
Spatio-temporal Models
for Formal Analysis and Property-based Testing

Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

RMIT University, Melbourne, Australia
s3297335@student.rmit.edu.au, {maria.spichkova,janolaf.blech}@rmit.edu.au

Abstract. This paper presents our ongoing work on spatio-temporal
models for formal analysis and property-based testing. Our proposed
framework aims at reducing the impedance mismatch between formal
methods and practitioners. We introduce a set of formal methods and
explain their interplay and benefits in terms of usability.1

1 Introduction

Specifying safety-critical systems, it is not enough to use controlled languages
and semiformal languages – the precise and easy-to-read formal specification is
essential to ensure that the safety properties of the system really hold. More-
over, the software development process should include aspects of human factors
engineering, to improve the quality of software and to deal with human factors
in a systematic way, cf. [25]. Human factor aspects usually cover the design of
human-computer interface of the software, human-related aspects of the develop-
ment process, as well as the corresponding automatisation. By the Engineering
Error Paradigm [20], humans are seen as a “component of the system” (almost
equivalent to software and hardware components in the sense of operation with
data and other components), which is the most unreliable in the system.

Software errors can cause wasting of resources [19,6]. An estimate of one tril-
lion US dollars was spent on IT hardware, software and services by governments
around the world. Software errors can also be fatal, and in many cases they might
be prevented by having a more human-oriented development process and meth-
ods. As per statistics presented by Dhillon [8], humans are responsible for 30%
to 60% the total errors which directly or indirectly lead to the accidents, and in
the case of aviation and traffic accidents, 80% to 90% of the errors were due to
humans. Thus, it is necessary to have human factors engineering as a part of the
software development process. One of the widely cited accidents in safety-critical
systems are the accidents involved massive radiation overdoses by the Therac-25
(a radiation therapy machine used in curing cancer) that lead to deaths and
serious injuries of patients which received thousand times the normal dose of
radiation [17,16]. The causes of these accidents were software failures as well

1 Preprint. Accepted to the Software Technologies: Applications and Foundations
(STAF 2016). Final version published by Springer International Publishing AG.

ar
X

iv
:1

61
2.

01
68

6v
2

 [
cs

.S
E

]
 9

 D
ec

 2
01

6

2 Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

as problems with the system interface. The error was improbable to reproduce
because it required very specific sequence of commands in order to occur. The
improbability of the sequence makes the error unlikely to be noticed with manual
testing because it is almost impossible to think of all combinations of commands
and edge cases. Automatisation might solve this problem, but the challenge is
to create an automatisation which is not only efficient but also easy-to-use, i.e.,
is human-oriented.

One of the challenges in software engineering is to develop correct software.
The software should meet user requirements, its properties should satisfy the
model corresponding to design objective and the implementation should pass
all functional tests. Rigorous reasoning is the only way to avoid subtle errors
in algorithms, and it should be as simple as possible by making the underlying
formalism simple tools [14]. Formal methods (FMs) refer to a class of mathe-
matical techniques used in development of large scale complex systems. These
techniques can result in high-quality systems that can be implemented on-time,
within budgets and satisfy user requirements [4].

The value of FMs in real systems has far reaching consequences. For in-
stance, FMs help engineers get the code right by getting the design right in the
first place. Secondly, FMs help engineers gain a better understanding of the de-
sign. Despite all advantages, formal methods are not widely used in large-scale
industrial software projects for many reasons [27]. One of the core obstacles is
the lack of readability and usability. The syntax of FMs is often too complicated
and unreadable for novices, which makes an impression that all the FMs require
huge amount of training. There also is a prejudice that the return of investment
is very minimal and only justified in critical systems such as medical devices,
what is generally not true [18].

Spatio-temporal aspects of safety-critical systems are crucial to verify and
to test a system, as in most cases the system properties should be analysed in
relation to the time and to the location. To analyse spatio-temporal phenomena,
we have to specify the corresponding spatial, temporal and event semantics for-
mally and in a human-oriented way. The goal of our work is to increase usability
of the analysis (in the sense of verification and testing) of the spatio-temporal
aspects on the base of the corresponding formal models.

Property based testing allows us to generate huge numbers of system oper-
ations (e.g API calls or external events) and permute these operations in ways
that is difficult for humans to think of. These combinations are then used to
verify the system under test according to the spatio-temporal specification.

Contributions: The proposed framework will help to reduce the impedance
mismatch between formal methods and model-based representations and system
code, which in turn will help in increasing the adoption rate by practitioners.
Our framework aims at providing a set of application programming interfaces
(APIs) to map programming language constructs to the formal methods repre-
sentation. The usability of formal methods will be improved indirectly, as the
formal method constructs will be expressed in terms of system code.

