Skip to main content

Machine Learning for In Silico Modeling of Tumor Growth

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

Abstract

The various interplaying variables of tumor growth remain key questions in cancer research, in particular what makes such a growth malignant and what are possible therapies to stop the growth and prevent re-growth. Given the complexity and heterogeneity of the disease, as well as the steadily growing set of publicly available big data sets, there is an urgent need for approaches to make sense out of these open data sets. Machine learning methods for tumor growth profiles and model validation can be of great help here, particularly, discrete multi-agent approaches.

In this paper we provide an overview of current machine learning approaches used for cancer research with the main focus of highlighting the necessity of in silico tumor growth modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  2. Johnson, D., Osborne, J., Wang, Z., Marias, K.: Computer simulation, visualization, and image processing of cancer data and processes. Cancer Inf. 14(Suppl 4), 105 (2015)

    Google Scholar 

  3. Tzedakis, G., Tzamali, E., Marias, K., Sakkalis, V.: The importance of neighborhood scheme selection in agent-based tumor growth modeling. Cancer Inf. 14(Suppl 4), 67–81 (2015)

    Google Scholar 

  4. Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66(5), 1039–1091 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sieburg, H.B.: Physiological studies in silico. Stud. Sci. Complex. 12(2), 321–342 (1990)

    Google Scholar 

  6. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  7. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inf. (BRIN) 3(2), 119–131 (2016)

    Article  Google Scholar 

  8. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive machine learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_6

    Chapter  Google Scholar 

  9. Wang, Z., Butner, J., Kerketta, R., Cristini, V., Deisboeck, T.: Simulating cancer growth with multiscale agent-based modeling. Semin. Cancer Biol. 30, 70–78 (2015)

    Article  Google Scholar 

  10. Szabó, A., Merks, R.M.: Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front. Oncol. 3, 87 (2013)

    Article  Google Scholar 

  11. Von Neumann, J.: The general and logical theory of automata. Cereb. Mech. Behav. 1(41), 1–2 (1951)

    MathSciNet  Google Scholar 

  12. Neumann, J.V., Burks, A.W.: Theory of self-reproducing automata (1966)

    Google Scholar 

  13. Ulam, S.: Some ideas and prospects in biomathematics. Ann. Rev. Biophys. Bioeng. 1(1), 277–292 (1972)

    Article  MathSciNet  Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2000). doi:10.1007/978-1-4757-3264-1

    Google Scholar 

  16. Mantas, J.: Electronic health record. Stud. Health Technol. Inf. 65, 250–257 (2002)

    Google Scholar 

  17. Waugh, D.F.: Protein-protein interactions. Adv. Protein Chem. 9, 325–437 (1954)

    Article  Google Scholar 

  18. Pawson, T., Nash, P.: Protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027–1047 (2000)

    Google Scholar 

  19. Przulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  20. Jeanquartier, F., Jean-Quartier, C., Holzinger, A.: Integrated web visualizations for protein-protein interaction databases. BMC Bioinf. 16, 195 (2015)

    Article  Google Scholar 

  21. Wagoner, J.K.: Occupational carcinogenesis: the two hundred years since percivall pott. Ann. N. Y. Acad. Sci. 271(1), 1–4 (1976)

    Article  MathSciNet  Google Scholar 

  22. Trisilowati, Mallet, D.G.: In silico experimental modeling of cancer treatment. ISRN Oncol. 2012, 828701 (2012)

    Google Scholar 

  23. Kotlyar, M., Pastrello, C., Pivetta, F., Sardo, A.L., Cumbaa, C., Li, H., Naranian, T., Niu, Y., Ding, Z., Vafaee, F., et al.: In silico prediction of physical protein interactions and characterization of interactome orphans. Nat. Methods 12(1), 79–84 (2015)

    Article  Google Scholar 

  24. Snell, E.H., Lauricella, A.M., Potter, S.A., Luft, J.R., Gulde, S.M., Collins, R.J., Franks, G., Malkowski, M.G., Cumbaa, C., Jurisica, I., et al.: Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples. Acta Crystallogr. Sect. D: Biol. Crystallogr. 64(11), 1131–1137 (2008)

    Article  Google Scholar 

  25. Jeanquartier, F., Jean-Quartier, C., Cemernek, D., Holzinger, A.: In silico modeling for tumor growth visualization. BMC Syst. Biol. 10(1), 1 (2016)

    Article  Google Scholar 

  26. Jeanquartier, F., Jean-Quartier, C., Schreck, T., Cemernek, D., Holzinger, A.: Integrating open data on cancer in support to tumor growth analysis. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 49–66. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43949-5_4

    Chapter  Google Scholar 

  27. Edelman, L.B., Eddy, J.A., Price, N.D.: In silico models of cancer. Wiley Interdisc. Rev. Syst. Biol. Med. 2(4), 438–459 (2010)

    Article  Google Scholar 

  28. Russell, S., Norvig, P.: Artificial Intelligence. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  29. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4(3), 151–162 (2010)

    Article  Google Scholar 

  30. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. 99(suppl 3), 7280–7287 (2002)

    Article  Google Scholar 

  31. Starruß, J., de Back, W., Brusch, L., Deutsch, A.: Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30(9), 1331–1332 (2014)

    Article  Google Scholar 

  32. Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J.M., Hlatky, L., Hahnfeldt, P.: Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10(8), e1003800 (2014)

    Article  Google Scholar 

  33. Laird, A.K.: Dynamics of tumour growth. Br. J. Cancer 18, 490–502 (1964)

    Article  Google Scholar 

  34. Loeb, L.: Tissue growth and tumor growth. J. Cancer Res. 2, 135 (1917)

    Google Scholar 

  35. Gocka, E.F., Reed, L.J.: A method of fitting non-symmetric gompertz functions for characterising malignant growth. Int. J. Biomed. Comput. 8, 247–254 (1977)

    Article  Google Scholar 

  36. Glazier, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)

    Article  Google Scholar 

  37. Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223(4), 120–123 (1970)

    Article  Google Scholar 

  38. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Modern Phys. 55(3), 601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qi, A.S., Zheng, X., Du, C.Y., An, B.S.: A cellular automaton model of cancerous growth. J. Theor. Biol. 161(1), 1–12 (1993)

    Article  Google Scholar 

  40. Smolle, J., Stettner, H.: Computer simulation of tumour cell invasion by a stochastic growth model. J. Theor. Biol. 160(1), 63–72 (1993)

    Article  Google Scholar 

  41. Smolle, J.: Cellular automaton simulation of tumour growth-equivocal relationships between simulation parameters and morphologic pattern features. Anal. Cellular Pathol. 17(2), 71–82 (1998)

    Article  Google Scholar 

  42. Kansal, A.R., Torquato, S., Harsh, G., Chiocca, E., Deisboeck, T.: Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203(4), 367–382 (2000)

    Article  Google Scholar 

  43. Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J. Theor. Biol. 213(3), 315–331 (2001)

    Article  MathSciNet  Google Scholar 

  44. Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225(2), 257–274 (2003)

    Article  MathSciNet  Google Scholar 

  45. Gerlee, P., Anderson, A.R.: An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246(4), 583–603 (2007)

    Article  MathSciNet  Google Scholar 

  46. Brutovsky, B., Horvath, D., Lisy, V.: Inverse geometric approach for the simulation of close-to-circular growth. The case of multicellular tumor spheroids. Phys. A Stat. Mech. Appl. 387(4), 839–850 (2008)

    Article  Google Scholar 

  47. Chaplain, M., Anderson, A.: Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis 16(4–5), 222–234 (1995)

    Google Scholar 

  48. Anderson, A.R., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998)

    Article  MATH  Google Scholar 

  49. Markus, M., Böhm, D., Schmick, M.: Simulation of vessel morphogenesis using cellular automata. Math. Biosci. 156(1), 191–206 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. de Pillis, L.G., Mallet, D.G., Radunskaya, A.E.: Spatial tumor-immune modeling. Comput. Math. Methods Med. 7(2–3), 159–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mallet, D.G., De Pillis, L.G.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239(3), 334–350 (2006)

    Article  MathSciNet  Google Scholar 

  52. Vidyasagar, M.: Machine learning methods in the computational biology of cancer, vol. 470. The Royal Society (2014)

    Google Scholar 

  53. Cruz, J.A., Wishart, D.S.: Applications of machine learning in cancer prediction and prognosis. Cancer Inf. 2, 59–77 (2006)

    Google Scholar 

  54. Madhukar, N.S., Elemento, O., Pandey, G.: Prediction of genetic interactions using machine learning and network properties. Front. Bioeng. Biotechnol. 3, 172 (2015)

    Article  Google Scholar 

  55. Lisboa, P.J., Vellido Alcacena, A., Tagliaferri, R., Napolitano, F., Ceccarelli, M., Martín Guerrero, J.D., Biganzoli, E.: Data mining in cancer research. IEEE Comput. Intell. Magaz. 5(1), 14–18 (2010)

    Article  Google Scholar 

  56. Vellido, A., Biganzoli, E., Lisboa, P.J.: Machine learning in cancer research: implications for personalised medicine. In: ESANN, pp. 55–64 (2008)

    Google Scholar 

  57. Upstill-Goddard, R., Eccles, D., Fliege, J., Collins, A.: Machine learning approaches for the discovery of gene-gene interactions in disease data. Brief. Bioinf. 14(2), 251–260 (2013)

    Article  Google Scholar 

  58. Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armañanzas, R., Santafé, G., Pérez, A., et al.: Machine learning in bioinformatics. Brief. Bioinf. 7(1), 86–112 (2006)

    Article  Google Scholar 

  59. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2014)

    Article  Google Scholar 

  60. Hu, X., Cammann, H., Meyer, H.A., Miller, K., Jung, K., Stephans, C.: Artificial neural networks and prostate cancer-tools for diagnosis and management. Nat. Rev. Urol. 10, 174–182 (2013)

    Article  Google Scholar 

  61. Eckel, S.P., Baumbach, J., Hauschild, A.C.: On the importance of statistics in breath analysis-hope or curse? J. Breath Res. 8(1), 012001 (2014)

    Article  Google Scholar 

  62. Morris, M., Greiner, R., Sander, J., Murtha, A., Schmidt, M.: Learning a classification-based glioma growth model using MRI data. J. Comput. 1(7), 21–31 (2006)

    Article  Google Scholar 

  63. González-Vélez, H., Mier, M., Julià-Sapé, M., Arvanitis, T.N., García-Gómez, J.M., Robles, M., Lewis, P.H., Dasmahapatra, S., Dupplaw, D., Peet, A., et al.: Healthagents: distributed multi-agent brain tumor diagnosis and prognosis. Appl. Intell. 30(3), 191–202 (2009)

    Article  Google Scholar 

  64. Parmar, C., Grossmann, P., Bussink, J., Lambin, P., Aerts, H.J.: Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 5, 13087 (2015)

    Article  Google Scholar 

  65. Kherlopian, A.R., Song, T., Duan, Q., Neimark, M.A., Po, M.J., Gohagan, J.K., Laine, A.F.: A review of imaging techniques for systems biology. BMC Syst. Biol. 2, 74 (2008)

    Article  Google Scholar 

  66. Buchen, L.: Cancer: missing the mark. Nature 471(7339), 428–432 (2011)

    Article  Google Scholar 

  67. Wang, J., Zuo, Y., Man, Y., Avital, I., Stojadinovic, A., Liu, M., Yang, X., Varghese, R.S., Tadesse, M.G., Ressom, H.W.: Pathway and network appro-aches for identification of cancer signature markers from omics data. J. Cancer 6(1), 54–65 (2015)

    Article  Google Scholar 

  68. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)

    Article  Google Scholar 

  69. Liu, N., Liu, X., Zhou, N., Wu, Q., Zhou, L., Li, Q.: Gene expression profiling and bioinformatics analysis of gastric carcinoma. Exp. Mol. Pathol. 96(3), 361–366 (2014)

    Article  Google Scholar 

  70. Wong, Y.H., Chen, R.H., Chen, B.S.: Core and specific network markers of carcinogenesis from multiple cancer samples. J. Theor. Biol. 362, 17–34 (2014)

    Article  MATH  Google Scholar 

  71. Sanz-Pamplona, R., Aragüés, R., Driouch, K., Martín, B., Oliva, B., Gil, M., Boluda, S., Fernández, P.L., Martínez, A., Moreno, V., Acebes, J.J., Lidereau, R., Reyal, F., Van de Vijver, M.J., Sierra, A.: Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am. J. Pathol. 179(2), 564–579 (2011)

    Article  Google Scholar 

  72. Wang, Y.C., et al.: A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med. Genom. 4(1), 2 (2011)

    Article  Google Scholar 

  73. Luo, T., Wu, S., Shen, X., Li, L.: Network cluster analysis of protein-protein interaction network identified biomarker for early onset colorectal cancer. Mol. Biol. Rep. 40(12), 6561–6568 (2013)

    Article  Google Scholar 

  74. Schramm, S.J., Li, S.S., Jayaswal, V., Fung, D.C.Y., Campain, A.E., Pang, C.N.I., Scolyer, R.A., Yang, Y.H., Mann, G.J., Wilkins, M.R.: Disturbed protein-protein interaction networks in metastatic melanoma are associated with worse prognosis and increased functional mutation burden. Pigment Cell Melanoma Res. 26(5), 708–722 (2013)

    Article  Google Scholar 

  75. Zhang, Y., Yang, C., Wang, S., Chen, T., Li, M., Wang, X., Li, D., Wang, K., Ma, J., Wu, S., Zhang, X., Zhu, Y., Wu, J., He, F.: Liveratlas: a unique integrated knowledge database for systems-level research of liver and hepatic disease. Liver Int. Off. J. Int. Assoc. Study Liver 33(8), 1239–1248 (2013)

    Google Scholar 

  76. Ahn, J., Yoon, Y., Yeu, Y., Lee, H., Park, S.: Impact of TGF-b on breast cancer from a quantitative proteomic analysis. Comput. Biol. Med. 43(12), 2096–2102 (2013)

    Article  Google Scholar 

  77. Oh, J.H., Deasy, J.O.: A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer. Brief. Bioinf. 17(3), 468–478 (2016)

    Article  Google Scholar 

  78. Majewski, I.J., Bernards, R.: Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nat. Med. 17(3), 304–312 (2011)

    Article  Google Scholar 

  79. Li, A., Walling, J., Ahn, S., Kotliarov, Y., Su, Q., Quezado, M., Oberholtzer, J.C., Park, J., Zenklusen, J.C., Fine, H.A.: Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 69(5), 2091–2099 (2009)

    Article  Google Scholar 

  80. Ceccarelli, M., Barthel, F.P., Malta, T.M., Sabedot, T.S., Salama, S.R., Murray, B.A., Morozova, O., Newton, Y., Radenbaugh, A., Pagnotta, S.M., et al.: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3), 550–563 (2016)

    Article  Google Scholar 

  81. Lalonde, E., Ishkanian, A.S., Sykes, J., Fraser, M., Ross-Adams, H., Erho, N., Dunning, M.J., Halim, S., Lamb, A.D., Moon, N.C., et al.: Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol. 15(13), 1521–1532 (2014)

    Article  Google Scholar 

  82. Mungall, C.J., Washington, N.L., Nguyen-Xuan, J., Condit, C., Smedley, D., Köhler, S., Groza, T., Shefchek, K., Hochheiser, H., Robinson, P.N., et al.: Use of model organism and disease databases to support matchmaking for human disease gene discovery. Hum. Mutat. 36(10), 979–984 (2015)

    Article  Google Scholar 

  83. Clarke, C., Madden, S.F., Doolan, P., Aherne, S.T., Joyce, H., O’Driscoll, L., Gallagher, W.M., Hennessy, B.T., Moriarty, M., Crown, J., Kennedy, S., Clynes, M.: Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis 34(10), 2300–2308 (2013)

    Article  Google Scholar 

  84. Yang, Y., et al.: Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat. Commun. 5, 262–272 (2014)

    Google Scholar 

  85. Liu, R., Lv, Q.L., Yu, J., Hu, L., Zhang, L.H., Cheng, Y., Zhou, H.H.: Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer. Breast Cancer Res. Treat. 151(3), 607–618 (2015)

    Article  Google Scholar 

  86. Yeh, H.Y., et al.: Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. BMC Med. Genom. 2(1), 70 (2009)

    Article  Google Scholar 

  87. Remo, A., et al.: Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. J. Trans. Med. 13(1), 138 (2015)

    Article  Google Scholar 

  88. Akutekwe, A., Seker, H.: Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2015, pp. 8177–8180 (2015)

    Google Scholar 

  89. Jörnsten, R., Abenius, T., Kling, T., Schmidt, L., Johansson, E., Nordling, T.E.M., Nordlander, B., Sander, C., Gennemark, P., Funa, K., Nilsson, B., Lindahl, L., Nelander, S.: Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Mol. Syst. Biol. 7, 486 (2011)

    Article  Google Scholar 

  90. Shi, X., Zhao, Q., Huang, J., Xie, Y., Ma, S.: Deciphering the associations between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach. Bioinformatics (Oxford, England) 31(24), 3977–3983 (2015)

    Google Scholar 

  91. Leung, A., Bader, G.D., Reimand, J.: HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics 30(15), 2230–2232 (2014)

    Article  Google Scholar 

  92. Wong, S.W., Cercone, N., Jurisica, I.: Comparative network analysis via differential graphlet communities. Proteomics 15(2–3), 608–617 (2015)

    Article  Google Scholar 

  93. Leung, M.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104(1), 176–197 (2016)

    Article  Google Scholar 

  94. Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P.J., Elhadad, N., Johnson, S.B., Lai, A.M.: A review of approaches to identifying patient phenotype cohorts using electronic health records. J. Am. Med. Inf. Assoc. 21(2), 221–230 (2014)

    Article  Google Scholar 

  95. Hochheiser, H., Castine, M., Harris, D., Savova, G., Jacobson, R.S.: An information model for computable cancer phenotypes. BMC Med. Inf. Decis. Making 16(1), 121 (2016)

    Article  Google Scholar 

  96. Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2), 113–127 (2005)

    Article  Google Scholar 

  97. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016)

    Article  Google Scholar 

  98. Menden, M.P., Iorio, F., Garnett, M., McDermott, U., Benes, C.H., Ballester, P.J., Saez-Rodriguez, J.: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS one 8(4), e61318 (2013)

    Article  Google Scholar 

  99. Gupta, S., Tran, T., Luo, W., Phung, D., Kennedy, R.L., Broad, A., Campbell, D., Kipp, D., Singh, M., Khasraw, M., et al.: Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry. BMJ Open 4(3), e004007 (2014)

    Article  Google Scholar 

  100. Zhao, D., Weng, C.: Combining pubmed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. J. Biomed. Inf. 44(5), 859–868 (2011)

    Article  Google Scholar 

  101. Shanmugasundaram, P., Viswanath, V., Sankar, A., Ravichandiran, V.: Metabolomics: a cancer diagnostic tool. J. Pharm. Res. 5(12), 5210 (2012)

    Google Scholar 

  102. Handa, H., Usuba, A., Maddula, S., Baumbach, J.I., Mineshita, M., Miyazawa, T.: Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PloS one 9(12), e114555 (2014)

    Article  Google Scholar 

  103. Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)

    Article  Google Scholar 

  104. O’Shea, K., Cameron, S.J., Lewis, K.E., Lu, C., Mur, L.A.: Metabolomic-based biomarker discovery for non-invasive lung cancer screening: a case study. Biochimica et Biophysica Acta 1860(11, Part B), 2682–2687 (2016). Systems Genetics - Deciphering the Complex Disease with a Systems Approach

    Article  Google Scholar 

  105. Gaul, D.A., Mezencev, R., Long, T.Q., Jones, C.M., Benigno, B.B., Gray, A., Fernández, F.M., McDonald, J.F.: Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci. Rep. 5, 16531 (2015)

    Article  Google Scholar 

  106. Hauschild, A.C., Baumbach, J.I., Baumbach, J.: Integrated statistical learning of metabolic ion mobility spectrometry profiles for pulmonary disease identification. Genet. Mol. Res. 11(3), 2733–2744 (2012)

    Article  Google Scholar 

  107. Brunelli, L., Caiola, E., Marabese, M., Broggini, M., Pastorelli, R.: Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo. Sci. Rep. 6 (2016). doi:10.1038/srep28398. Nature Publishing Group

  108. Bertini, I., Cacciatore, S., Jensen, B.V., Schou, J.V., Johansen, J.S., Kruhøffer, M., Luchinat, C., Nielsen, D.L., Turano, P.: Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 72(1), 356–364 (2012)

    Article  Google Scholar 

  109. Wei, S., Liu, L., Zhang, J., Bowers, J., Gowda, G.N., Seeger, H., Fehm, T., Neubauer, H.J., Vogel, U., Clare, S.E., Raftery, D.: Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol. Oncol. 7(3), 297–307 (2013)

    Article  Google Scholar 

  110. Jean-Quartier, C., Jeanquartier, F., Cemernek, D., Holzinger, A.: Tumor growth simulation profiling. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 208–213. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43949-5_16

    Chapter  Google Scholar 

  111. Koch, L.: Genetic screen: a network to guide precision cancer therapy. Nat. Rev. Genet. 17, 504–505 (2016)

    Article  Google Scholar 

  112. Kotlyar, M., Fortney, F., Jurisica, I.: Network-based characterization of drug-regulated genes, drug targets, and toxicity. Methods 57(4), 477–485 (2012)

    Article  Google Scholar 

  113. Fortney, K., Griesman, G., Kotlyar, M., Pastrello, C., Angeli, M., Tsao, M.S., Jurisica, I.: Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data. PLoS Comp. Biol. 11(3), e1004068 (2015)

    Article  Google Scholar 

  114. Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Weiskopf, D., North, S., Keim, D.: Human-centered machine learning through interactive visualization: review and open challenges. In: Proceedings of the 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2016)

    Google Scholar 

  115. Kornhauser, D., Wilensky, U., Rand, W.: Design guidelines for agent based model visualization. J. Artif. Soc. Soc. Simul. 12(2), 1 (2009)

    Google Scholar 

  116. Savas, S., Geraci, J., Jurisica, I., Liu, G.: A comprehensive catalogue of functional genetic variations in the EGFR pathway: protein-protein interaction analysis reveals novel genes and polymorphisms important for cancer research. Int. J. Cancer 125(6), 1257–1265 (2009)

    Article  Google Scholar 

  117. Rodriguez-Brenes, I.A., Komarova, N.L., Wodarz, D.: Tumor growth dynamics: insights into evolutionary processes. Trends Ecol. Evol. 28(10), 597–604 (2013)

    Article  Google Scholar 

  118. Blair, R.H., Trichler, D.L., Gaille, D.P.: Mathematical and statistical modeling in cancer systems biology. Front. Physiol. 3, 227 (2012). doi:10.3389/fphys.2012.00227. Frontiers Research Foundation

  119. Holzinger, A.: Biomedical Informatics: Discovering Knowledge in Big Data. Springer, New York (2014)

    Book  MATH  Google Scholar 

  120. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinf. 15(Suppl 6), I1 (2014)

    Article  Google Scholar 

  121. Sturm, W., Schreck, T., Holzinger, A., Ullrich, T.: Discovering medical knowledge using visual analytics: a survey on methods for systems biology and *-omics data. In: Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 71–81. Eurographics Association (2015)

    Google Scholar 

  122. Turkay, C., Jeanquartier, F., Holzinger, A., Hauser, H.: On computationally-enhanced visual analysis of heterogeneous data and its application in biomedical informatics. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges, vol. 8401, pp. 117–140. Springer, Heidelberg (2014)

    Google Scholar 

  123. Otasek, D., Pastrello, C., Holzinger, A., Jurisica, I.: Visual data mining: effective exploration of the biological universe. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges. LNCS, vol. 8401, pp. 19–33. Springer, Heidelberg (2014)

    Google Scholar 

  124. Pastrello, C., Pasini, E., Kotlyar, M., Otasek, D., Wong, S., Sangrar, W., Rahmati, S., Jurisica, I.: Integration, visualization and analysis of human intera-ctome. Biochem. Biophys. Res. Commun. 445(4), 757–773 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleur Jeanquartier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Jeanquartier, F. et al. (2016). Machine Learning for In Silico Modeling of Tumor Growth. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics