
Requests Management for Smartphone-based
Matching Applications using a Multi-Agent

Approach

Gilles Simonin and Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland
{gilles.simonin|barry.osullivan}@insight-centre.org

Abstract. We present a new multi-agent approach to managing how
requests are sent between users of smartphone-based applications for
reaching bi-lateral agreements. Each agent is modelled as having a selfish
behaviour based on his preferences and an altruist behaviour with respect
to the links between the agent and his neighbours. The objective is to
maximise the likelihood of an acceptable match while minimising the
burden on the users due to unnecessary messaging. We provide a dynamic
algorithm using this architecture and we present an empirical evaluation
with various mathematical models of user behaviour and altruism. The
evaluation shows that our approach can reduce the risks of rejections
and the number of requests while increasing the likelihood of acceptable
matches.

1 Introduction

Recently the use of smartphone-based applications has received attention due
to the emergence of a number of new online optimisation problems that involve
reaching bi-lateral agreements, such as in ride-sharing applications. The majority
of such apps require sending a large number of requests or notifications to users.
A typical goal of providers of these apps is to reduce the inconvenience to users
by minimising the number of requests sent. The interaction with users represents
the single greatest challenge in these applications. A social model/approach can-
not be used for this problem because of the lack of information from the users.
The system knows only the positive/negative answers from each user who re-
ceived a request, and when a response was received. The system can only decide
dynamically when it must send a new request. We can only simulate realistic
behaviour of users to help the system in his decision.

Several robotics systems that propose an easy dialogue with, and a limited
number of interactions for, each user have emerged in the literature. Many models
and self-satisfaction architectures have also been developed and proposed for
reactive robotic multi-agents systems [2, 4, 7]. These authors focus their models
on communication and cooperation between learning situated agents. Robotic
applications require distributed solutions and adaptive cooperation techniques.



The agents learn to select behaviours that are well adapted to their neighbours’
activities. Multi-agent systems for solving complex combinatorial problems are
often formulated as Distributed Constraint Optimisation Problems (DCOPs) [3,
5, 6]. These authors propose search algorithms for DCOPs that are analogous
to a reactive multi-agent architecture. These methods and algorithms are not
applicable in our case since we are concerned with predicting an appropriate time
to send a request between users. For our problem, we only need the principle of
distributed communication but not the cooperation aspect. Our agents will not
act to help a global mission or achieve a goal. We are using a self-satisfaction
architecture and a model of altruistic behaviour for the purpose of simulating
the potential stress of each user and helping the system to decide when and
whom to send a new request.

The remainder of the paper is organised as follows. Section 2 presents our
requests problem and how it relates to the Satisfaction-Altruism-based architec-
ture for the multi-agent problem. In Section 3 we present this architecture for a
multi-agent system, along with our hybrid model with the different concepts and
functions. Section 4 focuses our study on the specific application of ride-sharing,
where we propose a more detailed model for this specific problem. Finally, in
Section 5 we present experiments with this specific model and compare the effect
of varying the critical parameters of the model with an greedy system used.

2 The General Requests Problem

One of the advantages of smartphone-based applications is their ability to reduce
the demands placed on users and their ability to reach decisions in a timely man-
ner. In many applications (ride-sharing, on-line service between users, games,
sales, etc.) users must find a bi-lateral agreement, e.g. a driver is happy to offer
a ride to someone who is happy to accept that offer. Each user sends a request
to other users and waits for a positive/negative response. In many applications
this leads to a proliferation of notifications and requests sent to and by users.
For this reason many automated systems that take decisions on behalf of users
have emerged. In these systems, users can only initiate the agreement process,
but they cannot control how an agreement is reached.

This requests problem can be modelled as a graph: the set of vertices repre-
sents users and we define an edge between two users if there exists a potential
bi-lateral agreement, a deal, between them. A weight is assigned to each edge
in order to quantify the quality of the potential deal. The edge weight encodes
importance, but not likelihood of a match. The objective is to minimise the risk
of rejection and the number of notifications/requests sent between users. There-
fore, the goal is to select a maximum number of edges (deals) that maximises
the sum of the weights. It is obvious that this selection is constrained by the
structure of the problem and by the nature of the smartphone app in question.
For example, in the ride-sharing problem, we want to select the potential riders
in the same car. Therefore, we want three edges from a driver, if we want to fill
the car, and one edge for a rider. From a deterministic global solution (see [9]),



requests are sent by the system to each user. If a user does not respond quickly,
the system has to propose an alternative solution to another potential partner
who is waiting to make a deal. However, this alternative partner could be a poor
quality match in comparison to the first ones, thus it might be advantageous to
allow additional time to the partners already contacted before sending a request
to an alternative new partner. The question is when should the system send such
a new request? The quality of the solution depends on the reactivity and the
type of answers from users. This problem can be seen as an online one in which
we need a good protocol to satisfy our objectives.

One can see the requests problem as a Satisfaction-Altruism-based architec-
ture for multi-agent problems [1, 8] where each user is represented by an agent.
Each agent has a personal behaviour based on his preferences and altruistic be-
haviour with respect to the links between the agent and his neighbours. Such a
behaviour-based approach provides a basis to design each agent’s actions over
time. This perspective allows us to define agents that are able to evolve in dy-
namic and partially unknown environments.

3 A Multi-Agent Approach

The main principle of our approach is to model, in real time, a realistic be-
haviour for smartphone users and to manage the automatic systems that control
the sending of notifications and requests. This architecture uses three concepts
of agent satisfaction: the personal satisfaction which measures the level of sat-
isfaction (e.g. stress, wait); the interactive satisfaction which describes the
benefit of the interaction values between an agent and its neighbours; and the
altruistic reactions which involve monitoring personal/interactive satisfaction
between agents/neighbours and in transforming them into specific actions. When
an agent perceives a prior signal of mutual interaction from a neighbour and pos-
sess a negative personal satisfaction, it can have an altruistic reaction in order
to satisfy the protagonists (agent/neighbour) involved. The general architecture
is presented in Figure 1.

Fig. 1: Illustration of the requests managing architecture



In our setting, actions are the requests sent from a user to his potential
partners during a given period of time. When an agent has a negative personal
satisfaction and perceives from one of his partners a signal of potential inter-
action, the user can change its action or start a specific one. The interactive
satisfactions of neighbours are represented by the weight of edges between po-
tential partners.

3.1 Personal Satisfiability

Each user u (agent) is active between a starting time t0u and an End of Time
(EoTu) and is looking for one/several deal(s), or matches, with other users. A
deal is represented as a mutual agreement to a request between the user and
one of his partners. We want to simulate the fact that the closer a user gets to
his time limit, the greater his stress. We can define a threshold under which the
system may send a new request. Under this threshold, we can assume that the
user is under stress. Therefore, the personal satisfiability Satu(t) measures, at
each moment in time, a simulated behaviour/stress of the user u. This function
is bounded by [−1, 1] and is decreasing exponentially according to a variation
function ∆Satu(t) at each elapsed time point, e.g. every second (see Figure 2).
In delimiting the threshold by 0, every time the function has a negative value,
the user’s stress is enough to let the system send a new request if there exists a
potential partner. In this case, we increase the value Satu(t) by 1.

Fig. 2: Illustration of the personal satisfaction. Each spike represents the sending of a
new request to a potential partner (we are adding +1 to Satu(t)).

This variation function can change during the horizon time. For example, one
can consider the very natural behaviour which is that the closer the user gets to
time EoTu, if a deal has not been made, the higher his stress level is likely to
be. Likewise if he has already a deal and waits for another possiblity, his stress
decreases more slowly. It is important to limit the decrease in the variation func-
tion, nevertheless in worse case the user’s satisfiability will be always be equal
to −1. This limitation depends on the application and the context; therefore we
can define a maximum variation.

We also define a minimum waiting time duration between two new potential
actions (sending a new request, that means a negative personal satisfaction). Let



Tmin be the minimum time for the personal satisfaction function to go from 1
to 0. We propose a particular variation function for the personal satisfiability of
a user limited by the upper bound 1/Tmin.

Definition 1 (Variation Function) The variation function ∆Satu(t) for the
personal satisfiability of a user is defined by:

∆Satu(t) = min

(
1

Tmin
,

βu
EoTu − t

)
. (1)

Here βu is a positive stress impact factor that is dependant on EoTu. The impact
factor is an important parameter in our study. The higher its value, the faster the
variation function will decrease. Observe that with βu ≥ 0 and t0u < t < EoTu,
we can bound the variation function, ∆Satu(t) ∈ [0, 1/Tmin]. From Definition 1
we can give the definition of personal satisfaction as follows.

Definition 2 (Personal Satisfaction) The personal satisfaction Satu(t) of an
active user u at time t is defined by:

Satu(t) = Satu(t− 1)−∆Satu(t). (2)

A second function, which is somewhat more accurate, could take into ac-
count the number of deals the user is already involved in. In this setting his
stress/behaviour score will decrease more slowly if he is already partially sat-
isfied. Thus we propose to reduce the variation with the number of the user’s
deals NbDealsu as follows.

Definition 3 (Variation Function with Deals) The variation function with
deals ∆D

Satu
(t) for the personal satisfaction of a user is defined by:

∆D
Satu(t) = min

(
1

Tmin
,

βu
EoTu − t

× 1

NbDealsu + 1

)
. (3)

From the fact that βu ≥ 0 and t0u < t < EoTu, we can still bound the variation
function by ∆D

Satu
(t) ∈ [0, 1/Tmin]. In Section 4 we will define a specific personal

satisfaction function with different values to describe the impact factor βu and
Tmin for the ride-sharing version of our general problem.

3.2 Interactive Satisfaction for Partners

Each active user u has a list of potential partners P = {p1, p2, . . . , pk}. For
each pair 〈u, pi〉, we have a weight representing the preference w−→upi

from u to
pi. Thus we can define a list of weights for the potential partners: W−→

uP
=

{w−−→up1
, w−−→up2

, . . . , w−−→upk
}. Weights are defined on the range [0,MaxW ], where

MaxW is the highest value. The higher the value of a weight, the better the
chances of a deal. In the following, we will call best partner the one with the
highest weight from the list of the unrequested partners.



The interactive satisfaction IntSatupi(t) measures, at every moment in
time, the potential interaction between user u and his potential partner pi during
the user’s time window ]t0u, EoTu[. This function is bounded by [0,MaxW ] and
is decreasing differently according to a variation function ∆IntSat−−→upi

(t) at each

elapsed time period, say every second (see Figure 3).

Fig. 3: Illustration of the interactive satisfaction function.

According to the satisfaction of u and his partners, ∆IntSat−−→upi
(t) will change

over time. At every time step, this variation value decreases (resp. increases) if
a request has been already sent to pi (resp. not sent):

– In the decreasing case, the interactive value is decreasing from t0u to EoTu
according to faster/slower variations around the constant decreasing ratio
w−−→upi

EoTu
.

– In the increasing case, the interactive satisfaction remains at the same value
or can increase slowly according to the partner’s personal satisfaction. If
his personal satisfaction is negative, the interaction value will increase. The
increasing part of the variation function for the interactive satisfaction is
upper bounded by a value in [0, 1

EoTu
].

Definition 4 (Variation Function for Interactive Satisfaction) The vari-
ation function for the interactive satisfaction between an user u and his partner
pi is defined by:

∆IntSat−−→upi
(t) = x−→upi

×
(
w−→upi

× βpi
(t)

EoTu

)
+ [1− x−→upi

] ×
(

min{0, Satpi(t)}
EoTu

)
(4)

where x−→upi
=

{
1, if a request has already been send to pi,

0, if no request has not been send to pi.



and βpi(t) is a positive impact factor of stress depending of the partner’s per-
sonal satisfaction and the time. The higher its value, the faster the variation
function will decrease. From (4), we can give the definition of the interactive
satisfaction:

Definition 5 (Interactive Satisfaction) The interactive satisfaction IntSat−→upi
(t)

of an active user u at time t is define by:

IntSat−→upi
(t) = IntSat−→upi

(t− 1)−∆IntSat−−→upi
(t). (5)

A second, more accurate, function could take into account the number of
deals already owned by the user or his partners. His/their stress/behaviour will
decrease/increase slower if he is already partially satisfied. Thus we propose to re-
duce the variation based on the number of the user’s dealsNbDealsu (NbDealspi

for the partner pi) already in place.

Definition 6 (Variation Function with Deals) The variation function with
deals for the interactive satisfaction of a user u and his partner pi is:

∆D
IntSat−−→upi

(t) = x−→upi
×
(

w−→upi
× βpi(t)

EoTu[NbDealsu + 1]

)
+[1− x−→upi

] ×
(

min{0, Satpi(t)}
EoTu[NbDealspi

+ 1]

)
. (6)

In Section 4 we will propose a specific definition of the impact factor βpi(t)
for a ride-sharing version of our general problem.

3.3 Altruistic Reaction

According to the updated values for the personal/interactive satisfactions, we
can take into account the level of user stress and define a protocol to allow agents
to modify their actions. In our problem, the system is authorised to send a new
request from a user to his partners when specific conditions are satisfied. We
define two conditions required to allow at time t a new request to be sent from
a user u:

– The value of the personal satisfaction of u is negative.
– One of his unrequested partners has an interactive satisfaction higher than

the current highest one. Specifically, the weight w−→upi
increased enough and

is now higher than the current highest weight from requested partners.

If both conditions are respected, the system is authorised to send a new
request. The first condition allows to minimise the delay between two messages.
Indeed, when a notification is sent the system increases satu(t) by 1. The second
condition allows more time to the best partners who might answer positively to
the user u.

We are interested in finding a global solution over all users in our graph.
When the system receives an authorisation to send a new request for a user u



(vertex) to pi, that means the edge {u, pi} can be selected in the global solution.
If the computation of a global solution contains this edge, the system can send
a new request to pi from u.

From the point of view of the model, the system gives a reward to Satu(t).
This bonus can depend of the number of deals required by the userMaxNbDealsu,
and thus Satu(t) increases by 1/MaxNbDealsu.

3.4 The Algorithm

We present the algorithm that monitors a user and his partners using the three
multi-agent concepts, presented above, over time in order to reduce the number
of requests sent while also minimising the risk of rejection (requests sent to
partners with too low a weight).

Data: A user u, his partners list P = {p1, . . . , pk},
His bounds t0u and EoTu, and a boolean Change

1 begin
2 Request sent to the best partner;
3 while t0u < t < EoTu do
4 Change ← False;
5 while Not Change do
6 Values updated;
7 if Negative answer received then
8 Remove the partner;
9 if Positive answer received then

10 if Deal accepted by u then
11 Satu(t)← 1;
12 NbDealsu ← NbDealsu + 1;
13 if u fully satisfied then
14 End of process;

15 end
16 Remove the partner;

17 if Altruism reaction for one partner pi then
18 Change ← True;
19 end
20 t← t + 1;

21 end
22 New Global Solution with 1 more edge from u;
23 if the edge {u, pi} is selected in the solution then
24 Send a new request to pi;
25 Satu(t)← Satu(t) + 1;

26 end

27 end

28 end
Algorithm 1: Monitoring of requests sending for a user u.



Algorithm 1 comprises a while loop inside another general loop. At Line 3,
we start a general loop on the time windows of user u. This while loop represents
the active time of the agent/user u, during this time interval the system monitors
the personal/interactive satisfaction functions.

In Lines 5− 21 we are in the Decision-Action loop. This while loop involves
first computing and updating, after every time unit, the user’s personal satis-
faction Satu and the interactive satisfactions of his partners. Second we check
every case when a partner answers negatively or positively. If we have a positive
answer and a deal with the user, it is necessary to increase values and to check if
the user is fully satisfied. If he need more deals, we continue the process, else the
system stops the monitoring. Third, we test if the required conditions to send
another request are satisfied, that means the personal satisfaction is negative
and there exists a partner who has not yet received a request and has a weight
higher than the best weight from partners already requested.

In Lines 22− 26 we compute a new global solution with the new constraints
and we send a new request if it’s relevant. The new request leads to a lower level
of stress for the user and to an increase in Satu(t).

An example of the algorithm in operation is presented in Table 1 for a user u
with three partners {p1, p2, p3} during the time window [0, 1500]. The ending of
the process can advance if the user is fully satisfied. We monitor user behaviour
every five minutes, with the first request sent to p1 with the highest weight.
After 900s, the required conditions are satisfied to send a new request to the
new best partner. At 1320s, the request by the partner p1 is declined and leads
two actions: p1 is removed from the list of potential partners and a new request
can be sent if the conditions are satisfied. At 1380s, p2 answer positively to u. If
u accepts the deal and is fully satisfied, the process stops and we remove him.

Table 1: Example of the system between a user u and three partners. The boxes rep-
resent the sending of a request.

Time w−−→up1
w−−→up2

w−−→up3
Satu

t = 0s
�� ��10 5 3 0

t = 600s 7.458 6.458 4.458 −0.49
t = 900s 6.09

�� ��7.091 5.091 −0.836→ 0.164

t = 1200s 4.53 5.53 5.53 −0.406
t = 1320s NO→ 0 4.855

�� ��5.655 −0.721→ 0.279

t = 1380s 0 YES 5.342 0.062→ 1

4 The Ride-Sharing Case

In this section, we focus on the specific case of our problem where users are
drivers and riders, and where the smartphone-based application is for ride-
sharing providing an automatic system to users to propose matchings through



bi-lateral agreements. Each driver can have three riders in his car, and the system
tries to find a match for each user u on the time windows [t0u, EoTu]. Using data
collected, in association with an industry partner, from the application users and
their comments, we provide the best functions representing their potential stress
and behaviour. The system automatically computes the matching and request
messages. Users do not know what the system is doing (sending requests to their
partners). Therefore, we cannot model and represent their true behaviour and
stress. We use this partial model to create a good protocol to the system to know
what to do and when.

4.1 Greedy Model

Previously the application offered by our industry partner was using a greedy
strategy consisting in sending repeatedly more requests to other partners if the
first ones did not receive an answer. This method provides solutions for each
user but the quality can be poor, and the number of requests sent increases
exponentially. For a large number of users, it can be critical in terms of commu-
nication and management. This system does not take into account the quality
of the weights. If none of the first partners answers quickly, a new one can be
selected from a new request and his fast positive answer can lead to a matching
of bad quality (low weight). In the experimental section, we will use the minimal
delay required to send a new request in the greedy system as a lower bound for
the value Tmin.

4.2 Multi-Agent Model

We developed a multi-agent model for the ride-sharing requests problem as pre-
sented in the previous section. As one can see in the algorithm, the decision
to send a new request depends on the values of the personal and interactive
satisfaction functions. We define a specific function for each satisfaction for the
ride-sharing version. Their update leads to an altruistic reaction from users to
their partners. This section focuses on the specificities of these functions and on
their implications for the objectives to control the risk of rejection while min-
imising the number of requests. In the following, we present for each function
the different parameters which will vary in the simulations.

4.3 Updated Values: Personal Satisfaction

In Definition 1 we gave the definition of the personal satisfaction variation
∆Satu(t) for a user u (and the deals version in Definition 3). This function
depends on a stress impact factor βu which depends on EoTu. The higher its
value, the faster the variation function will decrease.

A way to compute this impact factor involves choosing the number of times
that we want the function to arrive at −1. For this, one can imagine that if
every time the function arrives at −1 we add 2, we could compute the number of



Fig. 4: Illustration of the lower bound.

times the personal satisfaction function is reaching −1. Using the lower bound
variation −1/Tmin, we can compute this number from EoTu. From the fact
that we need 2 × Tmin to decrease the function by −2 (see Figure 4), and that
the personal satisfaction function is reaching −1 at least k times, we have the
following definition.

Definition 7 (Impact Factor) The impact factor βu is define by:

βu = max

(
1,

EoTu
2× k × Tmin

)
. (7)

From Definition 7 one can see that the only parameters that vary for the personal
satisfaction function (with or without the deals) are k and Tmin.

4.4 Updated Values: Interactive Satisfaction

In Definition 4 we defined the interactive satisfaction function ∆IntSat−−→upi
(t) for

a user u and his partners (and the deals version in Definition 6). This function
depends of a stress impact factor βpi

(t) which depends on the user u and his
partner pi. The higher its value, the faster the variation function will decrease.
We tried several types of behaviour model and functions for the interactive
satisfaction variation, and we kept the most relevant according to our problem.

Definition 8 (Ride-Sharing Requests Problem) In the Ride-Sharing requests
problem, the stress impact factor depending on the user u and his partner pi is
equal to βpi = max{0, 1−Satu−Satpi

} ∈ [0, 3]. The greater the level of stress, the
faster other partners will receive a request. Therefore, the interactive satisfaction
varies according to the personal satisfactions from protagonists at rate

−
w−→upi

× (1− Satu − Satpi
)

EoTu
.



5 Empirical Study

As one can see in Algorithm 1, the decision to send a new request depends on
the values of the personal and interactive satisfaction functions. Their update
leads to an altruistic reaction from users to their partners.

For the evaluation, we have been working with an industry partner in the
area of ride-sharing. Our model was proposed to them. They implemented it in
full, except for the notion of personal satisfaction. They deployed the application
over a number of days to measure the impact on system performance. The results
were very good, significantly reducing the number of rejections and the number
of requests sent to users. However, we explained to them the necessity in also
using the personal satisfaction parameter to ensure their service could scale as
the number of uses increases over time.

We do not present this evaluation in the paper because (a) of confidentiality
issues, and (b) because the number of users using the apps were not large enough
to see extreme cases and prove our model. This is why we rely on simulation on
huge numbers of users and varying several parameters.

Our experiments focus on the specificities of these functions and on the ob-
jectives to control the risk of rejection while minimising the number of requests.
In the following, we present the different parameters which will vary in the sim-
ulations.

5.1 Variation of Parameters

As seen in Definition 7, we define a specific function to describe the personal
satisfaction. This function depends on three parameters k, Tmin and EoTu. By
definition, the higher the parameters Tmin and k are, the longer the time required
to send a new request. We focus our simulation around these three parameters,
in order to identify the cases where the reduction of the number of requests or
rejections is the most visible. The variations are the following:

– k will vary between 2 and 6. It represents the number of time that the
personal satisfaction is decreasing by −1 at rate −1/Tmin between t0u and
EoTu;

– Tmin will vary between 300s and 600s. In the greedy system, the time be-
tween each new request was 300s. From this information, we put this value
as a lower bound and to observe its impact on our model by increasing it;

– For each user, the horizon EoTu will take a commun value of 3600s, 7200s
or 10800s. An analysis at 1h can show the limit of our technique if there are
not enough answers, whereas at 2/3h the system should be more robust;

– The density of the graph will also vary to check the impact of a large number
of partners. We will focus our simulation on a small density of 30% or a larger
one of 60%.



Inst. EoT Tmin k

I1 3600 300 2

I2 3600 300 6

I3 3600 600 2

I4 7200 600 6

I5 7200 300 2

I6 7200 300 6

I7 7200 600 2

I8 7200 600 6

I9 10800 300 2

I10 10800 300 6

I11 10800 600 2

I12 10800 600 6

Table 2

 500

 600

 700

 800

 900

 1000

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Average results on 20 runs for 12 different instances (Density=30)

Greedy Nb Rejections
M-A Nb Rejections

Greedy Nb Sat Users
M-A Nb Sat Users

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Average results on 20 runs for 12 different instances (Density=30)

Greedy Nb Requests
M-A Nb Requests

Greedy Sum Weights
M-A Sum Weights

 500

 600

 700

 800

 900

 1000

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Average results on 20 runs for 12 different instances (Density=60)

Greedy Nb Rejections
M-A Nb Rejections

Greedy Nb Sat Users
M-A Nb Sat Users

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Average results on 20 runs for 12 different instances (Density=60)

Greedy Nb Requests
M-A Nb Requests

Greedy Sum Weights
M-A Sum Weights

Fig. 5: Comparaison between the Greedy model and the Multi-Agent one using different
values of k, Tmin, EoT and density

5.2 Results and Discussion

In Figure 5, we present the simulation results between the Greedy system
where requests are sent every Tmin minutes to a new partner and our Multi-
Agent model (M-A). We considered randomly generated graphs and simulated
our on-line protocol to manage the sending of requests, then compared the results
according the different parameters of the functions introduced in this paper. We
computed the percentage of benefit/loss between the two systems. All experi-
ments were run on Intel quad-core i7 running Mac-OS X 10.9.5 with 16GB of
RAM. We present for each instance (depending on a small number of critical
parameters) the number of rejections, requests sent, sum of weights for deals
selected and the number of satisfied users.

One can see quickly that the number of requests sent decreases strongly. For
each instance, there are in average a reduction of 700 requests sent in the new
model. One can observe that in each instance where we increase the value of
Tmin or k, the number of rejections is reduced in the new model.

The good news is that our approach seems robust in terms of its ability to
reduce the number of requests sent in all cases. When the number of satisfied
users is close between the two versions, the sum of weights is always better for
our system. But for smaller values of EoTu, the number of satisfied users is
low for our system, since it does not have enough time to find a matching to
everyone. This leads to a reduction of the number of deals obtained, and thereby
of the sum of weights. By computing a ratio between the number of deals realised
and the sum obtained, the matching obtained has a low level of risk as shown



by the average value (weight) of each deal done for our system. Note that in
real-world settings, users will start the application most often and the matching
process three or four hours in advance. Finally, as the graph density increases
the performance of our proposed method dramatically increases and describes
well what we shown previously.

6 Conclusions

We have presented a new multi-agent approach to managing the requests made
between users of applications for reaching bi-lateral agreements. The objective is
to maximise the likelihood of acceptable matches while minimising the burden on
the users due to unnecessary requests being sent. We presented a general model
for this kind of smartphone-based matching problem, with two specific functions
to describe the satisfaction/stress behaviours and to limit spamming. We also
defined and experimented with a specific model for the Ride-Sharing Requests
Problem. Our results showed that this system succeeded in significantly and
robustly reducing the number of requests sent even with large variation between
the parameters. Their increase leads to a reduction the number of rejections and
an increase in the sum of weights in the solution.

7 Acknowledgement

This paper has emanated from research conducted with the financial support of
Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 and
from industry partner Carma (https://www.gocarma.com).

References

1. Balch, T., Arkin, R.: Communication in reactive multi-agent robotic systems. Au-
tonomous Robots 1, 27–52 (1994)

2. Chapelle, J., Simonin, O., Ferber, J.: How situated agents can learn to cooperate
by monitoring their neighbors’ satisfaction. ECAI pp. 68–72 (2002)

3. Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A.: Asymmetric
distributed constraint optimization problems. Journal of Artificial Intelligence Re-
search 47, 613 – 647 (2013)

4. Hilaire, V., Gruer, P., Koukam, A., Simonin, O.: Formal driven prototyping ap-
proach for multiagent systems. International Journal of Agent-Oriented Software
Engineering 2(2), 246–266 (2008)

5. Hirayama, K., Yokoo, M.: The distributed breakout algorithms. Artificial Intelli-
gence 161(1-2), 89 – 115 (2005)

6. Maheswaran, R.T., Pearce, J.P., Tambe, M.: A family of graphical-game-based algo-
rithms for distributed constraint optimization problems. Journal: In Coordination
of Large-Scale Multiagent Systems pp. 127 – 146 (2006)

7. Mataric, M.J.: Behaviour-based control: Examples from navigation, learning, and
group behaviour. Journal of Experimental & Theoretical Artificial Intelligence 9(2-
3), 323–336 (1997)



8. P. Lucidarme, O.S., Liégeois, A.: Implementation and evaluation of a satisfac-
tion/altruism based architecture for multi-robot systems. IEEE International Con-
ference on Robotics and Automation 1, 1007–1012 (2002)

9. Simonin, G., O’Sullivan, B.: Optimisation for the ride-sharing problem: a
complexity-based approach. ECAI pp. 831–836 (2014)