Spatio-temporal Models for Formal Analysis and Property-based Testing 3

2 Background

2.1 Formal Methods

Formal methods were introduced as a means of clearly specifying system re-
quirements. Hinchey [10] argues that although formal methods are essential in
the development of critical systems, they have not achieved the level of accep-
tance, nor level of use, that many believe they should. The uptake of formal
methods has been far from ideal because many still believe that formal meth-
ods are difficult to use and require great mathematical expertise [10]. Spichkova
reports [21] that in many cases simple changes of a specification method can
make it more understandable and usable. She argues that such a simple kind of
optimisation is often overlooked just because of its obviousness, and it would be
wrong to ignore the possibility to optimise the language without much effort.
For example, simply adding an enumeration to the formulas in a large formal
specification makes its validation on the level of specification and discussion with
cooperating experts much easier.

Hinchey [10] also assert that in addition to the benefits of abstraction, clar-
ification, and disambiguation, using formal methods at the formal specification
level are invaluable documentation that greatly assist future system mainte-
nance. This research incorporates specifications used in property-based testing
to further help in precisely documenting the system.

Lamport [14] states two reasons for using formal methods formulas instead
of programming language tailored to the specific problem:

– Specialized languages often have limited realms of applicability. A language
that permits a simple specification for one system require a very complicated
one for a different kind of system. The Duration Calculus seems to work well
for real-time properties; but it cannot express simple liveness properties. A
formalism like TLA+ that, with no built-in primitives for real-time systems
or procedures, can easily specify gas burner for example, it is not likely to
have difficulty with a different kind of gas burner.

– Formalisms are easy to invent. However, practical methods must have a
precise language and robust tools.

There are many examples where applying formal methods has lead to increasing
reliability of systems. For example, a model checker TLC was developed for TLA
formula was used to find errors in the cache coherence protocol for a Compaq
multiprocessor [26]. In addition, [4] includes many examples of successfully using
formal methods to design systems.

2.2 Property-Based Testing

There are many styles in testing software. One popular style is that of example
based testing. In this style, test cases requires one to provide an example scenario
for each feature. That is, each example may exercise one feature of the system
under test and the test runs only once with relevant input. Dually, property based

4 Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

testing allows for the use of randomly generated tests based on system properties
to test systems against their specifications and one test can run hundreds of times
with different input values. An example of such library in Haskell programming
language is QuickCheck. Hughes (inventor of QuickCheck) showed that using
this library allowed him to discover hundreds of bugs in critical systems such
as automobiles and the DropBox file sharing service [7]. However, QuickCheck
uses Haskell programming language specific constructs (such as arrays, integers)
and more complicated data types (such as algebraic data types) to model the
specification of a system. Therefore, this research will investigate the possibility
to have formal models (BeSpaceD, TLA+ or FocusST formulas) as specifications
instead of Haskell constructs, as well as applicability of this approach for property
based testing of real systems.

Hughes [12] asserts that Dijkstra was wrong when he claimed that testing can
never demonstrate the absence of bugs in software, only their presence. Hughes
argues that if we test properties that completely specify a function (such as the
properties of reversing a list) then property based testing will eventually find
every possible bug. In practice this is not true, since we usually do not have
a complete specification, but this style of testing is very effective in exploring
scenarios that no human can think of trying.

QuickCheck started as a testing framework for testing pure functional pro-
grams [7]. However, recent development in the area of property-based testing
[9,13] incorporates the state-fulness of systems. That allowed for the testing of
state-ful systems and even test programs written in imperative languages such
as C. Hughes assert that testing state-ful systems is challenging. He argues that
the state is an implicit argument to and result from every API call, yet it is not
directly accessible to the test code. Therefore, his solution was to model the state
abstractly and introduce state transition function that model the operations in
API under test.

However, the state transition in QuickCheck is modelled manually using pre,
post and next functions for every operation in the system under test. On the
other hand, our framework will generate these transitions automatically using
specification formulas.

3 Proposed Framework

Figure 1 depicts the proposed model that will allow for combining formal meth-
ods with property-based-testing. The first row (API calls) represents the actual
system under test. The second row represents the world in which the specifica-
tion formulas lives. The time between subsequent API calls is modelled through
a function of discreet time. Time functions are mapped to the corresponding
state transitions between states. The general idea is to start with specifying the
system using human-oriented modelling techniques founded on formal methods.
Then, to develop system software according to the specifications. Finally, to run
the test suite to verify that the system runs according to the specification. If a
test fails, it will be the judgment of the engineer to decide whether the errors

Spatio-temporal Models for Formal Analysis and Property-based Testing 5

were in the system software or in the specification formulas for which the system
was not correctly specified.

Fig. 1. Proposed Framework

The implementation language of choice is Scala programming language. It
was selected for many reasons. First of all, it is one of the most popular languages
on the Java virtual machine. The ecosystem will make it possible to find quick
answers for questions that are related to technical aspects. Secondly, BeSpaceD is
implemented in Scala. This will lower the impedance mismatch between research
model and BeSpaceD. Finally, Scala, is a functional language. This will make
working with the concepts of property based testing more natural and simple.

For the property-based testing, we are going to apply the ScalaCheck library.
However, since the research will investigate the substitution of the simplistic
state machine in ScalaCheck with formal methods, the use of this library might
be limited.

To relate the different modeling and abstraction layers to each other in the
proposed framework, we are using category theory. Category theory helps in
illuminating the relations of many aspects of the proposed ingredients that would
be unseen otherwise. Figure 1 relates the human actions (API call), system states
(state model) and results to each other. Our formal methods-based techniques
will only be applied to the State-model level. This will help to stair the direction
of future investigation of the proposed model.

4 Initial set of Modeling Languages and Tools

To create the initial set of formal methods-based modeling languages and tools,
we have selected the following ingredients, which have a number of similarities
in syntax and semantics and are also covering spatio-temporal aspects of the
specifications:

6 Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

– TLA+: Temporal logic of actions (TLA) is a logic developed by Leslie Lam-
port, which combines temporal logic with a logic of actions. It is used to
describe behaviours of concurrent systems, cf. [15].

– FocusST : Formal language providing concise but easily understandable spec-
ifications that is focused on timing and spatial aspects of the system be-
haviour, cf. [23,24].

– BeSpaceD: A framework for modelling and checking behaviour of spatially
distributed component systems, cf. [2,3].

The FocusST language was inspired by Focus [5], a framework for formal
specification and development of interactive systems. In both languages, specifi-
cations are based on the notion of streams. However, in the original Focus input
and output streams of a component are mappings of natural numbers to single
messages,whereas a FocusST stream is a mapping from natural numbers to lists
of messages within the corresponding time intervals. Moreover, the syntax of
FocusST is particularly devoted to specify spatial (S) and timing (T) aspects in
a comprehensible fashion, which is the reason to extend the name of the language
by ST. The FocusST specification layout also differs from the original one: it is
based on human factor analysis within formal methods [21,22].

Design goals of BeSpaceD include:

– Ability to model spatial behaviour in a component oriented, simple and
intuitive way

– Automatically analyse and verify systems and integration possibilities with
other modelling and verification tools.

Blech and Schmidt proposed a process for checking properties of models and
described the approach using different examples [3]. In our current work, we
only focus on the spatio-temporal aspects of BeSpaceD.

From a programming language perspective, we create BeSpaceD models by
using Scala case classes. During the specification process, this gives a functional
abstract datatype feeling with a domain specific language flavour. A typical
BeSpaceD formula is shown below

IMPLIES(AND(TimeInterval(300,605),Owner("AreaOfInterest")),

OccupyBox(1051,3056,1505,3603))

The language constructs comprise basic logical operators (such as AND and
IMPLIES). Furthermore special constructs for space, time, and topology are in-
corporated. In the example, OccupyBox represents a rectangular two-dimensional
space while constructs such as TimeInterval allow for the modeling of temporal
aspects possible. A variety of different operators exist which facilitates the rea-
soning about geometric and topological constraints. Furthermore, connections to
data sources from cyber-physical systems exists (e.g., lego-trains [11] and event
analysis for industrial automation facilities [1]) which facilitates the construction
of demonstrators and conduction of experiments.

In our work we are using FocusST and TLA+ for modelling the behaviour
of systems, whereas the BeSpaceD functionality is invoked at a lower level to
check and test properties of the specified systems.

