Skip to main content

Chaotic System Modelling Using a Neural Network with Optimized Structure

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

In this work, the Artificial Neural Networks (ANN) are used to model a chaotic system. A method based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to determine the best parameters of a Multilayer Perceptron (MLP) artificial neural network. Using NSGA-II, the optimal connection weights between the input layer and the hidden layer are obtained. Using NSGA-II, the connection weights between the hidden layer and the output layer are also obtained. This ensures the necessary learning to the neural network. The optimized functions by NSGA-II are the number of neurons in the hidden layer of MLP and the modelling error between the desired output and the output of the neural model. After the construction and training of the neural model, the selected model is used for the prediction of the chaotic system behaviour. This method is applied to model the chaotic system of Mackey-Glass time series prediction problem. Simulation results are presented to illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sundarapandian, V. (2012). Ordinary and partial differential equations. New Delhi, India: McGraw Hill Education.

    Google Scholar 

  2. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, Studies in computational intelligence (Vol. 581). Germany: Springer. ISBN 978-3-319-13131-3.

    MATH  Google Scholar 

  3. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer. ISBN 978-3-319-11016-5.

    Book  Google Scholar 

  4. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.

    Book  MATH  Google Scholar 

  5. Marek, M., & Schreiber, I. (1995). Chaotic behaviour of deterministic dissipative systems (Vol. 1). Cambridge University Press. ISBN: 0-521-43830-6.

    Google Scholar 

  6. Schuster, H. G., & Just, W. (2006). Deterministic chaos: An introduction. Wiley. ISBN 978-3-527-40415-5.

    Google Scholar 

  7. Iooss, G., Helleman, R. H., & Stora, R. (1983). Chaotic behaviour of deterministic systems (Vol. 16). Les Houches. ISBN 0-444-86542-X.

    Google Scholar 

  8. Thompson, J. M. T., & Stewart, H. B. (2002). Nonlinear dynamics and chaos. Wiley. ISBN 0-471-87645-3.

    Google Scholar 

  9. Vaidyanathan, S. (2016). Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. International Journal of PharmTech Research, 9(4), 413–425.

    Google Scholar 

  10. Vaidyanathan, S. (2016). Anti-synchronization of enzymes-substrates biological systems via adaptive backstepping control. International Journal of PharmTech Research, 9(2), 193–205.

    Google Scholar 

  11. Vaidyanathan, S. (2015). Anti-synchronization of chemical chaotic reactors via adaptive control method. International Journal of ChemTech Research, 8(8), 73–85.

    Google Scholar 

  12. Vaidyanathan, S. (2015). Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. International Journal of ChemTech Research, 8(7), 209–221.

    MathSciNet  Google Scholar 

  13. Vaidyanathan, S. (2015). A novel chemical chaotic reactor system and its output regulation via integral sliding mode control. International Journal of ChemTech Research, 8(11), 669–683.

    Google Scholar 

  14. Vaidyanathan, S. (2015). Integral sliding mode control design for the global chaos synchronization of identical novel chemical chaotic reactor systems. International Journal of ChemTech Research, 8(11), 684–699.

    Google Scholar 

  15. Meng, X., Xiang, W., Jia, L., & Xu, J. (2015). Train flow chaos analysis based on an improved automata model. Chaos, Solitons and Fractals, 81, 43–51.

    Article  MATH  Google Scholar 

  16. Vaidyanathan, S. (2015). Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. International Journal of ChemTech Research, 8(6), 795–803.

    Google Scholar 

  17. Vaidyanathan, S. (2015). Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. International Journal of ChemTech Research, 8(6), 818–827.

    Google Scholar 

  18. Vaidyanathan, S. (2015). Adaptive synchronization of Rikitake two-disk dynamo chaotic systems. International Journal of ChemTech Research, 8(8), 100–111.

    Google Scholar 

  19. Vaidyanathan, S. (2015). Hybrid chaos synchronization of Rikitake two-disk dynamo chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(11), 12–25.

    Google Scholar 

  20. Vaidyanathan, S. (2015). Active control design for the hybrid chaos synchronization of Lotka-Volterra biological systems with four competitive species. International Journal of PharmTech Research, 8(8), 30–42.

    Google Scholar 

  21. Vaidyanathan, S. (2015). Adaptive biological control of generalized Lotka-Volterra three-species biological system. International Journal of PharmTech Research, 8(4), 622–631.

    Google Scholar 

  22. Vaidyanathan, S. (2015). Sliding controller design for the global chaos synchronization of forced Van der Pol chaotic oscillators. International Journal of PharmTech Research, 8(7), 100–111.

