Skip to main content

Convolutional Neural Networks Applied for Parkinson’s Disease Identification

  • Chapter
  • First Online:
Machine Learning for Health Informatics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

Abstract

Parkinson’s Disease (PD) is a chronic and progressive illness that affects hundreds of thousands of people worldwide. Although it is quite easy to identify someone affected by PD when the illness shows itself (e.g. tremors, slowness of movement and freezing-of-gait), most works have focused on studying the working mechanism of the disease in its very early stages. In such cases, drugs can be administered in order to increase the quality of life of the patients. Since the beginning, it is well-known that PD patients feature the micrography, which is related to muscle rigidity and tremors. As such, most exams to detect Parkinson’s Disease make use of handwritten assessment tools, where the individual is asked to perform some predefined tasks, such as drawing spirals and meanders on a template paper. Later, an expert analyses the drawings in order to classify the progressive of the disease. In this work, we are interested into aiding physicians in such task by means of machine learning techniques, which can learn proper information from digitized versions of the exams, and them recommending a probability of a given individual being affected by PD depending on its handwritten skills. Particularly, we are interested in deep learning techniques (i.e. Convolutional Neural Networks) due to their ability into learning features without human interaction. Additionally, we propose to fine-tune hyper-arameters of such techniques by means of meta-heuristic-based techniques, such as Bat Algorithm, Firefly Algorithm and Particle Swarm Optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/.

  2. 2.

    The CNN hyper-parameters in this case are the default values given by Caffe [39].

  3. 3.

    A random search means an aleatory initialization of hyper-parameters between the range bounds.

  4. 4.

    Notice these values have been empirically setup.

  5. 5.

    http://caffe.berkeleyvision.org.

References

  1. Parkinson, J.: An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 20(4), 223–236 (1817)

    Google Scholar 

  2. Fundation, P.D.: Statistics on parkinson’s: Who has parkinson’s? (2016). http://www.pdf.org/en/parkinson_statistics, Accessed 15-July-2016

  3. LeCun, Y., Bengio, Y.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  4. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Salakhutdinov, R., Hinton, G.E.: An efficient learning procedure for deep boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holzinger, A.: Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inf. 3

    Google Scholar 

  8. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive machine learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_6

    Chapter  Google Scholar 

  9. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)

    Google Scholar 

  10. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Computations 29(5), 464–483 (2012)

    Article  Google Scholar 

  11. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  12. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  13. Spadotto, A.A., Guido, R.C., Papa, J.P., Falcão, A.X.: Parkinson’s disease identification through optimum-path forest. In: IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 6087–6090 (2010)

    Google Scholar 

  14. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. Int. J. Imaging Systems Technol. 19(2), 120–131 (2009)

    Article  Google Scholar 

  15. Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recogn. 45(1), 512–520 (2012)

    Article  Google Scholar 

  16. Spadotto, A.A., Guido, R.C., Carnevali, F.L., Pagnin, A.F., Falcão, A.X., Papa, J.P.: Improving parkinson’s disease identification through evolutionary-based feature selection. In: IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 7857–7860 (2011)

    Google Scholar 

  17. Das, R.: A comparison of multiple classification methods for diagnosis of parkinson disease. Expert Syst. Appl. 37(2), 1568–1572 (2010)

    Article  Google Scholar 

  18. Weber, S.A.T., Santos Filho, C.A., Shelp, A.O., Rezende, L.A.L., Papa, J.P., Hook, C.: Classification of handwriting patterns in patients with parkinson’s disease, using a biometric sensor. Global Adv. Res. J. Med. Med. Sci. 11(3), 362–366 (2014)

    Google Scholar 

  19. Zhao, S., Rudzicz, F., Carvalho, L.G., Marquez-Chin, C., Livingstone, S.: Automatic detection of expressed emotion in parkinson’s disease. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4813–4817 (2014)

    Google Scholar 

  20. Tsanas, A., Little, M.A., McSharry, P.E., Spielman, J., Ramig, L.O.: Novel speech signal processing algorithms for high-accuracy classification of parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2012)

    Article  Google Scholar 

  21. Harel, B., Cannizzaro, M., Snyder, P.J.: Variability in fundamental frequency during speech in prodromal and incipient parkinson’s disease: A longitudinal case study. Brain Cogn. 6(1), 24–29 (2004)

    Article  Google Scholar 

  22. Eichhorn, T.E., Gasser, T., Mai, N., Marquardt, C., Arnold, G., Schwarz, J., Oertel, W.H.: Computational analysis of open loop handwriting movements in parkinson’s disease: A rapid method to detect dopamimetic effects. Mov. Disord. 11(3), 289–297 (1996)

    Article  Google Scholar 

  23. Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for parkinson’s disease diagnosis. J. Neurol. 260(9), 2357–2361 (2013)

    Article  Google Scholar 

  24. Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faundez-Zanuy, M.: Analysis of in-air movement in handwriting: A novel marker for parkinson’s disease. Comput. Methods Programs Biomed. 117(3), 405–411 (2014)

    Article  Google Scholar 

  25. Pereira, C.R., Pereira, D.R., da Silva, F.A., Hook, C., Weber, S.A.T., Pereira, L.A.M., Papa, J.P.: A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In: IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171–176 (2015)

    Google Scholar 

  26. Pasluosta, C.F., Gassner, H., Winkler, J., Klucken, J., Eskofier, B.M.: An emerging era in the management of parkinson’s disease: Wearable technologies and the internet of things. IEEE J. Biomed. Health Inf. 19, 1873–1881 (2015)

    Article  Google Scholar 

  27. Zhao, Y., Heida, T., van Wegen, E.E.H., Bloem, B.R., van Wezel, R.J.A.: E-health support in people with parkinson’s disease with smart glasses: A survey of user requirements and expectations in the netherlands. J. Parkinson’s Dis. 5(2), 369–378 (2015)

    Article  Google Scholar 

  28. Khobragade, N., Graupe, D., Tuninetti, D.: Towards fully automated closed-loop deep brain stimulation in parkinson’s disease patients: A lamstar-based tremor predictor. In: 37th Annual International Conference of the Engineering in Medicine and Biology Society IEEE, p. 2616 (2015)

    Google Scholar 

  29. Navarro, G.P., Magariño, I.G., Lorente, P.R.: A kinect-based system for lower limb rehabilitation in parkinson’s disease patients: a pilot study. J. Med. Syst. 39, 1–10 (2015)

    Article  Google Scholar 

  30. Geldenhuys, W.J., Guseman, T.L., Pienaar, I.S., Dluzen, D.E., Young, J.W.: A novel biomechanical analysis of gait changes in the MPTP mouse model of parkinson’s disease. PeerJ PeerJ Comput. Sci. 17, e1175 (2015)

    Google Scholar 

  31. Kim, H., Lee, H.J., Lee, W., Kwon, S., Kim, S.K., Jeon, H.S., Park, H., Shin, C.W., Yi, W.J., Jeon, B.S., Park, K.S.: Unconstrained detection of freezing of gait in parkinson’s disease patients using smartphone. In: 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) IEEE, pp. 3751–3754 (2015)

    Google Scholar 

  32. Papa, J.P., Scheirer, W., Cox, D.D.: Fine-tuning deep belief networks using harmony search. Appl. Soft Comput. 46, 875–885 (2015)

    Article  Google Scholar 

  33. Papa, J.P., Rosa, G.H., Costa, K.A.P., Marana, A.N., Scheirer, W., Cox, D.D.: On the model selection of bernoulli restricted boltzmann machines through harmony search. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2015, pp. 1449–1450. ACM, New York, USA (2015)

    Google Scholar 

  34. Papa, J.P., Rosa, G.H., Marana, A.N., Scheirer, W., Cox, D.D.: Model selection for discriminative restricted boltzmann machines through meta-heuristic techniques. J. Comput. Sci. 9, 14–18 (2015)

    Article  Google Scholar 

  35. Rosa, G.H., Papa, J.P., Marana, A.N., Scheirer, W., Cox, D.D.: Fine-tuning convolutional neural networks using harmony search. In: Pardo, A., Kittler, J. (eds.) IARP 2015. LNCS, vol. 9423, pp. 683–690. Springer, Heidelberg (2015)

    Google Scholar 

  36. Fedorovici, L., Precup, R., Dragan, F., David, R., Purcaru, C.: Embedding gravitational search algorithms in convolutional neural networks for OCR applications. In: 7th IEEE International Symposium on Applied Computational Intelligence and Informatics. SACI 2012, pp. 125–130 (2012)

    Google Scholar 

  37. Rere, L.M.R., Fanany, M.I., Arymurthy, A.M.: Metaheuristic algorithms for convolution neural network. Comput. Intell. Neurosci. 2016, 1–13 (2016)

    Article  Google Scholar 

  38. Holzinger, K., Palade, V., Rabadan, R., Holzinger, A.: Darwin or lamarck? future challenges in evolutionary algorithms for knowledge discovery and data mining. Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 35–56. Springer, Heidelberg (2014)

    Google Scholar 

  39. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint (2014). arXiv:1408.5093

  40. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  41. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP grants #2014/16250-9 and #2015/25739-4, as well as CNPq grant #306166/2014-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao P. Papa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Pereira, C.R., Pereira, D.R., Papa, J.P., Rosa, G.H., Yang, XS. (2016). Convolutional Neural Networks Applied for Parkinson’s Disease Identification. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics