, Alan Merten, Tish Moreno, Michael Naor, Johnny Nelson, Jim Olds, Leslie Painter, Liviu Panait, Dawn Parker, Ann Palkovich, Sean Paus, Nicolas Payette, Carolyn Payne, Kathleen Pérez-López, Bianica Pint, Margaret Polski, Paul Posner, Steve Prior, Denise Quinto, Pris Regan, Cindy Roberts, Suzanne Robbins, Pedro Romero, Tom Rosati, Dave Rossell, Mark Rouleau (our first Ph.D. in CSS), Cathy Rudder, John Sacco, Mickey Satija, Tim Sauer, Laurie Schintler, Paul Schopf, Linda Schwartztein, Jagadish Shukla, Steve Scott, James Snead, Paul So, Arun Sood, Peter Stearns, Roger Stough, Jennifer Sturgis, Keith Sullivan, Burak Tanyu, Rhonda Troutman, Max Tsvetovat, Karen Underwood, Dick Wagner, Nigel Waters, Shandra Watson, Jane Wendelin, Steve Wilcox, Debbie Williams, Sarah Wise, David Wong, Chun-Yi Yang, Carol Zeeve, and Matt Zingraff. Their cumulative efforts have enabled Mason's Graduate Program in Computational Social Science (over a dozen courses in CSS, a Certificate, a Masters in Interdisciplinary Studies/CSS, and a Ph.D. degree), the Department of Computational Social Science, and the generative unit for CSS at Mason: the Center for Social Complexity (CSC).

I have learned much from co-authoring publications, developing new courses and grant proposals, discussing theory and research, and organizing events with a large and stimulating community of colleagues from around the world, including: Tef Abate, Petra Ahrweiler, Guillermo Algaze, Luís Antunes, Aruna Apte, George Atkinson, Fulvio Attinà, Scott Atran, Brent Auble, Tom Baerwald, Bill Bainbridge, Steve Bankes, Mike Batty, Ana Lucia Bazzan, Russ Bernard, Brian Berry, Ravi Bahvnani, Dmitri Bondarenko, Nathan Bos, Peter Brecke, Stuart Bremer, Cathy Cameron, Kathleen Carley, Cristiano Castelfranchi, John Casti, Lars-Erik Cederman, Fahmida Chowdhury, Alfred Cioffi, Wayne Clough, Helder Coelho, Louise Comfort, Rosaria Conte, Chet Cooper, Linda Cordell, Angela Corolla, Nuno David, Guillaume Deffaunt, Hiroshi Deguchi, Christophe Deissenberg, Jerry Dobson, David Dornish, Jim Doran, Massimo Drei, Julie Dugdale, Bruce Edmonds, Giorgio Einaudi, Carol and Mel Ember, Josh Epstein, Mike Fischer, Bill Fitzhugh, Bruno Frohlich, José Manuel Galán, Jianbo Gao, Michele Gelfand, Nigel Gilbert, Gary Goertz, Rebecca Goolsby, Nick Gotts, Ariel Greenberg, Steve Guerin, Alessandro Guidi, George Gumerman, Myron Gutmann, David Hales, Dirk Helbig, Matt Hoffmann, Barry Hughes, Luís Izquierdo, Wander Jager, Eric Jones, Steve Kaisler, Anna Kerttula, Dennis King, Alan Kirman, Jürgen Klüver, Tim Kohler, Nick Kradin, Arie Kruglanski, Larry Kuznar, Steve Lansing, Efraim Laor, Randy Latimer, Steve Lekson, Nicola Lettieri, Mark Lichbach, David Lightfoot, Fred Liljeros, Corey Lofdahl, Urs Luterbacher, Thomas Lux, Patty Mabry, Charles Macal, Ed MacKerrow, Michael Macy, Greg Madey, Artemy Malkov, Joyce Marcus, Jack Meszaros, Manny Midlarsky, Jeff Millstein, Byong Won Min, Harold Morowitz, ScottMoss, Akira Namatame, Dana Nau, Martin Neumann, Michael North, Andrzej Nowak, Sean O'Brien, Paul Ormerod, John Padgett, Mario Paolucci, Domenico Parisi, Peter Peregrine, Peter Perla, Gary Polhill, Brian Pollins, Denise Pumain, Rodolfo Ragionieri, Bill Rand, Dwight Read, Colin Renfrew, Bob Reynolds, Fred Roberts, J. Daniel Rogers, Juliette Rouchier, Dieter Ruloff, Jerry and Paula Sabloff, John Salerno, David Sallach, Lena Sanders, Todd Sandler, Antonio Sanfilippo, Dez Saunders-Newton, Vittorio Scarano, Steve Schlosser, Phil Schrodt, Lee Schwartz, Frank Schweitzer, Payson Sheets, Andrew Sherratt, Carl Simon, Ian Skoggard, Ricard Solé, Jim Spohrer, Detlef Sprinz, Flaminio Squazzoni, Gene Stanley, John Sterman, Christina Stoica, Rick Stoll, Gary Strong, Lee Schwartz, David Sylvan, Rein Taagepera, Keiki Takadama, John Tangney, Takao Terano, Pietro Terna, Rita Teutonico, Jim Thomas, Qing Tian, Klaus Troitzsch, Peter Turchin, Alex Vespignani, MitchWaldrop, DavidWarburton, PaulWerbos, JonWilkenfeld, and Peyton Young.

A graceful invitation from my colleague and friend, Shu-Heng Chen, to deliver the 2011 Herbert A. Simon Lecture Series in Computational Social Science at National Chengchi University in Taipei, Taiwan, provided a unique opportunity to organize my ideas for this textbook. A preview of this textbook was provided in March 2012 at the invitation of the Center for the Study of Complex Systems at the University of Michigan. I am grateful to Robert Axelrod, John Holland, Scott Page, Rick Riolo, and their students for sharing their insights and suggestions.

Some of the examples or modeling applications discussed in this book originated or came into focus through discussions with members of the government policy and analytical community. None of them bears any responsibility for my interpretations or inferences.

Students from the Fall 2012 session of CSS 600—Introduction to CSS—helped as I finalized the outline of this textbook. I am especially grateful to Gary Bogle, Tom Briggs, Annetta Burger, Paul Cummings, José Manuel Magallanes, and Dan Pryce. Several chapters of this textbook were also used while lecturing at the Lipari International Summer School in Computational Social Science, now in its 5th year. I am grateful to students and invited faculty, including David Beaver, Kathleen Carley, Alfredo Ferro, Giovanni Giuffrida, Carlo Pennisi, Alessandro Pluchino, Kalev Leetaru, Roy Lindelauf, Huan Liu, Roel Popping, Raghu Ramakrishnan, Marc Smith, Philip Schrodt, V.S. Subrahmanian, Alberto Trobia, and Calogero Zarba.

I am especially grateful for input on various chapters received from Dan Rogers, Linda Cordell, Sean Luke, Nazli Choucri, Bill Kennedy, Siggy Scott, and Joey Harrison. I also wish to thank Jean N. Cioffi, Dorothy Kondal, and Nancy Turgeon for careful editing and assistance with proofreading.

Support received from the US National Science Foundation and the Office of Naval Research, as well as from the Center for Social Complexity and the Provost's Office at George Mason University, especially intellectual support received from Provost Peter Stearns, is gratefully acknowledged.

I also wish to thank Wayne Wheeler and Simon Rees, my editors at Springer, for their encouragement and patience. They are among the most professional, persevering, and pleasant editors I have worked with. Images used in this textbook were produced by me or obtained from NASA, PublicDomainPictures.net,Wikipedia, Malteser International, and faculty webpages without copyrights.

Contents

Pre	face to	the Sec	cond Edition	vii
Pre	face to	the Fir	rst Edition	ix
Ack	nowled	dgemen	ts	xiii
Acr	onyms			xxiii
List	of Fig	gures.		xxvii
List	of Ta	bles		xxxv
1	Intro	duction		1
	1.1	What I	Is Computational Social Science?	1
	1.2	A Con	nputational Paradigm of Society	2
	1.3	CSS as	s an Instrument-Enabled Science.	3
	1.4	Examp	bles of CSS Investigations: Pure Scientific Research	
		Versus	Applied Policy Analysis	4
	1.5	Society	y as a Complex Adaptive System	7
		1.5.1	What Is a CAS in CSS?	7
		1.5.2	Tripartite Ontology of Natural, Human,	
			and Artificial Systems	9
		1.5.3	Simon's Theory of Artifacts: Explaining	
			Basic Social Complexity	10
		1.5.4	Civilization, Complexity, and Quality of Life:	
			Role of Artificial Systems	11
	1.6	Main A	Areas of CSS: An Overview	12
		1.6.1	Automated Social Information Extraction	13
		1.6.2	Social Networks	14
		1.6.3	Social Complexity	14
		1.6.4	Social Simulation Modeling	15
	1.7	A Brie	f History of CSS	18
	1.8		Learning Objectives	
	Proble	ems		21
	Recor	nmende	d Readings	32

2	Com	outation and Social Science.	35
	2.1	Introduction and Motivation	35
	2.2	History and First Pioneers	36
	2.3	Computers and Programs	37
		2.3.1 Structure and Functioning of a Computer	37
		2.3.2 Compilers and Interpreters.	40
	2.4	Computer Languages	40
	2.5	Operators, Statements, and Control Flow	45
	2.6	Coding Style	47
	2.7	Abstraction, Representation, and Notation	48
	2.8	Objects, Classes, and Dynamics in Unified Modeling	
		Language (UML)	53
		2.8.1 Ontology	53
		2.8.2 The Unified Modeling Language (UML)	57
		2.8.3 Attributes	68
		2.8.4 Operations	71
	2.9	Data Structures	74
	2.10	Modules and Modularization	76
	2.11	Computability and Complexity	77
	2.12	Algorithms	78
		ems	80
		ises	93
	Reco	nmended Readings 1	101
3	Auto	nated Information Extraction 1	103
	3.1	Introduction and Motivation 1	103
	3.2	History and First Pioneers 1	104
	3.3	Linguistics and Principles of Content Analysis:	
		Semantics and Syntax 1	107
	3.4	Semantic Dimensions of Meaning: From Osgood to Heise 1	109
		3.4.1 EPA-Space and the Structure of Human Information	
		Processing and Meaning 1	109
		3.4.2 Cross-Cultural Universality of Meaning 1	111
	3.5	Data Mining: Overview 1	112
	3.6	Data Mining: Methodological Process 1	114
		C	115
			116
		3.6.3 Preprocessing Preparations 1	116
			117
		3.6.5 Communication 1	124
	Probl	ems 1	124
			133
	Reco	nmended Readings 1	139

4.1Introduction and Motivation1414.2History and First Pioneers1424.3Definition of a Network1474.3.1A Social Network as a Class Object1484.3.2Relational Types of Social Networks1494.3.3Level of Analysis1504.3.4Dynamic Networks1514.3Hetwork Matrix1554.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations170Exercises182Recommended Readings1915.1Introduction and Motivation1935.1Social Complexity I: Origins and Measurement1935.3Origins and Evolution of Social Complexity2065.3.4Future Social Complexity?2035.4.2Decinal Complexity Scial Complexity?2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity?205<	4	Social	l Netwoi	rks	141
4.3Definition of a Network1474.3.1A Social Network as a Class Object1484.3.2Relational Types of Social Networks1494.3.3Level of Analysis1504.3.4Dynamic Networks1514.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations1674.8.6International Relations170Exercises182Recommended Readings1935.1Introduction and Motivation1935.2History and First Pioneers1935.3.0Social Complexity Elsewhere: Secondary Polity Networks2015.3.2Social Complexity2035.4Conceptual Foundations2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.2Defining Features of Social Complexity2055.4.2Defining Features of Social Complexity205 <td></td> <td>4.1</td> <td>Introdu</td> <td>ction and Motivation</td> <td>141</td>		4.1	Introdu	ction and Motivation	141
4.3.1A Social Network as a Class Object1484.3.2Relational Types of Social Networks1494.3.3Level of Analysis1504.3.4Dynamic Networks1514.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as TernaryAssociationsAssociations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.9Software for SNA168Problems170Exercises182Recommended Readings1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.4Future Social Complexity Elsewhere: Secondary Polity Networks2015.4.1What Is Social Complexity: Globalization2025.4.1What Is Social Complexity?2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of		4.2	History	and First Pioneers	142
4.3.2Relational Types of Social Networks1494.3.3Level of Analysis1504.3.4Dynamic Networks1514.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations1674.9Software for SNA168Problems1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.4Future Social Complexity: Globalization2025.4.1What Is Social Complexity: Globalization2025.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2065.5.1Qualitative Indicators: Lines of Evidence </td <td></td> <td>4.3</td> <td>Definiti</td> <td>on of a Network</td> <td>147</td>		4.3	Definiti	on of a Network	147
4.3.3Level of Analysis1504.3.4Dynamic Networks1514.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.9Software for SNA168Problems170Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Social Complexity Elsewhere: Secondary Polity Networks2015.3.4Future Social Complexity: Globalization2025.4.1What Is Social Complexity?2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity?2065.5Measurement of Social Complexity?206			4.3.1	A Social Network as a Class Object	148
4.3.4Dynamic Networks1514.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1634.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations168Problems170Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity: Globalization2025.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2065.5Measurement of Social Complexity2065.5.1Qualitative Indicators: Lines of Evidence210			4.3.2	Relational Types of Social Networks	149
4.4Elementary Social Network Structures1524.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations1674.9Software for SNA168Problems1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3.1Socioal Complexity Elsewhere: Secondary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.4Future Social Complexity2035.4.1What Is Social Complexity2035.4.2Defining Features of Social Complexity2055.4.1What Is Social Complexity2065.5.1Qualitative Indicators: Lines of Evidence210			4.3.3		150
4.5The Network Matrix1554.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations1674.8.6International Relations170Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1975.3.2Social Complexity Elsewhere: Secondary Polity Networks1975.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity2065.5.1Qualitative Indicators: Lines of Evidence210					
4.6Quantitative Measures of a Social Network1554.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations1674.9Software for SNA168Problems170Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity?2035.4Conceptual Foundations2055.4.2Defining Features of Social Complexity2065.5Measurement of So					
4.6.1Nodal Measures: Micro Level1564.6.2Network Measures: Macro-Level1574.7Dynamic (Actually, Kinetic) Networks as Ternary Associations1584.8Applications1594.8.1Human Cognition and Belief Systems1594.8.2Decision-Making Models1634.8.3Organizations and Meta-Models1634.8.4Supply Chains1654.8.5The Social Structure of Small Worlds1674.8.6International Relations1674.8.6International Relations1674.9Software for SNA168Problems170Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity?2035.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210		4.5			
4.6.2 Network Measures: Macro-Level. 157 4.7 Dynamic (Actually, Kinetic) Networks as Ternary Associations 158 4.8 Applications 159 4.8.1 Human Cognition and Belief Systems 159 4.8.2 Decision-Making Models 163 4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary Polity Networks 201 5.3.2 Social Complexity Elsewhere: Secondary Polity Networks 201 5.3.4 Future Social Complexity: Globalization 202		4.6	Quantit		155
4.7 Dynamic (Actually, Kinetic) Networks as Ternary Associations 158 4.8 Applications 159 4.8.1 Human Cognition and Belief Systems 159 4.8.2 Decision-Making Models 163 4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Social Complexity Elsewhere: Secondary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity? 203 5.4 Conceptual Foundations 205			4.6.1	Nodal Measures: Micro Level	
Associations 158 4.8 Applications 159 4.8.1 Human Cognition and Belief Systems 159 4.8.2 Decision-Making Models 163 4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary Polity Networks 197 5.3.2 Social Complexity Elsewhere: Secondary Polity Networks 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity? 203 5.4 Conceptual Foundations <td< td=""><td></td><td></td><td>4.6.2</td><td>Network Measures: Macro-Level</td><td>157</td></td<>			4.6.2	Network Measures: Macro-Level	157
4.8 Applications 159 4.8.1 Human Cognition and Belief Systems 159 4.8.2 Decision-Making Models 163 4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Social Complexity Elsewhere: Secondary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5		4.7	Dynami	ic (Actually, Kinetic) Networks as Ternary	
4.8.1 Human Cognition and Belief Systems. 159 4.8.2 Decision-Making Models. 163 4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains. 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations. 167 4.8.6 International Relations 167 4.9 Software for SNA. 168 Problems 170 Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Social Complexity Elsewhere: Secondary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity?<			Associa	tions	
4.8.2 Decision-Making Models. 163 4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains. 165 4.8.5 The Social Structure of Small Worlds. 167 4.8.6 International Relations. 167 4.8.6 International Relations. 167 4.9 Software for SNA. 168 Problems. 170 Exercises. 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary Polity Networks 197 5.3.2 Social Complexity Elsewhere: Secondary Polity Networks 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2		4.8	Applica	tions	
4.8.3 Organizations and Meta-Models 163 4.8.4 Supply Chains 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary Polity Networks 197 5.3.2 Social Complexity Elsewhere: Secondary Polity Networks 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 <td></td> <td></td> <td></td> <td>Human Cognition and Belief Systems</td> <td>159</td>				Human Cognition and Belief Systems	159
4.8.4 Supply Chains 165 4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 Measurement of Social Complexity 209 5.5.1 Qualitative Indicators: Lines of Evidence 210			4.8.2		163
4.8.5 The Social Structure of Small Worlds 167 4.8.6 International Relations 167 4.9 Software for SNA 168 Problems 170 Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 Measurement of Social Complexity 209 5.5.1 Qualitative Indicators: Lines of Evidence 210			4.8.3	Organizations and Meta-Models	163
4.8.6 International Relations. 167 4.9 Software for SNA. 168 Problems 170 Exercises 182 Recommended Readings 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Social Complexity Elsewhere: Secondary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 Measurement of Social Complexity 209 5.5.1 Qualitative Indicators: Lines of Evidence 210			4.8.4		165
4.9 Software for SNA. 168 Problems. 170 Exercises. 182 Recommended Readings. 191 5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Social Complexity Elsewhere: Secondary 197 5.3.2 Social Complexity Elsewhere: Secondary 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity? 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 Measurement of Social Complexity 209 5.5.1 Qualitative Indicators: Lines of Evidence 210			4.8.5	The Social Structure of Small Worlds	
Problems170Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Sociogenesis: The "Big Four" Primary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2095.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210			4.8.6	International Relations	
Exercises182Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Sociogenesis: The "Big Four" Primary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210		4.9	Softwar	re for SNA	168
Recommended Readings1915Social Complexity I: Origins and Measurement1935.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Sociogenesis: The "Big Four" Primary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210		Proble	ems		
5 Social Complexity I: Origins and Measurement 193 5.1 Introduction and Motivation 193 5.2 History and First Pioneers 193 5.3 Origins and Evolution of Social Complexity 196 5.3.1 Sociogenesis: The "Big Four" Primary 196 5.3.2 Social Complexity Elsewhere: Secondary 197 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 Measurement of Social Complexity 209 5.5.1 Qualitative Indicators: Lines of Evidence 210					
5.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Sociogenesis: The "Big Four" Primary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210		Recor	nmendec	1 Readings	191
5.1Introduction and Motivation1935.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Sociogenesis: The "Big Four" Primary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210	5	Social	l Compl	exity I: Origins and Measurement	193
5.2History and First Pioneers1935.3Origins and Evolution of Social Complexity1965.3.1Sociogenesis: The "Big Four" Primary Polity Networks1975.3.2Social Complexity Elsewhere: Secondary Polity Networks2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2095.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210					193
5.3.1 Sociogenesis: The "Big Four" Primary Polity Networks. 197 5.3.2 Social Complexity Elsewhere: Secondary Polity Networks. 201 5.3.3 Contemporary Social Complexity: Globalization 202 5.3.4 Future Social Complexity 203 5.4 Conceptual Foundations 205 5.4.1 What Is Social Complexity? 205 5.4.2 Defining Features of Social Complexity 206 5.5 Measurement of Social Complexity 209 5.5.1 Qualitative Indicators: Lines of Evidence 210		5.2			193
5.3.1Sociogenesis: The "Big Four" Primary Polity Networks.1975.3.2Social Complexity Elsewhere: Secondary Polity Networks.2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210		5.3	Origins	and Evolution of Social Complexity	196
Polity Networks.1975.3.2Social Complexity Elsewhere: Secondary Polity Networks.2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210			-		
5.3.2Social Complexity Elsewhere: Secondary Polity Networks.2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210					197
Polity Networks.2015.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210			5.3.2		
5.3.3Contemporary Social Complexity: Globalization2025.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210					201
5.3.4Future Social Complexity2035.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210			5.3.3		202
5.4Conceptual Foundations2055.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210			5.3.4		203
5.4.1What Is Social Complexity?2055.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210		5.4	Concep		205
5.4.2Defining Features of Social Complexity2065.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210					
5.5Measurement of Social Complexity2095.5.1Qualitative Indicators: Lines of Evidence210					
5.5.1 Qualitative Indicators: Lines of Evidence		5.5			