Spatio-temporal Models for Formal Analysis and Property-based Testing 7

To understand the workflow of the proposed model, we use the example of
Therac25 mentioned in the introduction. The machine included VT-100 terminal
which controlled the PDP-11 computer. The sequence of user actions leading to
the accidents was as follows:

– user selects 25 MeV photon mode
– user enters “cursor up”
– user select 25 MeV Electron mode
– previous commands have to take place in eight seconds

Therefore, we use algebraic data types to model the operations of the ma-
chine. Then we provide formal specification formulas and feed them to the frame-
work.

sealed abstract class Operation

case object CursorUp extends Operation

case object Select25MevPhotonMode extends Operation

case object Select25MevElectronMode extends Operation

case object OtherKindOfOperation extends Operation

type Therac25 = Sut

val init: TLAInit = {.. some predicate ...}

val next: TLANext = {.. another predicate ...}

val correctBehaviours: List[TLAState] =

Therac25.correctBehaviours(init, next)

Therac25.checkAgainst(correctBehaviours, randoms(Operation))

The framework would generate large number of Operation combinations that
are more likely to catch the error that caused the fatal accidents. Frequencies
of generated commands can be tailored to match real system behaviour. The
example used TLA+ formulas. However, FocusST formulas could have been
used instead to specify the system.

To achieve that, we have partially implemented the code that is responsible
to generate random BespaceD constructs using techniques from functional pro-
gramming. The Invariant generator is composed of smaller generators such as
integer and string generators as shown in the code below:

trait Generator[+T] {

self =>

def generate: T

def map[U](f: T => S): Generator[U] = new Generator[U] {

def generate = f(self.generate)

}

}

8 Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

val integers = new Generator[Int] {

def generate = scala.util.Random.nextInt()

}

val booleans = integers.map(_ >= 0)

val strings = integers.map(_.toString)

def bSpaceD: Generator[Invariant] = for {

int1 <- integers

int2 <- integers

int3 <- integers

int4 <- integers

int5 <- integers

str <- strings

} yield IMPLIES(AND(TimeInterval(int1, int2),Owner(str)),

OccupyBox(int3, int4, int5, int6))

5 Evaluation

The evaluation is based on a case study that involves robotics that are installed
in the Virtual Experiences Lab(VXLab) at RMIT University, Australia.

Fig. 2. Interacting with robots from the VXLab at RMIT

The implemented model will be installed in the robotic arms or simulations
of them. For instance, assuming the existence of the function initialisePosition():
Future[Position] which is responsible to move a robotic arm to an initial position.
The Future data type is used because moving arms takes long time and we need
to verify the final position the arm reached after the API call. However, since
initialisePosition() is just returning the initial position, it will return instantly.
The framework will call this API function and simultaneously check whether it
is in accordance to the specified state. Failing tests for the intended framework
might indicate:

Spatio-temporal Models for Formal Analysis and Property-based Testing 9

– Failure in the software of the system under test. This is one of the benefits
of property based testing. The found error may have never been discovered
otherwise.

– Wrong specification. The system under test may have been wrongly under-
specified. In this case, the engineer might change the formulas to reflect
system required properties.

Therefore, the input to the framework is formal-methods formulas and the
output is the correct behaviours specified by these formulas. The formulas are
written in host programming language (Scala in this research). For example,
the initial state for the aforementioned robotic example would be specified as
follows:

val position: TLAVariable = TLAVariable("Y")

val init: TLAInit = position

For this simple example (the next formula has been omitted for simplicity),
the only possible correct behaviour for this specification formula is that position
should equal to ”Y”. The framework will then check whether the position was
indeed ”Y” after the call to initialisePosition(), otherwise, it reports an error.

Table 1. Evaluating cases with TLA+ Init Formulas

API Code Init Formula Result Error?

initialisePosition() TLAVariable(”Y”) ”Y” No

initialisePosition() TLAVariable(”Y”) ”K” Yes

moveToQ() TLAVariable(”Q”) ”Q” Yes

moveToR() TLAVariable(”Q”) ”M” Yes

Table 1 shows some examples for the evaluation of the intended framework
using TLA+ formula (FocusST evaluation will follow similar pattern). The first
call to initialisePosition() is correctly specified and the actual result reflects the
specification (assuming arm initial position is ”Y”), as a result, it is regarded as a
successful case. The second call to initialisePosition() is different from the actual
position, therefore, its was reported as an error. Although the result is expected
for the call to moveToQ() in the third case, the framework reports an error
because the specification is not correct (the arm can not logically move to its
current position). Finally, moveToR is reported as error because the actual result
(reached position) is not correct. The result column is calculated by getting the
value from the Future dataype that each API call returns through onComplete
callback as follows:

initialisePosition() onComplete {

case Success(position) => println(position)

case Failure(t) => println("An error has occured: " + t.getMessage)

}

10 Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

6 Conclusions

In this paper, we have presented ongoing work on the use of spatio-temporal
models for formal methods-based analysis and testing. We have described differ-
ent ingredients and their interplay: testing frameworks, TLA+, FocusST and
BeSpaceD. The overall goal of our research is the reduction of the impedance
mismatch between formal methods and practitioners.