    MathSciNet  Google Scholar 

  23. Vaidyanathan, S. (2015). Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. International Journal of PharmTech Research, 8(6), 106–116.

    Google Scholar 

  24. Karthikeyan, R., & Sundarapandian, V. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65(2), 97–103.

    Article  Google Scholar 

  25. Pehlivan, I., Moroz, I. M., & Vaidyanathan, S. (2014). Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333(20), 5077–5096.

    Article  Google Scholar 

  26. Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, S. (2016). A new four-scroll chaotic attractor and its engineering applications. Optik, 127(13), 5491–5499.

    Article  Google Scholar 

  27. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 203–224). Berlin, Germany: Springer.

    Google Scholar 

  28. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 225–247). Berlin, Germany: Springer.

    Google Scholar 

  29. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 155–178). Berlin, Germany: Springer.

    Google Scholar 

  30. Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 275–296). Berlin, Germany: Springer.

    Google Scholar 

  31. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 179–202). Berlin, Germany: Springer.

    Google Scholar 

  32. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In: Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 249–274). Berlin, Germany: Springer.

    Google Scholar 

  33. Sampath, S., & Vaidyanathan, S. (2016). Hybrid synchronization of identical chaotic systems via novel sliding control method with application to Sampath four-scroll chaotic system. International Journal of Control Theory and Applications, 9(1), 221–235.

    Google Scholar 

  34. Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method. International Journal of Modelling, Identification and Control, 23(1), 92–100.

    Article  Google Scholar 

  35. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). fuzzy adaptive synchronization of uncertain fractional-order chaotic systems, advances in chaos theory and intelligent control, studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Germany: Springer.

    Google Scholar 

  36. Vaidyanathan, S., & Azar, A. T. (2016). Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.

    Article  Google Scholar 

  37. Adachi, M., & Aihara, K. (1997). Associative dynamics in a chaotic neural network. Neural Networks, 10(1), 83–98.

    Article  Google Scholar 

  38. Hoppensteadt, F. C. (2013). Analysis and simulation of chaotic systems, applied mathematical sciences (Vol. 94). Berlin, Germany: Springer.

    Google Scholar 

  39. Hajihassani, M., Armaghani, D. J., Marto, A., & Mohamad, E. T. (2015). Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment, 74(3), 873–886.

    Article  Google Scholar 

  40. Wasserman, P. D. (1993). Advanced methods in neural computing. New Jersey, USA: Wiley.

    MATH  Google Scholar 

  41. Amiri, A., Niaki, S. T. A., & Moghadam, A. T. (2015). A probabilistic artificial neural network-based procedure for variance change point estimation. Soft Computing, 19(3), 691–700.

    Article  Google Scholar 

  42. Maind, S. B., & Wankar, P. (2014). Research paper on basic of artificial neural network. International Journal on Recent and Innovation Trends in Computing and Communication, 2(1), 96–100.

    Google Scholar 

  43. Mekki, H., Mellit, A., & Salhi, H. (2016). Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simulation Modelling Practice and Theory, 67, 1–13.

    Article  Google Scholar 

  44. Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., et al. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island. Japan Natural Hazards, 78(3), 1749–1776.

    Article  Google Scholar 

  45. Wang, T., Gao, H., & Qiu, J. (2016). A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Transactions on Neural Networks and Learning Systems, 27(2), 416–425.

    Article  MathSciNet  Google Scholar 

  46. Grézl, F., Karafiát, M., & Veselỳ, K. (2014). Adaptation of multilingual stacked bottle-neck neural network structure for new language. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7654–7658). IEEE.

    Google Scholar 

  47. Nickl-Jockschat, T., Rottschy, C., Thommes, J., Schneider, F., Laird, A. R., Fox, P. T., et al. (2015). Neural networks related to dysfunctional face processing in autism spectrum disorder. Brain Structure and Function, 220(4), 2355–2371.

    Article  Google Scholar 

  48. Azar, A. T. (2013). Fast neural network learning algorithms for medical applications. Neural Computing and Applications, 23(3–4), 1019–1034.

    Article  Google Scholar 

  49. Azar, A. T., & El-Said, S. A. (2013). Probabilistic neural network for breast cancer classification. Neural Computing and Applications, 23(6), 1737–1751.

    Article  Google Scholar 

  50. Hsu, C.-T., Korimara, R., Tsai, L.-J., & Cheng, T.-J. (2016). Photovoltaic power generation system modeling using an artificial neural network. In J. Juang (Ed.), Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014) (pp. 365–371). Cham: Springer.

