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Abstract. The p-Cable Trench Problem is a telecommunications net-
work design problem, which jointly considers cable and trench installa-
tion costs and addresses the optimal location of p facilities. In this work,
a matheuristic approach based on the POPMUSIC (Partial Optimiza-
tion Metaheuristic under Special Intensification Conditions) framework
is developed. The inspected neighborhoods for building sub-problems
include lexicographic as well as nearest neighbor measures. Using bench-
mark data available from literature it is shown that existing results can
be outperformed.

1 Introduction

The Cable Trench Problem (CTP) reflects a scenario that appears in the instal-
lation of information technology infrastructure. In particular, it joins two cost
types that appear in the construction of wire-based networks, namely cost for
installation of cables and cost for preparing trenches. A trench may contain more
than one cable such that a solution has to balance lengths of the cables on the
one hand and the distance covered by the trenches on the other hand. As a result,
the CTP combines the problems of finding a shortest path tree and of finding a
minimum spanning tree. The CTP was proposed by [4] for the problem of con-
necting buildings to a central facility on a campus. Recent publications suggest
further applications. In [5] a problem from bioinformatics, the representation of
vascular network connectivity in medical image analysis is addressed by solving
a Generalized CTP (GCTP). Moreover, [6] models the setup of a low-frequency
radioastronomy station by applying a GCTP. An extension to the CTP is the
p-CTP proposed by [1] and now introduced in more detail.

Let G = (V,E) be a connected graph with nodes i ∈ V and directed edges
e ∈ E. For each edge (i, j) in E, the cost of installing one cable is given by
Dij > 0 and the cost of preparing a trench is denoted by Cij > Dij . In contrast
to the CTP, where each node has to be connected to a given, single source node,
the p-CTP requires to open exactly p facilities. The goal is to choose p of the
n = |V | nodes to act as facilities and to assign the remaining nodes to these p
facilities, such that the total cost for cable and trenches is minimized.

A small example for a p-CTP is presented in Figs. 1 and 2. We consider a
graph with n = 11 nodes and fix p = 2, i.e., two facilities shall be opened.
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Fig. 1. Instance, n = 11, p = 2. Fig. 2. Optimal solution: cost 97.

Moreover, Fig. 1 illustrates the graph G of the instance together with cable costs
Dij for each edge (i, j) ∈ E. The cost for preparing a trench on any edge (i, j)
is fixed to Cij = 2Dij . An optimal solution is presented in Fig. 2. Nodes 3 and 7
are facility nodes and are indicated by bold circles. Moreover, each edge (i, j) is
labeled with the number of installed cables (# cables). The cost of this solution
is 97 and divides into trenching cost of 56 and cable cost of 41.

In [1], a mixed-integer programming formulation is proposed for the p-CTP
and used to solve instances with up to 200 nodes. Nevertheless, when the dimen-
sions of the instances increase, the solver runs out of memory. Furthermore, two
heuristics based on Lagrangean relaxation are provided and tested for instances
of up to 300 nodes. In order to improve the solution quality and avoid the
memory-fault status, we propose in this work a matheuristic approach for the
p-CTP. In particular, the Partial Optimization Metaheuristic under Special
Intensification Conditions (POPMUSIC) [3] is applied. POPMUSIC addresses
large instances by decomposing them into a set of parts. Subsets of parts are
bundled and then used to form sub-problems for subsequently solving them.

The adaption of the POPMUSIC for the p-CTP is described in more detail in
Sect. 2. Afterwards, numerical experiments are provided in Sect. 3 and the paper
closes with concluding remarks in Sect. 4.

2 A POPMUSIC Approach for the p-CTP

The basic idea of POPMUSIC, proposed in [3], is to split an available solution
S of the problem into t parts part1, part2, . . . , partt and joining some of them to
build a sub-problem R. To construct R, first a particular part, namely partseed,
is selected. Afterwards, r parts closest to partseed are merged with partseed to
produce the sub-problem R. In order to determine the closeness of the parts, a
distance measure is defined. Once a sub-problem R is constructed, it is solved by
using an approximate or an exact solution approach. If parts and sub-problems
are defined in an appropriate way, every improvement of a sub-problem corre-
sponds to an improvement of the solution S. This process is repeated until the
solution contains no sub-problem that can be improved.
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Algorithm 1 depicts the POPMUSIC framework. An initial solution S is gen-
erated (line 1). Once it is build, the next step is to divide the solution into t
parts (line 2). Then, a seed, partseed, is selected (line 5). The sub-problem R is
constructed by considering its r nearest parts according to a distance measure
(line 6). In this regard, the unique parameter of this framework, r, is used for
delimiting the size of the sub-problems. The sub-problem R is then solved by
an approximate or exact procedure (line 7). In this framework, the set O gives
the seed parts that correspond to sub-problems that have been unsuccessfully
optimized. Once O contains all the parts of the complete solution (line 4), the
process stops as all sub-problems have been examined without success.

Algorithm 1. POPMUSIC framework

1 Generate an initial solution S at random
2 Decompose S in t parts, H = {part1, ..., partt}
3 Set O = ∅
4 while O �= {part1, ..., partt} do
5 Select a seed partseed /∈ O
6 Build sub-problem R composed of r parts of S closest to partseed
7 Optimize R by using an approximate or exact solution approach
8 if R has been improved then
9 Update solution S

10 O ← ∅
11 end
12 else
13 O ∪ {partseed}
14 end

15 end
16 return the improved solution S

In order to develop a POPMUSIC approach for the p-CTP, an initial solution
is decomposed by considering those p nodes selected to be the facilities. All
trenches and cables departing from each facility including the assigned nodes
can be seen as a sub-network. Thus, in the context of POPMUSIC, the size of
a solution is t = p and each part is a sub-network induced by a facility. In the
example provided in Fig. 2, the size of the solution structure is t = 2 and it is
composed by nodes part1 = 3 and part2 = 7.

The sub-problems are built by means of the sub-networks represented by their
starting nodes and the associated edges and nodes. Therefore, in the example
provided in Fig. 2, when building a sub-problem of size r = 2 with the seed part
part1 = 3 all the nodes belonging to the corresponding sub-networks form the
sub-problem. In the case of the aforementioned example, the new sub-problem
may consider all the nodes from the network starting with part1 = 3 and part2 =
7. Moreover, for building the sub-problems, different measures or strategies can
be used to indicate the closeness of the parts among themselves:
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– Lexicographic: The sub-problems are grouped according to the indexes of the
parts. That is, all the nodes belonging to part1 are grouped to those belonging
to part2 if r = 1, also to those of part3 if r = 2, and so on. For instance, for
a solution divided into 4 parts and r = 2, we can have the following sub-
problems, R = {part1, part2}, R = {part2, part3}, R = {part3, part4}, and
R = {part4, part1}.

– Distance: This strategy takes into account the minimum distance between the
facilities. For any parti ∈ H, let i∗ be the route node of parti. Then the
distance between parti and partj is given as D̄ij = Di∗j∗ , i.e., by the cable
costs assigned to edge (i∗, j∗). If (i∗, j∗) does not exist, a high-enough value is
assigned. The construction of the sub-problem is then performed in a greedy
way. Once the seed parti ∈ H has been selected, that part with the minimum
arc distance is assigned. That is, one partj = argmin(D̄ij)partj∈H,j �=i is cho-
sen. For r > 2, the following parts are added taking into account the minimum
average arc distance to the already assigned parts such that the next part to
be added is calculated by means of argmin(

∑
parti∈R D̄ij)partj∈H\R.

Once the sub-problem has been formed, it has to be solved by an approximate
or exact method. In this work, we investigate the approach of applying a branch
and cut method provided by a general-purpose solver such as CPLEX. The
rationale behind this is (i) to provide flexibility in terms of not requiring to
develop specific solvers for the problem itself, (ii) investigate the advantage of
decomposing the problem for large-sized problem instances, and (iii) provide a
competitive solution approach for addressing this problem in terms of solution
quality. At this point, we may stress that dividing the problem into parts allows
to address memory problems as the one indicated by Marianov et al. [1] for
large-sized instances, where directly managing them may require high-amounts
of computational memory.

3 Numerical Results

The computational experiments were conducted on a computer with an Intel
i7 CPU 3.50 GHz and 6 GB of RAM, restricted to use one CPU. The model
was implemented in CPLEX 12.6. The instances used in this work are those
large-sized ones from [1] for the p-CTP.

Table 1 shows the results provided by the best approach reported in the lit-
erature based on a Lagrangean relaxation [1] and the results of our POPMUSIC
approach with t = p and r = 0.5p, for both measures distance (dist) and lex-
icographic (lex). Moreover, with the aim of reducing the computational time,
a modified stopping criterion is realized in rPOPMUSIC. In this version, the
algorithm stops if the set O, see Algorithm 1, line 4, contains r elements. That
is, in the experiments, rPOPMUSIC stops if 0.5p parts have been unsuccessfully
examined. The relative error of each approach is calculated by means of the lower
bound provided by the Lagrangean approach. Moreover, it should be mentioned
that the Lagrangean approach is executed until the step size is lower than 0.0001.
Therefore, due to the fact that both approaches reach their respective stopping
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criteria without running out of memory, the quality of the solutions provided by
them is analyzed.

Independent from the measurement used to determine the closeness among
the parts, the results are similar in terms of average gap, see Table 1. In terms
of computational time, however, differences are observed. In particular, rPOP-
MUSIC allows to provide high-quality solutions in less computational time
than required for the Lagrangean heuristic. Moreover, new best values for the
inspected instances are reported in bold font. It can be highlighted that for all
instances, POPMUSIC and its variants are able to provide new best values.

4 Conclusion

In this work, a matheuristic approach for the p-CTP based on the POPMUSIC
template is introduced. Two different ways for building the sub-problems and
stopping criteria are proposed and assessed. Moreover, solving the sub-problems
is done by means of an available mathematical programming formulation and
using the standard solver CPLEX. Under this approach, the complete prob-
lem is decomposed and can be treated by the solver, while for the full prob-
lem, depending on computer performance, it can reach an out-of-memory sta-
tus. Thus, the POPMUSIC-based approach provides new best values for all the
large-sized problem instances considered for this problem.

For future research, we are going to perform an extensive analysis of different
configurations for the POPMUSIC parameters (including various options for
choosing seed parts) as well as study other stopping criteria and neighborhood
measures.
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