	Proble	ems		219
				234
	Recor	nmended	l Readings	245
6	Social Complexity II: Laws			247
	6.1	Introduc	ction and Motivation	247
	6.2	History	and First Pioneers	247
	6.3	Laws of	f Social Complexity: Descriptions	249
		6.3.1	Structural Laws: Serial, Parallel,	
			and Hybrid Complexity	249
		6.3.2	Distributional Laws: Scaling and Nonequilibrium	
			Complexity	255
	6.4	Power I	Law Analysis	264
		6.4.1	Empirical Analysis: Estimation and Assessing	
			Goodness of Fit.	264
		6.4.2	Theoretical Analysis: Deriving Implications	267
	6.5	Univers	ality in Laws of Social Complexity	272
	Proble	ems		272
	Exerc	ises		280
	Recor	nmended	l Readings	288
7	Social	l Comple	exity III: Theories	291
	7.1	-	ction and Motivation	291
	7.2	History	and First Pioneers	291
	7.3	Theories	s of Social Complexity: Elements of Explanation	294
		7.3.1	Sequentiality: Modeling Processes. Forward Logic	295
		7.3.2	Conditionality: Modeling Causes. Backward Logic	299
		7.3.3	Hybrid Bimodal Social Complexity:	
			Several-Among-Some Causes	303
	7.4	Explain	ing Initial Social Complexity	304
		7.4.1	Emergence of Chiefdoms	310
		7.4.2	Emergence of States	319
	7.5	General	Theories of Social Complexity	328
		7.5.1	Theory of Collective Action	328
		7.5.2	Simon's Theory of Adaptation via Artifacts	331
		7.5.3	Canonical Theory as a Unified Framework	335
	Proble	ems		341
	Exerc	ises		360
	Recor	nmended	l Readings	371
8	Simul		: Methodology	375
	8.1	Introduc	ction and Motivation	375
	8.2	History	and First Pioneers	376

9

8.3		e of Simulation: Investigating Social Complexity	
		rtual Worlds	377
8.4		Simulation Terminology	379
8.5		y of Representation and Implications	382
8.6		of Social Simulation: From System Dynamics	
	0	ent-Based Models	383
8.7		opment Methodology of Social Simulations	384
	8.7.1	Motivation: What Are the Research Questions	
		Addressed by a Given Model?	384
	8.7.2	Conceptual Design: What Does the Abstraction	
		Look Like?	386
	8.7.3	Implementation: How Is the Abstracted Model	
	0.7.4	Written in Code?	387
	8.7.4	Verification: Does the Simulation Perform	200
	075	as Intended?	388
	8.7.5	Validation: Can We Trust the Results?	389
	8.7.6	Virtual Experiments and Scenario Analyses: What New Information Does the Simulation	
		Generate?	390
8.8	1		390 391
0.0	8.8.1	ing the Quality of a Social Simulation General Principles for Social Modeling Assessment	391 391
	8.8.2	Dimensions of Quality in Social Simulation	391
	0.0.2	Models	393
8.9	Metho	dology of Complex Social Simulations	396
8.10		aring Simulations: How Are Computational Models	570
0.10		ared?	398
Probl	-		400
			408
		d Readings	413
		-	
		II: Variable-Oriented Models	415
9.1		iction and Motivation	415
9.2	-	y and First Pioneers	415
9.3		Dynamics Models.	417
	9.3.1	Motivation: Research Questions	419
	9.3.2	Design: Abstracting Conceptual and Formal	410
	0 2 2	Models	419
	9.3.3	Implementation: System Dynamics Software	
	9.3.4	Verification	426
	9.3.5 9.3.6	Validation	426
9.4		Analysis	427 429
9.4	Queuei 9.4.1	ing Models Motivation: Research Questions	429 429
	9.4.1 9.4.2	Design: Abstracting Conceptual and Formal	429
	7.4.∠	Models	432
		WIOUCIS	432

		9.4.3	Implementation: Queuing Systems Software	435
		9.4.4	Verification	435
		9.4.5	Validation	436
		9.4.6	Analysis.	436
	Proble	ems	· · · · · · · · · · · · · · · · · · ·	437
	Exerc	ises		445
	Recor	nmendeo	l Readings	453
10	Simu		II: Object-Oriented Models	455
	10.1		ction and Motivation	455
	10.2		and First Pioneers	455
	10.3	Cellula	r Automata Models	459
		10.3.1	Motivation: Research Questions	463
		10.3.2	Design: Abstracting Conceptual and Formal	
			Models	463
		10.3.3	Implementation: Cellular Automata Software	466
		10.3.4	Verification	468
		10.3.5	Validation	468
		10.3.6	Analysis	469
	10.4	Agent-l	Based Models	470
		10.4.1	Motivation: Research Questions	473
		10.4.2	Design: Abstracting Conceptual and Formal	
			Models	476
		10.4.3	Implementation: Agent-Based Simulation Systems	479
		10.4.4	Verification	482
		10.4.5	Validation	482
		10.4.6	Analysis	483
	Proble	ems		484
	Exerc	ises		496
	Recor	nmendeo	l Readings	508
Ans	wers t	o Proble	ems	513
Glo	ssary.			543
Ref	erence	s		585
Aut	hor In	dex		593
Sub	ject In	dex		601

Acronyms

ABM	Agent-based model
ACE	Agent-based computational economics
ACM	Association for Computing Machinery
AI	Artificial intelligence
AND	Boolean conjunctive operator
BDI	Beliefs, desires, intentions
CA	Cellular automaton or automata
CAMEO	Conflict and Mediation Event Observations
CAS	Complex adaptive system
CASOS	Center for Computational Analysis of Social and Organizational
	Systems, Carnegie Mellon University
CCDF	Complementary cumulative density function (also c.c.d.f.)
CDF	Cumulative density function (also c.d.f.)
CIDCM	Center for International Development and Conflict Management,
	University of Maryland
CIKM	Conference on Information and Knowledge Management of the
	ACM
CMU	Carnegie Mellon University
COA	Course of action
COPDAB	Conflict and Peace Data Bank
CPU	Central processing unit
CSC	Center for Social Complexity, George Mason University
CSS	Computational Social Science
CSSN	Computer-supported social networks
CSSSA	Computational Social Science Society of the Americas
DARPA	Defense Advanced Research Projects Agency
DDR3 SDRAM	Double-data-rate three synchronous dynamic random access
	memory
DYNAMO	DYNAmic MOdels
EC	Evolutionary computation
ECPR	European Consortium for Political Research
EGUI DUDD	
ECML-PKDD	European Conference on Machine Learning and Principles and
ECML-PKDD	

EOS	Evolution of Organized Society project, University of Essex
EPA	Evaluation, potency, activity. Dimensions of Osgood's semantic
	space
ERG	Exponential random graph
EU	European Union
FEARLUS	Framework for the Evaluation and Assessment of Regional
12.112.00	Land Use Scenarios
FIFO	First-in-first-out
FILO	First-in-last-out
FORTRAN	FORmula TRANslation
GB	Gigabyte
GCM	General Circulation Model
GDELT	Global Data on Events, Location, and Tone
GeoMASON	Geospatial MASON
GHz	Gigahertz
GIS	Geographic Information System
GPU	Graphic processing unit
GUI	Graphic user interface
HMM	Hidden Markov model
HPC	High-performance computing
HRAF	Human Relations Area Files, Yale University
I/O	Input–output
ICPSR	Interuniversity Consortium for Political and Social Research
ICR	Institute for Communications Research, University of Illinois at
1011	Urbana-Champaign
IEEE	Institute of Electrical and Electronic Engineers
INSNA	International Network for Social Network Analysis
IPCC	Intergovernmental Panel on Climate Change
ISIMADE	International Symposium on Intelligent Multimedia and Dis-
	tance Education
ISS	International Space Station
JVM	Java virtual machine
KWIC	Keywords in context
KWOC	Keywords out of context
kya	Thousands of years ago
LEO	Low Earth orbit
LIFO	Last-in-first-out
LILO	Last-in-last-out
LISP	LISt Processing
LOC	Lines of code
LRD	Long-range dependence
LUCC	Land-Use and Cover Change
M2M	Model-to-model
MAS	Multi-agent system or systems
MASON	Multi-Agent Simulator of Networks or Neighborhoods
	-

MC	Marta Cada
MC	Monte Carlo
MDIVVA	Motivate-design-implement-verify-validate-analyze
MDS	Multi-dimensional scaling
MINUIT	Numerical minimization computer program
MIT	Massachusetts Institute of Technology
MLE	Maximum likelihood estimate, estimator, or estimation
NAACSOS	North American Association for Computational Social and
	Organizational Sciences
NASA	National Aeronautics and Space Administration
NATO	North Atlantic Treaty Organization
NER	Named entity recognition
NIST	National Institute of Standards and Technology
NRR	Normal relations range
NSF	National Science Foundation
NVAC	National Visualization Analytics Center, PNNL
OCR	Optical character recognition
OMG	Object Management Group
ONR	Office of Naval Research
00	Object-oriented
OOM	Object-oriented model or modeling
OOP	Object-oriented program or programming
OR	Boolean disjunctive operator
ORA	Entity extraction algorithm by CASOS
PDF	Probability density function (also p.d.f.)
PNAS	Proceedings of the National Academy of Sciences of the USA
PNNL	Pacific Northwest National Laboratory, Department of Energy
PPNB	Pre-Pottery Neolithic B period
PRNG	Pseudo-random number generator
RAM	Random access memory
RNG	Random number generator
SAS	Statistical Analysis System
SD	System dynamics
SDC	Size, development, and capability
SEQAND	Boolean sequential conjunctive operator
SES	Socioeconomic status
SIAM	Society for Industrial and Applied Mathematics
SIGKDD	Special Interest Group on Knowledge Discovery and Data
	Mining of the ACM
SIMPEST	Simulation of Political, Economic, Social, and Technological
	Systems
SIMPLE	Simulation of Industrial Management Problems with Lots of
	Equations
SIMPOP	SIMulation of POPulation project, University of Paris-Sorbonne
SNA	Social network analysis
	2

SOCPAC	A FORTRAN IV program for structural analysis of sociometric
	data
SPSS	Statistical Package for the Social Sciences
SSRC	Social Science Research Council
SSRN	Social Science Research Network
STELLA	System dynamics simulation system
TABARI	Textual Analysis by Augmented Replacement Instructions
TBJ	Truth, beauty, and justice
TRIAL	Technique for Retrieval of Information and Abstracts of
	Literature
UAV	Unmanned autonomous vehicle
UCINET	University of California-Irvine social network analysis software
UCLA	University of California-Los Angeles
UML	Unified Modeling Language
UN	United Nations
URL	Uniform resource locator
US	United States
USSR	Union of Soviet Socialist Republics
VENSIM	System dynamics simulation system
WWW	World-Wide Web
XOR	Boolean exclusive disjunctive operator

List of Figures

A computer with its functional components (the five	
boxes) based on a bus architecture (fast-speed data	
connections)	38
A "social world" consists of a social system situated in its	
environment. This ontology is foundational for many	
social theories examined through formal and empirical	
analysis, including Simon's Theory of Artifacts, the	
Canonical Theory, and others based on the Complex	
Adaptive Systems Paradigm. Unfortunately, this graphic	
representation is useless although common throughout	
social science. Later in this section we introduce UML as a	
helpful graphic notation system for representing social	
worlds	54
Ontology across scales of human and social systems	
complexity: The family is the smallest kin-based social	
system (upper left). Teams of people provide assistance in	
humanitarian crises and disasters (upper right). Polities are	
complex social aggregates capable of producing historical	
milestones (lower left). Humans in space constitute	
complex, coupled, socio-technical systems operating in	
extreme environments (lower right)	54
UML class diagram of a basic world ontology consisting	
of a social system and its environment. Note that this	
graph is intended to represent the same as Fig. 2.2, but it	
conveys much more inforamtion	59
Associations among classes or objects are drawn in UML	
using arrows with different arrowheads that denote	
different types of relations (e.g., social relations,	
socio-environmental interactions, or others). Unlike the	
informal and widespread use of arrows in many social	
science illustrations, the notation for social relations	
modeled with a class diagram is formal and strictly	
	boxes) based on a bus architecture (fast-speed data connections)

	defined, making meanings inter-subjective and reliable from a conceptual and terminological perspective.	
	Examples of each type of social relation are provided in	
Figure 2.6	the main textUML class diagram of the standard model of a polity in	61
	political science. The diagram consists of four entities and	
	three types of associations that denote different kinds of	
	social relations, as explained in the main text. Diagrams	
	such as these, and subsequent versions with more details,	
	are valuable for communicating between social science	
	modelers and computer programmers in charge of code	65
Eiguna 27	implementation. Adapted from Cioffi-Revilla (2008)	65
Figure 2.7	UML sequence diagram of basic dynamic processes in a	65
Figure 2.8	simple polity	03
Figure 2.0	system-level dynamics in a simple polity consisting of a	
	Society stressed by issues and a Government that	
	formulates policies to address public issues and lower or	
	eliminate stress. A state diagram provides a more dynamic	
	model of a polity than a class diagram, but entities	
	(classes, objects) are not represented. <i>Source</i> : This and	
	other UML diagrams of a polity are adapted from	
	Cioffi-Revilla (2008)	67
Figure 2.9	UML class and object diagrams with various specifications	
	of attributes and operations: (a) Class and object	
	associated by inheritance, without specific attributes or	
	operations, as in earlier class diagrams. (b) Class and	
	object notation containing encapsulated attributes and	
	operations shown by convention in the second and third	
	compartments, respectively. (c) Example of class and	
	object with some specific attributes. (d) Visibility of	
	attributes denoted by public (<i>plus sign</i>) and private (<i>minus</i>)	
	attribute notation. (e) Complete specification of a class	
	with encapsulated attributes, operations, and visibilities	70
Figure 2.10	UML class diagram of the standard polity model, with	70
Figure 2.10	specified attributes (variables). Note that each attribute is	
	denoted by a uniquely designated name and corresponding	
	data type	71
Figure 2.11	UML class diagrams of a polity with class attributes and	, 1
U	operations. The model on the <i>left</i> shows operations in the	
	third vertical compartment of each class. The model on the	
	<i>right</i> makes explicit the "manages" association between	
	Government and PublicIssues, elevating the association	
	to the higher status of a class by itself, named Policy	73

Figure 3.1	Example of a manual coding form used to record an event based on a newspaper source. Forms such as these were used in the early days of computational content analysis to	
	record news into machine-readable format and enable	
	statistical analysis of large amounts of data	104
Figure 3.2	Major pioneers of content analysis: Max Weber,	
	sociologist, proposed the first large-scale content analysis	
	in 1910 (upper left). Andrey Markov, mathematician,	
	pioneered computational linguistics (upper right). Harold	
	Lasswell pioneered computational content analysis	
	(lower left). Charles E. Osgood discovered and quantified	
	semantic space (lower right)	105
Figure 3.3	Word frequencies automatically extracted from Herbert	
	A. Simon's autobiography using the Wordle TM algorithm.	
	<i>Source</i> Simon (1992)	108
Figure 3.4	Osgood'd 3D Semantic Differential EPA-space. The	
	cognitive dimensions of evaluation E (ranging from good	
	to bad), potency P (strong to weak), and activity A (fast to	
	slow) span a three-dimensional semantic space. In	
	Osgood-space each term or word w is located by a triplet	
	(e, p, a) or vector $\mathbf{w} = e\mathbf{i} + p\mathbf{j} + a\mathbf{k}$ with norm given by	
	$ \mathbf{w} = \sqrt{e + p^2 + a^2} \dots \dots$	110
Figure 3.5	General Data Mining Methodological Process. Data	
-	mining for automated information extraction involves	
	several stages, the most important being the six	
	highlighted here and discussed below. The core is	
	Analysis for answering research questions, but the other	
	five stages are just as critical for overall quality of the	
	scientific investigation. Each of the six stages involves a	
	variety of procedures, most of them dependent on the	
	research questions being addressed	114
Figure 3.6	Spatial analysis using event data. This Google map of the	
	world shows the top 2,000 political events on October 7,	
	2013, based on the GDELT data set (Leetaru and Schrodt	
	2013). Color-coded events indicate degrees of conflict	
	(red and yellow) or cooperation (green and blue).	
	Source GDELT website, downloaded October 8, 2013	120
Figure 4.1	A social network consisting of nodes and links. In this	
	network $g = 4$ nodes and $L = 4$ links	146
Figure 4.2	UML class diagram of a social network as an object	
	composed of node objects associated to the network by	
	composition	148

Figure 4.3	Types of social networks according to their social relations $\mathbb{L}\{\ell_{1,2,,L}\}$. <i>Upper left</i> : a directed graph or digraph \mathcal{D} . <i>Upper right</i> : a signed graph \mathcal{S} with valences. <i>Lower left</i> : a weighted network \mathcal{W} . <i>Lower right</i> : a multiplex \mathcal{M} with	1.40
Figure 4.4	various kinds of social relations possible between nodes Structural types of social networks according to their architecture. <i>Upper left</i> : chain or line network. <i>Upper</i> <i>right</i> : star network. <i>Middle left</i> : Y network. <i>Middle right</i> : circle network. <i>Lower left</i> : complete network. <i>Lower right</i> : cellular network. Each structural type is represented by its associated graph, adjacency matrix A and geodesic matrix G	149 153
Figure 4.5	Long-form UML class diagram of a social network modeled as an object composed of node objects associated to the network by composition. This model highlights the nodal composition of networks while placing network	100
Figure 4.6	links in the background UML class diagram of a dynamic social network represented as a ternary association class with multiplicities. Each link in the association corresponds to a membership in one or more (up to q) concurrent networks	156
	over a period of <i>n</i> time units	158
Figure 4.7	Some simple beliefs modeled as valued networks	160
Figure 4.8	Cognitive balancing by Abelson's differentiation mechanism. <i>Left</i> : Having positive relations with a country that is disliked results in an imbalanced cognition. This belief is balanced by differentiating between evil rulers and good people, and reassigning valuations to each of the new relations.	162
Figure 4.9	Network structure of the Rational Choice Model. Left A decision \mathbb{D} consists of choosing an alternative $A^* \in \{A_i\}$ that has the maximum expected utility over the entire set of <i>n</i> alternatives	164
Figure 4.10	Meta-network model of a social event involving actors, locations, resources, and other entities denoted by nodes and links of various shapes and colors. Produced by the ORA software at the Center for Computational Analysis of Social and Organizational Systems (CASOS), Carnegie Mellon University. A complex humanitarian crisis can be represented by a meta-network linking victims affected by the disaster, relief workers, supplies and equipment, locations, and responder activities. Similar examples include financial crises and conflicts of various kinds, all of them consisting of data <i>n</i> -tuples that can be extracted	101
	from raw sources	165

Figure 5.1	Global geo-chronology of origins of social complexity in the four "cradles of civilization." <i>Source</i> Adapted from	
	Cioffi-Revilla (2006)	198
Figure 5.2	Long-range dependence (LRD) or memory structure in	
-	time series measured by the Hurst parameter H. Source	
	Adapted from Gao et al. (2013: 16)	218
Figure 6.1	Structural patterns of social complexity by causal	
-	necessity and sufficiency. a Serial complexity by causal	
	conjunction; b parallel complexity by causal disjunction;	
	and \mathbf{c} a case of hybrid serial-parallel complexity with	
	some parallelized disjunctive components within an	
	overall serialized 3-conjunctive structure	250
Figure 6.2	Structural patterns of social complexity by logic	
e	conjunction and disjunction. a Serial complexity by causal	
	conjunction; b parallel complexity by causal disjunction;	
	and \mathbf{c} a case of hybrid serial-parallel complexity with	
	some parallelized disjunctive components within an	
	overall serialized 3-conjunctive structure	251
Figure 6.3	The power law in (a) untransformed hyperbolic form and	
	(b) linearized or log-linear form in log-log space	255
Figure 6.4	The power law and other distribution models	257
Figure 6.5	Taxonomy of power law models according to types of	
	dependent variables	258
Figure 6.6	"Bending" is frequently observed in visual assessment	
	of empirical power law distributions	264
Figure 7.1	An Abelson-balanced belief system relating multiple	
	aspects of communal worship	311
Figure 7.2	Forward sequential causal logic tree for initial	
	sociopolitical complexity, denoted as the contingent	
	process $\mathscr{P}_3(\Omega)$ of politogenesis with three antecedents	314
Figure 7.3	Forward sequential causal logic tree for initial	
	politogenesis $\mathbb C$ grafted with a first-order backward	
	conditional causal tree for complexity potential \mathbb{P}	
	(Conditions 1–9; Sect. 7.4.1.2)	317
Figure 7.4	Forward sequential causal logic tree for Simon's theory of	
	adaptation and emergence of social complexity	333
Figure 7.5	Forward sequential causal logic tree for the Canonical	
	Theory of emergence and development of social	
	complexity. The main upper part of the graph illustrates	
	the fast process. Change in the probability of social	
	complexity is shown across the bottom. Node notation	
	decisions are denoted by <i>triangle-nodes</i> , lotteries by	225
	square-nodes, and hybrids by diamond-nodes	336

Figure 7.6	Forward sequential causal logic tree for explaining risky hazards and societal disasters according to Canonical	
	Theory	340
Figure 8.1	<i>Basic terminology and general methodology of social simulation.</i> Social simulation methodology is an iterative process that begins with a referent system (<i>explanandum</i>) in the real world. Abstraction, formalization, programming, and appropriate data are used to develop a viable simulation model (<i>explanans</i>). This general process is	
Figure 8.2	independent of the specific kind of simulation model UML class diagram illustrating the hierarchy of scientific models (<i>left</i>), social science models (<i>center</i>), and social simulations (<i>right</i>), each having increasingly specific standards for judging quality (moving from <i>left</i> to <i>right</i>).	380
Figure 9.1	Source Cioffi-Revilla (2013)	392
	(lower right)	418
Figure 9.2	Causal loop diagram for a system dynamics model of norm adoption	421
Figure 9.3	Causal loop diagram for a system dynamics model of inter-group rivalry	422
Figure 9.4	SD stock and flow diagram for representing variables (stocks represented as <i>rectangles</i>) and rates of change	
Figure 9.5	(flow represented as <i>valves</i>) Stock and flow diagram for a system dynamics model of a	423
Figure 9.6	two-group rivalry interaction	424
Figure 9.7	using the Vensim system	425
	(lower right)	430

Figure 9.8	The Weibull distribution. Probability density functions (<i>left</i>) and associated event intensity functions (<i>right</i>) shown for different values of the shape parameter. The Weibull distribution reduces to the exponential distribution when the shape parameter is 1.0 and approximates the normal distribution when the shape parameter is around 5	433
Figure 10.1	Major pioneers of cellular automata models: John von Neumann, inventor of cellular automata (<i>upper left</i>); John Horton Conway, inventor of the CA-based Game of Life (<i>upper right</i>); Stuart A. Bremer, pioneer computational political scientist in the use of CA models of international conflict (<i>lower left</i>); Nobel prize winner Thomas C. Schelling, famous for his model of racial segregation	435
Figure 10.2	(lower right)	460
Figure 10.3	Screenshot of a two-dimensional cellular automata model of growth with varying number of neighbors running in NetLogo	467
Figure 10.4	Pioneers of agent-based models. Joshua Epstein, creator of Sugarscape (with R. Axtell) (<i>upper left</i>); Robert Axelrod, author of <i>The Complexity of Cooperation</i> and other CSS classics (<i>upper right</i>); Nigel Gilbert, editor of <i>Journal of</i> <i>Artificial Societies and Social Simulation</i> (<i>lower left</i>); Hiroshi Deguchi, president of the Pacific-Asian Association for Agent-based Social Science	
	(lower right)	471

Figure 10.5	The Sugarscape agent-based model: agent behavior. The	
-	Sugarscape model consists of a society of agents (red dots)	
	situated on a landscape consisting of a grid of square sites	
	where agents with von Neumann neighborhood-vision	
	feed on sugar (yellow dots). Left At initialization agents are	
	assigned a uniform distribution of wealth and they reside	
	in the southwestern region. <i>Right</i> After a number of time	
	steps, most agents have migrated away from their original	
	homeland as they move around feeding on the landscape.	
	This MASON implementation by Tony Bigbee also	
	replicates the "wave" phenomenon generated by the	
	original (and now lost) implementation in Ascape,	
	observed here by the northwest-southeast formations of	
	diagonally grouped agents in the northeast region	474
Figure 10.6	The Sugarscape agent-based model: emergence of	
riguie 10.0	inequality. Lorenz curves (<i>top</i>) and histograms (<i>bottom</i>)	
	portray the distribution of agents' wealth. <i>Left</i> Agents are	
	assigned some wealth at initialization $t = 0$, following an	
	approximately uniform distribution, as shown by the	
	nearly straight Lorenz curve and wealth histogram. <i>Right</i>	
	After some time, inequality emerges as a social pattern, as	
	shown by the more pronounced Lorenz curve and much	
	· ·	
	more skewed histogram, similar to Pareto's Law and	475
Eiguna 10.7	diagnostic of social complexity	473
Figure 10.7	Pioneers of ABM toolkits. Swarm's Chris Langton	
	(upper left); NetLogo's Uri Wilensky (upper right);	
	Repast's David Sallach (<i>lower left</i>); MASON's Sean Luke	
	(<i>lower right</i>). All of them collaborated with others in	
	creating today's leading simulation systems for building	400
F '	social ABMs	480
Figure 10.8	Screenshot of a Sugarscape model implemented in	401
	NetLogo	481

List of Tables

Table 2.1	Comparison of computer programming languages.	
	Paradigm types are explained in the text.	
	Source Wikipedia, "Comparison of programming	
	languages: General comparison"	41
Table 2.2	Main data types in Python	51
Table 2.3	Human entities and selected associations in socio-technical	
	systems. Environments are named, not detailed	56
Table 2.4	Social, artifactual, and natural components of coupled	
	systems	57
Table 2.5	Multiplicity values in UML class diagrams	60
Table 3.1	Measures of association depending on levels of	
	measurement	118
Table 4.1	Origin and evolution of the earliest social	
	networks between 100,000 and 5,000 years ago (100-5	
	kya) according to system-of-systems network order $O(N)$	147
Table 5.1	Social complexity according to the polity-level Human	
	Development Index D_H (2012) in the top fifteen countries.	
	Source United Nations Development Programme, 2013	
	Human Development Report	215
Table 6.1	The Type IV power law model of social complexity	
	compared to other common social processes and	
	distributions	262
Table 6.2	Goodness of fit statistics used for assessment of an	
	empirical power law	265
Table 8.1	Quality criteria for evaluating models in domains	• • •
T 11 10 1	of science	392
Table 10.1	Examples of agent-based models in CSS by empirical	170
TT 11 A 1	calibration	472
Table A.1	The Richardson magnitude μ of five examples of	714
	revolutions in recent centuries	514

Table A.2	Probabilities at micro- and macro-levels of a Shannon	
	channel, given $n = 4$ information processing stages.	
	Overall probability <i>P</i> is an emergence property	515
Table A.3	Effect of adding noise to a Shannon channel, with $n = 5$	
	information processing stages. Note the nonlinear effect on	
	the overall probability of communication P and how even a	
	high value of p results in a slightly better than even-odds	
	value of <i>P</i>	515