References

1. J. Blech, I. Peake, H. Schmidt, M. Kande, A. Rahman, S. Ramaswamy, S. Sudarsan,
and V. Narayanan. Efficient Incident Handling in Industrial Automation through
Collaborative Engineering. In IEEE 20th Conference on Emerging Technologies
Factory Automation (ETFA). IEEE Computer, Sept 2015.

2. J. O. Blech. An example for BeSpaceD and its use for decision support in industrial
automation.

3. J. O. Blech and H. Schmidt. BeSpaceD: Towards a tool framework and methodol-
ogy for the specification and verification of spatial behavior of distributed software
component systems.

4. J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods. IEEE
software, 12(4):34, 1995.

5. M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001.

6. R. N. Charette. Why software fails [software failure]. Spectrum, IEEE, 42(9):42–49,
2005.

7. K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of
haskell programs. 46(4):53–64.

8. B. Dhillon. Engineering Usability: Fundamentals, Applications, Human Factors,
and Human Error. American Scientific Publishers, 2004.

9. A. Gerdes, J. Hughes, N. Smallbone, and M. Wang. Linking unit tests and prop-
erties. In Proceedings of the 14th ACM SIGPLAN Workshop on Erlang, Erlang
2015, pages 19–26. ACM.

10. M. G. Hinchey. Confessions of a formal methodist. In Proceedings of the Seventh
Australian Workshop Conference on Safety Critical Systems and Software 2002 -
Volume 15, SCS ’02, pages 17–20. Australian Computer Society, Inc.

11. S. Hordvik, K. Øseth, J. O. Blech, and P. Herrmann. A Methodology for Model-
based Development and Safety Analysis of Transport Systems. In 11th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), 2016.

12. Z. Hu, J. Hughes, and M. Wang. How functional programming mattered. National
Science Review, 2(3):349–370, 2015.

13. J. Hughes. Software testing with quickcheck. In Central European Functional
Programming School, pages 183–223. Springer, 2010.

14. L. Lamport. Hybrid systems in TLA+. In R. L. Grossman, A. Nerode, A. P. Ravn,
and H. Rischel, editors, Hybrid Systems, number 736 in Lecture Notes in Computer
Science, pages 77–102. Springer Berlin Heidelberg. DOI: 10.1007/3-540-57318-6 25.

15. L. Lamport. The temporal logic of actions. 16(3):872–923.
16. N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.

Computer, 26(7):18–41, 1993.

Spatio-temporal Models for Formal Analysis and Property-based Testing 11

17. E. Miller. The Therac-25 Experience. In Conf. State Radiation Control Program
Directors, 1987.

18. C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How amazon web services uses formal methods. Communications ACM, 58(4):66–
73, Mar. 2015.

19. S. Patra. Worst-case software safety level for braking distance algorithm of a train.
In System Safety, 2007 2nd Institution of Engineering and Technology International
Conference on, pages 206–210. IET, 2007.

20. F. Redmill and J. Rajan. Human factors in safety-critical systems. Butterworth-
Heinemann, 1997.

21. M. Spichkova. Human Factors of Formal Methods. In In IADIS Interfaces and
Human Computer Interaction 2012. IHCI 2012, 2012.

22. M. Spichkova. Design of formal languages and interfaces: “Formal” does not mean
“unreadable”. IGI Global, 2013.

23. M. Spichkova, J. O. Blech, P. Herrmann, and H. W. Schmidt. Modeling spatial
aspects of safety-critical systems with FocusST . In MoDeVVa@ MoDELS, pages
49–58. Citeseer, 2014.

24. M. Spichkova. Specification and seamless verification of embedded real-time sys-
tems: FOCUS on Isabelle. PhD thesis, Technical University Munich, 2007.

25. M. Spichkova, H. Liu, M. Laali, and H. W. Schmidt. Human factors in software
reliability engineering. Workshop on Applications of Human Error Research to
Improve Software Engineering (WAHESE2015), 2015.

26. Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In
Correct Hardware Design and Verification Methods, pages 54–66. Springer, 1999.

27. A. Zamansky, G. Rodriguez-Navas, M. Adams, and M. Spichkova. Formal methods
in collaborative projects. In 11th International Conference on Evaluation of Novel
Approaches to Software Engineering. IEEE, 2016.

	Spatio-temporal Models for Formal Analysis and Property-based Testing
	Nasser Alzahrani, Maria Spichkova, Jan Olaf Blech

