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Abstract

Constraint programming is used for a variety of real-world optimisa-
tion problems, such as planning, scheduling and resource allocation prob-
lems. At the same time, one continuously gathers vast amounts of data
about these problems. Current constraint programming software does not
exploit such data to update schedules, resources and plans. We propose a
new framework, that we call the Inductive Constraint Programming loop.
In this approach data is gathered and analyzed systematically, in order to
dynamically revise and adapt constraints and optimization criteria. In-
ductive Constraint Programming aims at bridging the gap between the
areas of data mining and machine learning on the one hand, and constraint
programming on the other hand.

1 Introduction

Machine Learning/Data Mining (ML/DM) and Constraint Programming (CP)
are central to many application problems. ML is concerned with learning func-
tions/patterns characterizing some training data whereas CP is concerned with
finding solutions to problems subject to constraints and possibly an optimization
function.

The problem with current technology is that the problems of data analy-
sis and constraint satisfaction/optimization have almost always been studied
independently and in isolation. Indeed, there exist a wide variety of success-
ful approaches to analysing data in the field of ML, DM and statistics, and
at the same time, advanced techniques for addressing constraint satisfaction
and optimization problems have been developed in the CP community. Over
the past decade a limited number of isolated studies on specific cases has indi-
cated that significant benefits can be obtained by connecting these two fields
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[EF01, XHHL08, DGN08, BHO09, KBC10, CJSS12], but so far a truly general,
integrated and cross-disciplinary approach is missing.

CP technology is used to solve many types of problems, such as power com-
panies generating and distributing electricity, hospitals planning their surgeries,
and public transportation companies scheduling buses. Despite the availability
of effective and scalable solvers, current approaches are still unsatisfactory. The
reason is when using CP technology to solve these applications, the constraints
and criteria, that is, the model, must be statically specified. However, in reality
often this model needs to be revised over time. The revision can be needed
to reflect changes in the environment due to external events that impact the
problem. The revision can also be needed because the execution of the solution
generated by the model has modified the characteristics of the problem. Finally
the revision can be needed simply because the original model did not capture
correctly the problem. Observing the impact of the solution allows us to correct
or improve the model. Therefore, there is an urgent need for improving and
revising a model over time based on data that is continuously gathered about
the performance of the solutions and the environment they are used in.

Exploiting gathered data to modify the model is difficult and labor intensive
with state-of-the-art solvers, as these solvers do not support DM and ML. As
a consequence, the data that is being gathered today in order to monitor the
quality of the produced solutions and to help evaluating the effect of possible
adjustments to the constraints or optimization criteria, is not fully exploited
when changes in a schedule or plan are needed. Hence, schedules and plans that
are produced are often suboptimal. This, in turn, leads to a waste of resources.
Instead of using data passively, data should be actively analysed in order to
discover and update the underlying regularities, constraints and criteria that
govern the data.

In this paper, we propose and formalize the new framework of inductive
constraint programming. This framework is based on what we call the Induc-
tive Constraint Programming loop, which is an interaction between a machine
learning component (ML) and a constraint programming component (CP). The
ML observes the world and extracts patterns. The CP solves a constraint sat-
isfaction or optimization problem using these patterns and whose solution is
applied to the world. We assume the world changes over time, possibly due to
the impact of applying our solution. This process is repeated in a loop. Induc-
tive constraint programming will serve the long-term vision of easier-to-use and
more effective tools for resource optimization and task scheduling.

2 Background

In this section we introduce the basic concepts used later in the paper. We
briefly define and explain what is a constraint problem and a learning problem.
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2.1 Constraint problem

The central notion in constraint programming is the constraint. A constraint
is a Boolean function whose scope is a set of (integer) variables. Depending on
whether the function returns true or false for a given input assignment of its
variables, the constraint accepts or rejects the assignment. For instance, the
constraint X1 + X2 = X3 specifies that any combination of values for variables
X1, X2 and X3 has to be such that the sum of X1 and X2 equals X3. Based on
the notion of constraint, we define constraint network and solver.

A constraint network N = (X,D,C, f) is composed of: a set X of variables
taking values in domain D. These variables are subject to constraints in the
set C. The optional evaluation function f takes as input an assignment on X
and returns a cost for it. A solution (optionally best solution) of N is a tuple in
DX satisfying all the constraints in C (optionally minimizing f). A solver takes
as input a constraint network and returns a solution/best solution or failure in
case no solution satisfying all the constraints exists.

There exist several languages/formats for specifying a constraint problem to
be given to a solver for solving. Take for instance the Sudoku problem. Figure 1
expresses Sudoku as a constraint satisfaction problem, using a pseudo-MiniZinc
language [MS14]. Line 1 defines an input matrix start containing the pre-
filled cells of the Sudoku. Line 2 defines the matrix puzzle of variables that
will contain the solution of the Sudoku. Lines 4-5 put equality constraints be-
tween the prefilled cells in the input matrix start and the matrix of variables
puzzle. Lines 7-8 post an alldifferent constraint on every row of puzzle.
alldifferent(xi | i in 1..n) is a global constraint that specifies that vari-
ables x1..xn must all take different values. Lines 10-11 do the same for the
columns. Lines 13-15 is a bit more tricky as it has to play with the indices of
the subsquares to post the allfdifferent constraints on the variables of every
subsquare in puzzle. Finally, line 16 calls the solver on the instance.

2.2 Learning problem

In machine learning, the goal is to learn a hypothesis that explains the ob-
served data. The data typically consists of a set of training examples E, which
are assumed to be independent and identically distributed. Different learning
methods differ largely in the type of examples to learn from, and the type of
hypothesis they want to learn. The most popular learning setting is supervised
learning, where each example in E is accompanied by a label that should be
predicted. One can then search for a linear function over the examples that best
predicts the labels, or for a decision tree that does so. More formally, we define
the learning task as follows:

A learning problem L = (E,H, t, loss) is composed of a set E of examples,
a hypothesis space H, the target function t that one wants to learn, and a loss
function loss(E, h, t) that measures the quality of a hypothesis h ∈ H w.r.t.
dataset E and the target hypothesis t. The task is to find a hypothesis that
minimizes the loss.
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1 ar ray [ 1 . . 9 , 1 . . 9 ] of 0 . . 9 : s t a r t ; %% i n i t i a l board 0 = empty
2 ar ray [ 1 . . 9 , 1 . . 9 ] of var 1 . . 9 : p u z z l e ;

3 % f i l l i n i t i a l board
4 con s t r a i n t f o r a l l ( i , j i n 1 . . 9 where s t a r t [ i , j ] > 0) (
5 pu z z l e [ i , j ] = s t a r t [ i , j ] ) ;

6 % A l l d i f f e r e n t i n rows
7 con s t r a i n t f o r a l l ( i i n 1 . . 9 ) (
8 a l l d i f f e r e n t ( [ p u z z l e [ i , j ] | j i n 1 . . 9 ] ) ) ;

9 % A l l d i f f e r e n t i n columns .
10 con s t r a i n t f o r a l l ( j i n 1 . . 9 ) (
11 a l l d i f f e r e n t ( [ p u z z l e [ i , j ] | i i n 1 . . 9 ] ) ) ;

12 % A l l d i f f e r e n t i n sub−s qua r e s :
13 con s t r a i n t f o r a l l ( i , j i n 1 . . 3 ) (
14 l e t { i n t : a = ( i −1)∗3; i n t : b = ( j −1)∗3} i n
15 a l l d i f f e r e n t ( [ p u z z l e [ a+i1 , b+j 1 ] | i 1 , j 1 i n 1 . . 3 ] ) ) ;

16 so l ve s a t i s f y ;

Figure 1: Sudoku in pseudo-Minizinc.

For example, given real-valued data E ⊂ Rd and real-valued labels identified
by target function t, where ∀e ∈ E : t(e) ∈ R, the goal of linear regression
is to learn a linear function hc : E → R with coefficients c that minimizes
the sum of squared errors between the predicted value and the observed value:
loss(E, hc, t) =

∑
e∈E |hc(e) − t(e)|2 =

∑
e∈E |e · c − t(e)|2. Many other loss

functions and hypothesis spaces have been defined in the literature.
A range of machine learning methods such as (linear) regression and support

vector machines can be expressed as standard optimisation problems (often
unconstrained), where the goal is to find an assignment to function parameters
such that the loss is minimized. In practice, usually specialised solving methods
are used.

3 Inductive Constraint Programming Loop

The inductive constraint programming loop will cope with changes in the world
by iteratively solving a learning problem and a constraint problem. The loop is
composed of several components that interact with each other through writing
and reading operations. A visualization of the loop is given in Figure 2. We
introduce each of the elements in the loop in turn.

The CP component is composed of a constraint network N = (X,D,C, f)
(f is optional), a constraint solver Xsolve, and a Solutions repository. Xsolve
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Figure 2: The Inductive Constraint Programming loop

generates solutions of N , or good/best solutions of N according to f , that
it writes in the Solutions repository. In case Xsolve is not able to produce
any solution to be applied to the world, the CP component notifies the ML
component by sending information about the failure.

The ML component is composed of a learning problem L = (E,H, t, loss), a
learner XLearn, and a Patterns repository. XLearn learns hypotheses t (typically
one) and writes them in the Patterns repository.

The World component is composed of a world W , an evaluation function
eval world, and a Observations repository. The world W can have its own inde-
pendent behavior, dynamically changing under the effect of time and the effect
of applying solutions of the Solutions repository. The solutions are evaluated by
the eval world function and this feedback is stored in the Observations reposi-
tory.

Now that we have defined the basis of the inductive constraint programming
loop, we need to define the way the CP component, the ML component and the
world interact with each other. They interact through a set of reading/writing
functions.

An inductive constraint programming loop is composed of a world (W, eval world),
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a CP component (N,Xsolve), and an ML component (L,XLearn). The loop uses
the following channels of communication:

• function World-to-ML reads data and evaluations from the Observations
repository and updates the learning problem L, that will be used by XLearn
to learn a hypothesis h;

• function CP-to-ML is used to send feedback from the CP component to
the ML component when Xsolve cannot find any satisfactory solution to
be applied to the world;

• function World-to-CP reads data from the Observations repository that can
be used to directly update the constraint network N used by Xsolve;

• function ML-to-CP reads patterns from the Patterns repository and up-
dates the constraint network N used by Xsolve to produce solutions;

• function Apply-to-World takes solutions in the Solutions repository and
applies them to the world, if possible.

The following pseudo code demonstrates how these communication channels
are used in the inductive constraint programming loop:

Algorithm 1 Pseudo code of a loop cycle using the components.

function cycle(Observations, optional PreviousSolutions)
Lo ← World-to-ML(Observations)
Lp ← CP-to-ML(PreviousSolutions)
L← constructL(Lo, Lp)
Patterns ← applyXlearn(L)

No ← World-to-CP(Observations)
Np ← ML-to-CP(Patterns)
N ← constructN(No, Np)
Solutions ← applyXsolve(N)

if Apply-to-World(Solutions) then
return

else
cycle(Observations, Solutions)

end if
end function

Initially, World-to-ML is used to gather training data to the ML component.
These data can be feedback from previous executions of solutions of the CP
component on the world. The solution of the previous cycle can also directly
be used as well, through CP-to-ML. This is especially useful if the previous
solution could not be applied to the world, for example because the learned
patterns lead to an inconsistency. Using the output of World-to-ML and CP-
to-ML, the learning problem L can then be constructed, specific to the learner
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at hand. Next, the learner is applied to L and patterns are obtained. These
patterns can be weights of an objective function, constraints, or any other type
of structural information that is part of the CP problem.

A similar process then happens for the CP component, the network is con-
structed using the output of World-to-CP and ML-to-CP, after which the solving
method is used and solutions are obtained.

These solutions are then applied to the world using Apply-to-World. As
mentioned before, it may be that the found solution (or non-solution) is not
applicable to the world. In that case, a new iteration of the loop is started
immediately which bypasses the world. Otherwise the solutions are applied to
the world, after which a new cycle with new observations can be started.

We can observe that there is no direct link between the ML component and
the world. Our framework is indeed devoted to solving combinatorial problems
such as scheduling and routing, revising them based on feedback from the world;
it does not aim to only classify or predict events in the world.

4 Illustrative Example

To illustrate the inductive constraint programming loop we will use a scheduling
setting that occurs in hospitals. This setting includes an ML component, a CP
component and a world component.

We will first describe the CP component. In this component we focus on
a task scheduling problem. The treatment of a patient typically involves the
execution of various tasks on this patient, such as executing scans, taking blood
tests, operating the patient, physiotherapeutic sessions, and so on. These tasks
need to be executed in a well-defined order, and require the use of the resources
of the hospital for a certain amount of time. The overall scheduling problem is
how to schedule these tasks in the shortest amount of time possible, using the
limited resources of the hospital.

Important parameters of this scheduling problem hence include the resources
available in the hospital and the tasks that need to be executed. For each task,
it is important which resources need to be used, how many such resources are
needed, and for how long they need to be used.

Whereas for many patients it is clear which procedures need to be followed
before the patient can be discharged from the hospital, this is not the case
for the duration of these tasks: depending on parameters such as age or health
conditions, a certain task may take much longer for one patient than for another
patient.

The task of the ML component is to address this challenge: its task is to pre-
dict how long a task is estimated to take for a patient. This task involves solving
a regression problem as identified earlier: for each given task for a patient, we
need to predict its duration, which is a real number.

The world component executes the schedules; it produces data about pa-
tients and observations concerning the true durations of tasks.
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Clearly, as the tasks are executed in the hospital, the predicted durations
may differ from the actual durations. Furthermore, new patients and hence new
tasks arrive. This means that the hospital needs to schedule tasks on a regular
basis. The patient data that is collected during each such iteration can here be
used to improve the quality of the predicted task durations. This makes it a
good example of the inductive constraint programming loop. Within this loop,
we can distinguish the following components and functions:

• function World-to-ML reads historical patient data and historical task du-
rations for these patients; furthermore, it reads the patients that are cur-
rently in the hospital and the tasks that need to be executed for these
patients;

• the ML component predicts the durations for the tasks that need to be
executed, using the historical data;

• function ML-to-CP reads the learned durations and updates the CP net-
work accordingly;

• function World-to-CP reads the tasks that need to be executed from the
world, as well as the resources available in the hospital;

• the CP component solves the updated scheduling problem;

• function Apply-to-World applies the resulting schedule in the world.

In this example, the function CP-to-ML is not used; it could be used, for instance,
if there is a preference to schedule nurses and doctors in similar teams or with
similar load or time-breaks from day-to-day.

Both components can be formalized using a CP language, such as the Mini-
Zinc language mentioned earlier. Figure 3 shows MiniZinc code for the task
scheduling problem. In this model, the parameters of the problem setting are
reflected as follows:

• the dur array represents the durations of all the tasks, as predicted by the
ML component (line 3);

• the prev array indicates for each task which task needs to be executed
before this task; note that we assume that there is a dummy first task
that precedes all tasks (line 4);

• the cap array represents the capacity of the resources available (line 7);

• the use array represents how many resources of each type need to be used
to execute a certain task (line 8).

The variables that need to be found are the start variables (line 11), which
indicate at which times the tasks need to be executed. The constant max_time
represents the latest time at which a task may still start, this could be specified
for each task separately as well.

The constraints are twofold:
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1 % Tasks : d u r a t i o n and p r ecedence
2 i n t : nbTasks ; set of i n t : Tasks = 1 . . nbTasks ;
3 ar ray [ Tasks ] of i n t : dur ;
4 ar ray [ Tasks ] of i n t : p r ev ;

5 % Resou rce s : c a p a c i t y and use
6 i n t : nbRes ; set of i n t : Res = 1 . . nbRes ;
7 ar ray [ Res ] of i n t : cap ;
8 ar ray [ Res , Task ] of i n t : use ;

9 % Va r i a b l e s : s t a r t t imes
10 i n t : max time ;
11 ar ray [ Tasks ] of var 0 . . max time : s t a r t ;

12 % Resource c a p a c i t i e s
13 con s t r a i n t f o r a l l ( r i n Res ) (
14 cumu l a t i v e ( s t a r t , dur , use [ r ] , cap [ r ] ) ) ;

15 % Precedence between t a s k s
16 con s t r a i n t f o r a l l ( t i n Tasks ) (
17 s t a r t [ t ] > ( s t a r t [ p r ev [ t ] ] + dur [ p r ev [ t ] ] ) ) ) ;

18 % Minimize the amount o f t ime
19 so l ve minimize max( t i n Tasks ) ( s t a r t [ t ]+dur [ t ] ) ;

Figure 3: The hospital scheduling problem in pseudo-Minizinc.

• the constraint on line 14 is a cumulative constraint; for a given resource,
it ensures for each time point that the use of the resource is within the
capacity bound of that resource. Note that the cumulative constraint is
a built-in constraint available in the MiniZinc language. Constraints that
can involve any number of variables are called global constraints. They can
capture complex structural constraints of the problem. Global constraints
are an essential part of the efficiency of CP models.

• the constraint on line 17 ensures that a task only executes after the task
that should precede it has finished.

The optimization criterion is to minimize the makespan, that is, to assign the
start variables so that the total amount of time used by the schedule is mini-
mum (line 19).

To predict the durations of the tasks in the hospital, a regression task needs
to be solved. Many different models can be made for this regression task, each
corresponding to learning a different type of regression model. Arguably the
most simple regression model is the linear model, in which the task duration
prediction is based on a linear combination of the characteristics of the patient
on which the task is executed.
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1 % Dimension o f the i n pu t data .
2 i n t : N; % Number o f o b s e r v a t i o n s
3 i n t : M; % Dimension o f o b s e r v a t i o n s

4 % Inpu t data : ob s e r v ed data (X) and t a r g e t l a b e l s (Y)
5 ar ray [ 1 . . N, 1 . .M] of f l o a t : X ;
6 ar ray [ 1 . . N] of f l o a t : Y ;

7 % Weights to f i t (W[M+1] i s c on s t an t term )
8 ar ray [ 1 . .M+1] of var f l o a t : W;

9 % Ca l c u l a t e p r e d i c t i o n s and e r r o r s
10 ar ray [ 1 . . N] of var f l o a t : Est =
11 [ sum( j i n 1 . .M) (W[ j ]∗X[ i , j ] ) + W[M+1] | i i n 1 . .N ] ;
12 ar ray [ 1 . . N] of var f l o a t : E r r =
13 [ Est [ i ] − Y[ i ] | i i n 1 . .N ] ;

14 % Minimize the squa red e r r o r
15 so l ve minimize norm2 ( Er r ) ;

16 % Au x i l i a r y f u n c t i o n s f o r computing the 2−norm
17 f unct ion var f l o a t : norm2 ( ar ray [ i n t ] of var f l o a t : W) =
18 sum( j i n i n d e x s e t (W) ) ( W[ j ]∗W[ j ] ) ;

Figure 4: The hospital learning problem in pseudo-Minizinc.

The problem of learning such a regression model is formalized in Figure 4.
Variables X and Y represent the training data, where X contains the descriptive
attributes of various tasks and Y the historical durations of these tasks; variable
W represents the weights of the features that we are learning.

Based on these weights, we can calculate an error for the predictions; line 10

calculates a weighted linear combination for each training example, using the
weights W; this prediction is used in line 12 to calculate an error for each example.
Line 15 minimizes the error over all examples, where line 17 defines that the
errors for the individual examples are combined by summing the squared errors.

The scheduling model and the machine learning model together define both
components of the inductive constraint programming loop. We here demon-
strated how a declarative, unified language could be used to model both the
learning problem and the solving problem. While a single language for both the
learning and solving is an appealing prospect, it is not a requirement for the
applicability of the inductive constraint programming loop.

5 Other Examples

We now briefly describe a number of other problems that can be captured in
the inductive constraint programming loop. For each of them, we define the
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ML	  CP	  

world	  

Figure 5: The loop of the bus schedule problem

problem, and then define the interactions between the world, the ML compo-
nent, and the CP component. The first three problems we describe (optimizing
bus schedules, car pooling, and energy-aware data centers) are real world prob-
lems that can be expressed in a neat and efficient way through the inductive
constraint programming loop. The two last (constraint acquisition and portfo-
lio selection) are existing academic problems that can be seen with a new eye
through the inductive constraint programming loop.

5.1 Optimizing bus schedules

In order to improve human mobility, the region of Pisa plans to take into ac-
count information about the trajectories of people taking their car in order to
improve the public transportation system. The problem is composed of two
parts. The first one consists in tracking the GPS localisation of cell phones
to understand the way people commute in the Pisa region. The second part
consists in optimising bus schedules to meet as much as possible the require-
ments of these people. The problem is dynamic as the implementation of the
generated bus schedule will affect the way people commute, which should be
observed again, and so on. Such a problem can be represented in the inductive
constraint programming loop framework.

The world is observed through the GPS localisation of cells phones in the
region of Pisa and is represented by a set of trajectories of individuals. An eval-
uation of the traffic quality is provided by the eval world function. eval world
is based on a measure of the amount of traffic jams generated by the traffic.
All these observations are stored in the Observations repository. The function
World-to-ML reads observations that are given as input to the ML component.
The ML component uses these observations to learn patterns from the trajecto-
ries and from the quality evaluation of the traffic. These learned patterns on the
trajectories/time slots are written in the Patterns repository. The CP compo-
nent contains a constraint network that models the problem of generating good
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ML	  CP	  

world	  

Figure 6: The loop of the carpooling problem

bus schedules for the region of Pisa, that is, bus schedules that cover as much as
possible trajectories of people at the time they need them. It is parameterized
by the weight of each trajectory/time slot. The values of these parameters are
computed by the function ML-to-CP based on the input from Patterns. The out-
put of the CP component is a new bus schedule that is written in the Solutions
repository to be applied to the world by function Apply-to-World. The process
can loop for ever. Figure 5 shows the loop solving this problem.

5.2 Carpooling

The carpooling application is aimed at proposing carpooling matches to a set
U of users participating to the service, based on their actual mobility (the trips
they performed with their private cars) and any information about which kind
of match proposals are likely to be accepted by a user. This problem can be
modelled in the inductive constraint programming loop framework.

The world is observed through a set of raw trajectories for each user, de-
scribing the recent mobility of that user. The eval world function returns the
response of each user to the previous carpooling solution offered to her (accepted,
rejected, will reject next time). All these data are written in the Observations
repository. The function World-to-ML simply reads this information and sends it
to the ML component, which will perform some mining operations to produce a
temporally labelled weighted oriented graph G = (U,E, t, p), where there exists
an edge (u, v) ∈ E if and only if user v can give a lift to user u. Each edge
e is labelled with the time t(e) the lift can take place, and a probability p(e)
of having the match proposal being accepted by both u and v. The graph G
is written in the Patterns repository. ML-to-CP reads this graph and encodes
it as a constraint network. The observation of the world also provides other
information useful to the carpooling system, e.g. the number of passengers that
can be hosted in the users vehicle. The function World-to-CP reads this infor-
mation and directly sends it to the CP component, which will add the relevant
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ML	  CP	  

world	  

Figure 7: The loop of the energy-aware data center problem

constraints in the network. For each user u, a constraint c(u) defining the max-
imum capacity of the vehicle of user u wil be added. The CP component solves
the network to find the best solution. This solution is a carpooling assignment
that maximizes the reduction of cars and the likelihood of acceptance by users.
It is written in the Solutions repository, then proposed to the users. Figure 6
shows the loop solving this problem.

5.3 Energy-aware Data Centres

The aim is to improve the energy-efficiency of data-centers. Consider a cloud
computing service, where customers contract to run computing services (tasks)
throughout the day. Tasks are assigned to machines within the data centre and
require a certain amount of resources for the duration which they run. The aim
is to schedule these tasks such that the overall cost of energy used is minimized.
However this is complicated by the fact that large electricity consumers, like
a data centre, will typically pay a variable price for their electricity, which is
not known in advance. In Ireland for example, the price is not known until
four days after. The price may also fluctuate significantly throughout the day,
which provides the opportunity to reduce the energy use during peak periods
and instead perform the work during cheaper periods. This requires a forecast
of the price ahead of time and to produce a schedule of the tasks based on the
forecasted price data.

This application was the focus of the first inductive CP Challenge1 and is
modeled in the inductive constraint programming loop as follows. The world
consists of a number of elements: the wide range of factors which affect the
energy market, like weather conditions, producers/consumers of electricity, etc;
and customers of the data center who contract the various workloads. World-
to-CP gives to the CP component the tasks to be scheduled at the next turn;

1http://iconchallenge.insight-centre.org/
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ML	  CP	  

world	  

Figure 8: The loop of the constraint acquisition problem

World-to-ML takes input from the world to produce a hypothesis h modeling
the electricity price. ML-to-CP incorporates this forecast to produce a solution
to the scheduling problem minimizing the forecast energy cost. Apply-to-World
takes this schedule and applies it to the world. As time progresses and the world
changes World-to-ML will need to evolve the forecast model, and subsequently
the schedule, to take account of factors affecting the energy price. Figure 7
shows the loop solving this problem.

Here, the machine learning is applied once and the outcome is directly
used by the CP program. An alternative, proposed by Tulabandhula and
Rudin [TR13], is to do the machine learning while taking the operational cost
(the outcome of the CP problem with the learned weights) into account. This
can be achieved by making the operational cost a part of the loss function of
the ML problem. One can then repeatedly iterate between solving the ML and
CP component, before applying the found schedule in the world.

5.4 Constraint acquisition

Modeling a problem as a constraint network requires expertise in constraint
programming. If we want novices to use constraint programming, we need
automatic constraint acquisition systems that assist the user in the modeling
task. CONACQ is such a system [BCOP07]. CONACQ interacts with a user
to learn a target constraint network that represents the problem of the user.
We describe how CONACQ can be implemented as an instance of the inductive
constraint programming loop.

The world involves a set of examples defined on a set of objects/variables X.
An example is an assignment of a value to each of the variables in X. Examples
are produced by the CP component or by the world itself. The evaluation
function eval world is the user herself, who evaluates the quality of examples.
In CONACQ the quality is either true or false, depending on if the example
is a solution of the target constraint network or not. The examples and their
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Figure 9: The loop of the portfolio selection problem

evaluation are written in the Observations repository. World-to-ML simply reads
the classified examples from Observations and gives them to the ML component.
The hypotheses space H used by the ML component is defined by the language
of constraints used to express the target network. When reading examples
from Observations, the ML component updates –if needed– the hypothesis h
in the form of a set of constraints that correctly classify the examples. These
learned constraints are written in the Patterns repository. Based on the learned
constraints, the ML component generates other constraints that implement the
followed query strategy (e.g., near-miss). These constraints together with the
learned constraints are sent to the CP component via the ML-to-CP function.
The CP component solves the network built with all the constraints provided by
the ML component and generates new solutions that are stored in the Solutions
repository. Apply-to-World sends the solutions from the repository to the world
to be classified by the user/eval world function. In case the constraint network
has no solution that can be provided to the world, the CP-to-ML function notifies
the ML component that it was not able to generate a satisfactory query, possibly
with some reasons of failure such as an inconsistent set of constraints. Figure 8
shows the loop solving this problem.

5.5 Portfolio selection

An algorithm portfolio contains a number of algorithms or solvers which are all
suitable for solving the same kind of problem, but have different performance
characteristics. The aim is to, given a problem instance to solve, determine the
best solver for that particular problem, where “best” is defined according to an
application-specific metric. Algorithm portfolios have been shown to achieve sig-
nificant performance improvements over individual algorithms. One prominent
application area of these techniques is constraint programming.

Within the inductive constraint programming loop, this problem can be
modelled as a data mining problem that takes its data from runs of CP solvers.
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The world consists of the performance data of CP solvers on CP instances.
World-to-ML reads this performance information and the ML component learns
a model that describes the predicted performance of CP solvers on CP instances
and allows to determine the best CP solver for a particular CP instance. When
a new CP instance to be solved appears in the world, World-to-ML and World-
to-CP read it. World-to-ML sends it to the ML component, which classifies
it and writes the classification in the Patterns repository. World-to-CP sends
the CP instance to be solved to the CP component. ML-to-CP reads in the
Patterns repository the classification provided by the ML component to decide
which solver to use. The selected solver then solves the instance and generates
a new data point in the world through the Apply-to-World function. This new
world can lead the ML component to update the predictive model, and so forth.
Figure 9 shows the loop solving this problem.

6 Conclusion

After a brief introduction to constraint programming and machine learning,
we have introduced the framework of inductive constraint programming. The
key idea in the inductive constraint programming loop is that the CP and ML
components interact with each other and with the world in order to adapt
the solutions to changes in the world. This is an essential need in problems
that change under the effect of time, or problems that are influenced by the
application of a previous solution. It is also very effective for problems that are
only partially specified and where the ML component learns from observation of
applying a partial solution, e.g. in the case of constraint acquisition. We have
presented multiple examples of the use of inductive constraint programming
loop in real world problem settings. Many other settings exist, and as more
and more often learning methods are used for producing schedules and other
operational plans, the need for a framework that can adapt to changes in the
world will increase.
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