    Google Scholar 

  51. Huang, X., Zhao, Z., Wang, Z., & Li, Y. (2012). Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing, 94, 13–21.

    Article  Google Scholar 

  52. Vaidyanathan, S. (2015). 3-cells cellular neural network (CNN) attractor and its adaptive biological control. International Journal of PharmTech Research, 8(4), 632–640.

    Google Scholar 

  53. Vaidyanathan, S. (2015). Synchronization of 3-cells cellular neural network (CNN) attractors via adaptive control method. International Journal of PharmTech Research, 8(5), 946–955.

    Google Scholar 

  54. Vaidyanathan, S. (2015). Anti-synchronization of 3-cells cellular neural network attractors via adaptive control method. International Journal of PharmTech Research, 8(7), 26–38.

    MathSciNet  Google Scholar 

  55. Vaidyanathan, S. (2016). Anti-synchronization of 3-cells cellular neural network attractors via integral sliding mode control. International Journal of PharmTech Research, 9(1), 193–205.

    Google Scholar 

  56. Chen, C.-W. (2014). Applications of neural-network-based fuzzy logic control to a nonlinear time-delay chaotic system. Journal of Vibration and Control, 20(4), 589–605.

    Article  MathSciNet  Google Scholar 

  57. Zhang, G., & Shen, Y. (2014). Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Networks, 55, 1–10.

    Article  MATH  Google Scholar 

  58. Pham, V. T., Volos, C., Jafari, S., Wang, X., & Vaidyanathan, S. (2014). Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectronics and Advanced Materials, Rapid Communications, 8(11–12), 1157–1163.

    Google Scholar 

  59. Wen, S., Zeng, Z., Huang, T., & Zhang, Y. (2014). Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Transactions on Fuzzy Systems, 22(6), 1704–1713.

    Article  Google Scholar 

  60. Kyprianidis, I. M., & Makri, A. T. (2013). Complex dynamics of FitzHugh-Nagumo type neurons coupled with gap junction under external voltage stimulation. Journal of Engineering Science and Technology Review, 6(4), 104–114.

    Google Scholar 

  61. He, G., Cao, Z., Zhu, P., & Ogura, H. (2003). Controlling chaos in a chaotic neural network. Neural Networks, 16(8), 1195–1200.

    Article  Google Scholar 

  62. Ramesh, M., & Narayanan, S. (2001). Chaos control of Bonhoeffer–van der Pol oscillator using neural networks. Chaos, Solitons and Fractals, 12(13), 2395–2405.

    Article  MATH  Google Scholar 

  63. Ren, X. M., Rad, A. B., Chan, P. T., & Lo, W. L. (2003). Identification and control of continuous-time nonlinear systems via dynamic neural networks. IEEE Transactions on Industrial Electronics, 50(3), 478–486.

    Article  Google Scholar 

  64. Gan, Q., & Liang, Y. (2012). Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. Journal of the Franklin Institute, 349(6), 1955–1971.

    Article  MathSciNet  MATH  Google Scholar 

  65. Lin, D., & Wang, X. (2011). Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters. Neurocomputing, 74(12), 2241–2249.

    Article  Google Scholar 

  66. Zhang, H., Ma, T., Huang, G.-B., & Wang, Z. (2010). Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(3), 831–844.

    Google Scholar 

  67. Ardalani-Farsa, M., & Zolfaghari, S. (2010). Chaotic time series prediction with residual analysis method using hybrid Elman–NARX neural networks. Neurocomputing, 73(13), 2540–2553.

    Article  Google Scholar 

  68. Chen, L., & Aihara, K. (1995). Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks, 8(6), 915–930.

    Article  Google Scholar 

  69. Mou, C., Jiang, C., Bin, J., & Wu, Q. (2009). Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos, Solitons and Fractals, 39(4), 1856–1863.

    Article  MATH  Google Scholar 

  70. Chen, M., & Chen, W. (2009). Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos, Solitons and Fractals, 41(5), 2716–2724.

    Article  MATH  Google Scholar 

  71. Lamamra, K., Belarbi, K., & Boukhtini, S. (2015). Box and Jenkins nonlinear system modelling using RBF neural networks designed by NSGAII. In Computational Intelligence Applications in Modeling and Control (pp. 229–254). Springer.

    Google Scholar 

  72. Sellnow, T. L., Seeger, M. W., & Ulmer, R. R. (2002). Chaos theory, informational needs, and natural disasters. Journal of Applied Communication Research, 30(4), 269–292.

    Article  Google Scholar 

  73. Ata, N. A. A., & Schmandt, R. (2016). Systemic and systematic Risk. The tyranny of uncertainty (pp. 57–62). Berlin Heidelberg: Springer.

    Google Scholar 

  74. Elhadj, Z. (2006). Etude de quelques types de systemes chaotiques : Generalisation d’un modele issu du modele de chen. Doctoral thesis, University of Constantine.

    Google Scholar 

  75. Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. In IEEE International Joint Conference on Neural Networks (IJCNN-1989) (pp. 593–605). IEEE.

    Google Scholar 

  76. Yadav, N., Yadav, A., & Kumar, M. (2015). An Introduction to Neural Network Methods for Differential Equations. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  77. Lamamra, K., & Belarbi, K. (2011). Comparison of neural networks and fuzzy logic control designed by multi-objective genetic algorithm. IJACT: International Journal of Advancements in Computing Technology, 3(4), 137–143.

    Google Scholar 

  78. Sajikumar, N., & Thandaveswara, B. S. (1999). A non-linear rainfall–runoff model using an artificial neural network. Journal of Hydrology, 216(1), 32–55.

    Article  Google Scholar 

  79. Suykens, J. A. (2001). Support vector machines: A nonlinear modelling and control perspective. European Journal of Control, 7(2), 311–327.

    Article  MATH  Google Scholar 

  80. Zhu, Q., & Azar A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319). Berlin, Germany: Springer. ISBN: 978-3-319-12883-2.

    Google Scholar 

  81. Graupe, D. (2013). Principles of artificial neural networks (Vol. 7). World Scientific. ISBN 978-981-4522-73-1.

    Google Scholar 

  82. Dong, L., Wesseloo, J., Potvin, Y., & Li, X. (2016). Discrimination of mine seismic events and blasts using the Fisher classifier, Naive Bayesian classifier and logistic regression. Rock Mechanics and Rock Engineering, 49(1), 183–211.

    Article  Google Scholar 

  83. Greenhalgh, J., & Mirmehdi, M. (2015). Automatic detection and recognition of symbols and text on the road surface. In International Conference on Pattern Recognition Applications and Methods (pp. 124–140). Springer.

    Google Scholar 

  84. Greenhalgh, J., & Mirmehdi, M. (2015). Detection and recognition of painted road surface markings. In Proceedings of 4th International Conference on Pattern Recognition Applications and Methods (pp. 130–138).

    Google Scholar 

  85. Lamamra, K., Belarbi, K., & Mokhtari, F. (2006). Optimization of the structure of a neural networks by multi-objective genetic algorithms. Proceedings of the ICGST International Journal on Automation, Robotics and Autonomous Systems, 6(1), 1–4.

    Google Scholar 

  86. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). Wiley. ISBN 0-471-87339-X.

    Google Scholar 

  87. Lamamra, K., Belarbi, K., Belhani, A., & Boukhtini, S. (2014). NSGA2 based of multi-criteria decision analysis for multi-objective optimization of fuzzy logic controller for non linear system. Journal of Next Generation Information Technology, 5(1), 57–64.

    Google Scholar 

  88. Rao, R. V., Rai, D. P., & Balic, J. (2016). Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. Journal of Intelligent Manufacturing, 1–23.

    Google Scholar 

  89. Sardou, I. G., & Ameli, M. T. (2016). A fuzzy-based non-dominated sorting genetic algorithm-II for joint energy and reserves market clearing. Soft Computing, 20(3), 1161–1177.

    Article  Google Scholar 

  90. Wong, J. Y., Sharma, S., & Rangaiah, G. P. (2016). Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Applied Thermal Engineering, 93, 888–899.

    Article  Google Scholar 

  91. Yang, M.-D., Lin, M.-D., Lin, Y.-H., & Tsai, K.-T. (2016). Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm. Applied Thermal Engineering. In Press.

    Google Scholar 

  92. Srinvas, N., & Deb, K. (1994). Multi-objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation, 2(3), 221–248.

    Article  Google Scholar 

  93. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving From Nature (pp. 849–858). Springer.

    Google Scholar 

  94. Versèle, C., Deblecker, O., & Lobry, J. (2011). Multiobjective optimal design of an inverter fed axial flux permanent magnet in-wheel motor for electric vehicles. Electric Vehicles-Modelling And Simulations, 287, 300–321.

    Google Scholar 

  95. Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287–289.

    Article  Google Scholar 

  96. Anderson, D., Sweeney, D., Williams, T., Camm, J., & Martin, R. (2011). an introduction to management science: Quantitative approaches to decision making. Revised: Cengage Learning.

    Google Scholar 

  97. Martinetz, T. M., Berkovich, S. G., & Schulten, K. J. (1993). Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4), 558–569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheireddine Lamamra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lamamra, K., Vaidyanathan, S., Azar, A.T., Ben Salah, C. (2017). Chaotic System Modelling Using a Neural Network with Optimized Structure. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics