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Preface to the Second Edition

Numerous developments have taken place in Computational Social Science
(CSS) in the short time since the first edition of this textbook appeared in 2014.
They include new university and college programs and curricula, in addition to
many exciting research directions offered by big data analytics, advances in social
complexity, and innovations in computational modeling tools. Reviews and com-
ments by readers of the first edition have been encouraging, so this second edition
provides a number of useful enhancements and corrections to the first.

This edition contains sets of questions, problems, and exercises in each chapter.
Their purpose is multifaceted: to test what has been learned; to develop deeper
understanding through problem-solving; to exercise critical thinking in support of
scientific learning; to test or write code to implement ideas learned or in need of
further exploration; or to apply principles in diverse social domains, in different
situational contexts, or in particular disciplines.

If you are inclined, send me your responses to exercises and problems. I am
happy to acknowledge and select the best for mention in the next edition.

Questions and problems are queries with exact answers, whereas exercises are
more open-ended scientific inquiries for exploring and discussing various facets
of the material covered in each chapter. Both are intended to solidify and extend
knowledge, and to test understanding concerning some of the most important ideas
presented in the main content of each chapter. Another function of problems and
exercises is to delve deeper into the foundations of CSS, through special topics that
could seem to branch off from or interrupt the main flow of the chapter. The
answers to most questions and problems are provided in a separate section at the
end of the book.

In each chapter, problems and exercises are presented in approximately the same
order as the subject matter in the chapter, with very few exceptions. These include
cases where knowledge is tested cumulatively, based on a combination of material
drawn from two or more sections.

There are many more questions, problems, and exercises than can be assigned in
a single semester-long course, or perhaps even in a year-long course. The purpose
for this is to allow each instructor some flexibility in selecting the items, and
students the opportunity to investigate additional ideas. A number of the exercises
also provide ideas for more advanced exams, research papers, or theses. Quite a
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number of them can also be used for group assignments to practice collaboration
among students and assistance in coordination or mentoring by the instructor. Many
exercises also lend themselves to creating interesting posters, which can then adorn
a CSS learning environment by integrating research and teaching.

The first draft of these problems and exercises was written during the 2015
Lipari Summer School in Computational Social Science, in the last week of July,
and completed during a sabbatical leave in the spring and summer of 2016. I am
grateful to colleagues, students, and several readers of the first edition, especially
Rob Axtell, Andrew Crooks, Harsh Gupta, Chenyi Hu, František Kalvas, Bill
Kennedy, and Dan Rogers for their comments and suggestions.

Alexandria, VA, USA Claudio Cioffi-Revilla
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Preface to the First Edition

This textbook provides an introduction to Computational Social Science (CSS), an
emerging field at the intersection of traditional social science disciplines, computer
science, environmental science, and engineering sciences. CSS is inspired by
20th century pioneers such as Herbert A. Simon, who saw essentially a new way of
doing social science enabled by computational science and technology. Scientist
and visionary Peter J. Denning once said that “the science of the 21st century will
be computational,” so this book is proof of that idea in social science domains.

As a textbook, this is intended as a systematic introductory survey to familiarize
the reader with the overall landscape of CSS, including its main concepts, princi-
ples, applications, and areas of research. CSS investigates social complexity at all
levels of analysis—cognitive, individual, group, societal, and global—through the
medium of computation, as we will examine in greater detail in Chap. 1. This book
is not intended as an advanced, specialized monograph to develop deep expertise.

The need for this book arose from the lack of unified treatment of the various
areas of theory and research in CSS. As a consequence, those of us involved in
teaching this new subject have been constrained to use a disparate library of
readings without a single, unified framework. This book aims to be both compre-
hensive (include all major areas of CSS) and scientifically integrated by an over-
arching framework inspired by the paradigm of complex adaptive systems, as
developed by Simon and his contemporaries in what may now be called the
Founders’s Generation (described in Chap. 1).

This project originated from the course on Introduction to CSS that has been
taught at George Mason University for the past ten years. It is the core course in
CSS, required of all students entering our graduate program in the Department of
Computational Social Science. Initially, I taught the course, then other colleagues
joined. Approximately ten students have taken the course each year, mostly from
the CSS program, but also from other departments across the social sciences,
computer science, environmental science, and engineering sciences.

This book is intended for two types of readers, which reflect the diverse student
communities who have taken this course over the years. Some students will use it as
a one-time, comprehensive exposure to the field of CSS. Other students might use it
as foundation for further study through more advanced, specialized work in one or
more of the areas surveyed here. This book should also be helpful to students
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preparing for their doctoral examination in CSS, as a review of basic ideas and a
way to integrate knowledge.

The background assumed of the reader consists of some familiarity with one or
more of the social sciences at a level equivalent to undergraduate study, basic
knowledge of programming in any language (nowadays Python has become quite
popular and is an excellent language for learning about computation), and some
ability to follow mathematical modeling using logic, elementary probability, and
basic calculus. Higher mathematics are unnecessary for introducing CSS.

The plan of the book is as follows: Chapter 1 provides an introduction, focusing
primarily on the meaning of complex adaptive systems in social domains, including
the significance of Herbert A. Simon’s seminal theory and the paradigm it provides
for CSS. This initial chapter also explains the main areas of CSS covered in this
textbook, which are taken up in Chaps. 3 to 10. Chapter 2 provides a review of
basic ideas in computing from a social science perspective, or computation as a
paradigm for developing social science; it is not intended as a substitute for formal
instruction on computation and programing for social scientists.

The following chapters cover major areas of CSS, corresponding to four distinct
methodological approaches, as summarized in Sect. 1.6:

• Automated information extraction (Chap. 3)
• Social networks (Chap. 4)
• Social complexity:

– Origins and measurement (Chap. 5)
– Laws (Chap. 6)
– Theories (Chap. 7)

• Social simulation:

– Methodology (Chap. 8)
– Variable-based models (Chap. 9)
– Object-based (Chap. 10)

Each chapter contains a brief opening section introducing and motivating the
chapter. This is followed by a section summarizing some of the history of CSS in
the chapter’s area, based on significant milestones. The purpose of these historical
chronologies associated with each chapter’s theme is to make the reader aware of
significant scientific roots of the field of CSS, including its braided development
with related disciplines; it does not provide a systematic history. Each chapter also
includes a list of Recommended Readings, primarily intended as a guide for
deepening understanding of each chapter, not as exhaustive bibliographies.

The style of the textbook attempts to strike a balance between an informal,
reader-friendly, narrative tone, and a more formal tone that is necessary for high-
lighting rigorous concepts and results. Concept formation is a major emphasis, as is
the statement of laws and principles from theory and research in quantitative social
science, especially formal theory and empirically validated models. Along these
lines, an effort is made, beginning in Chap. 2, to provide CSS with systematic,
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scientific, graphic notation that has been so sadly lacking in traditional social sci-
ence. This is done by adopting the Unified Modeling Language (UML) as a viable
system for describing social complexity through graphic models that have powerful
analytical meaning, as well as having direct correspondence with computation and
code. Mathematical notation used in this book is standard and aims at maintaining
consistency across chapters.

Finally, in terms of possible uses of this textbook, instructors may consider the
following options. The ten chapters of this textbook are normally more than suf-
ficient for a one-semester course, because some chapters will require more than one
week to work through. Chapter 1 is best covered in a single session. Chapter 2 can
easily be covered in two sessions, by dedicating the second session to UML.
Chapters 4, 5, 6, 7, 9, and 10 can also each be covered in two sessions, by dividing
the material into the main sections composing each chapter. Hence, another option
is to use this textbook for a two-semester sequence, as is done in many other fields.
This extended format would also permit more use of Recommended Readings,
supplemented by additional bibliography, and spending more time analyzing
examples to deepen understanding of concepts and principles. Readers are strongly
encouraged to use the list of Recommended Readings to study the classic works,
which are highlighted in the historical section at the beginning of each chapter.

This book has benefited from significant feedback from students, so I welcome
future suggestions for corrections and improvements. I hope you, the reader, enjoy
learning from this book at least as much as I have enjoyed writing it.

Washington, DC Claudio Cioffi-Revilla
September 2013
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