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Abstract. Routinely collected data in hospital Electronic Medical Records
(EMR) is rich and abundant but often not linked or analysed for pur-
poses other than direct patient care. We have created a methodology to
integrate patient-centric data from different EMR systems into clinical
pathways that represent the history of all patient interactions with the
hospital during the course of a disease and beyond. In this paper, the
literature in the area of data visualisation in healthcare is reviewed and
a method for visualising the journeys that patients take through care is
discussed. Examples of the hidden knowledge that could be discovered
using this approach are explored and the main application areas of visu-
alisation tools are identified. This paper also highlights the challenges of
collecting and analysing such data and making the visualisations exten-
sively used in the medical domain.
This paper starts by presenting the state-of-the-art in visualisation of
clinical and other health related data. Then, it describes an example
clinical problem and discusses the visualisation tools and techniques cre-
ated for the utilisation of these data by clinicians and researchers. Finally,
we look at the open problems in this area of research and discuss future
challenges.

Keywords: Visualisation, Big Data, Clinical Pathways, Data Mining, Knowl-
edge Discovery, Data Quality, Decision Making, Medical Informatics

1 Introduction

Hospitals routinely collect data related to the interaction of patients with dif-
ferent departments and medical specialties. Traditionally this information was
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recorded in paper notes yet more recently there has been an increasing shift
towards the adoption of electronic medical records, as the statistics from the
Electronic Medical Record Adoption Model (EMRAM) demonstrate (http://
himss.eu/emram), yet in many cases, researchers may still need to collate infor-
mation manually [1] and methodologies to facilitate this process are relatively un-
explored [2]. Clinical data is typically complex and may pertain to diagnoses, ad-
missions and discharges, prescriptions, treatments, biomarkers and blood tests,
outcomes and other clinical findings. As a result, patients leave footprints on
many hospital systems, but such prints are not often connected to provide a
pathway indicative of their journey through care, nor are they presented at the
aggregated level. In the context of important diseases such as cancer or stroke,
the journey of patients from diagnosis to outcome would provide a unique per-
spective that could aid clinicians to better understand disease processes and
provide valuable information on optimal treatment. Hence, an initial challenge
is to gather data from multiple EMR systems and construct meaningful data
structures that can encompass all of the relevant information pertaining to a
given patient and a given disease over time. We have named such data struc-
tures clinical pathways and have provided a methodology to build them [2,3].
Note that some researchers refer to clinical pathways as the standardised and
normalised therapy pattern recommended for a particular disease [4]. Other re-
searchers have focused on mining common pathways that show typical disease
progression based on hierarchical clustering and Markov chains [5]. Our path-
ways relate to the journey followed by the patient through care and they may
align with the recommended guidelines for a particular disease but may also
deviate from it.

Visualisations of pathways, at the individual or aggregate level, when well
presented and of high quality, could help clinicians to interact with such data
and give them a view of patients and disease progression that was otherwise
hidden away in databases. This would enable them to utilise the power of the
big data in their environment, a very topical subject which currently holds much
promise. For example, Shneiderman et al. [6] state that “while clinical trials
remain the work horse of clinical research there is now a shift toward the use of
existing clinical data for discovery research, leading researchers to analyse large
warehouses of patient histories”. The visualisation of this big data is a critical
topic and the specific subject of this paper.

In the context of medical data mining, clinical pathways, as we define them,
require consistent pre-processing techniques, innovative data mining methods
and powerful and interactive visualisation techniques. They also present the
challenges of data privacy which has to always be maintained when dealing with
patients’ data. We discuss some of these challenges and present some solutions
in this paper, particularly focusing on the visualisation aspects.

This paper is organized as follows: to ensure a common understanding we
provide a short glossary in section 2; we examine work on visualisation of medical
data that is relevant in the context of the problem we present in section 3;
we then provide some background information about clinical pathways, their
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construction, their visualisation and the challenges of such an approach in section
4. We then discuss the processes of visualization of aggregated pathways in
section 5 and their areas of application in section 6. Finally, we discuss problems
in the field and conclude with prospects for the future.

2 Glossary and Key Terms

Electronic Medical Record (EMR): can be characterised as “the complete set of
information that resides in electronic form and is related to the past, present
and future health status or health care provided to a subject of care” [7].

Medical Informatics: is the interdisciplinary study of the design, development,
adoption and application of IT-based innovations in healthcare services delivery,
management and planning [8]. Medical informatics is also called health care infor-
matics, health informatics, nursing informatics, clinical informatics, or biomed-
ical informatics.

Data Mining: is an analytic process designed to explore large amounts of data in
search of consistent patterns and/or systematic relationships between variables,
and then to validate the findings by applying the detected patterns to new sub-
sets of data [9].

Medical Patterns: these are frequently appearing sequences of treatments, di-
agnoses, etc, that are associated with unusually positive or negative outcomes
[10].

Visual Analytics: denotes the science of analytical reasoning facilitated by visual
interactive interfaces [11].

Data Quality: includes (physical) quality parameters such as: Accuracy, Com-
pleteness, Update status, Relevance, Consistency, Reliability and Accessibility
[12].

Clinical Pathway: in the context of this paper it is defined as an ordered set
of patient-centric events and information relevant to a particular clinical con-
dition [3]. It can be considered as a suitable data structure for routine data
extracted from EMRs that records the actual journey of the patient for a given
condition. Others have defined it as “a map of the process involved in managing
a common clinical condition or situation” [13]. Hence in the second definition
the clinical pathway may embody the ideal or recommended pathway and enu-
merate regular medical behaviours that are expected to occur in patient care
journeys and may, therefore, serve as a checkpoint for the performance of the
actual pathway.

Temporal abstraction: this refers to the task of creating interval-based concepts



4 Bettencourt-Silva et al.

or abstractions from time-stamped raw data. In the context of electronic clinical
data, data summaries of time-oriented data can help for example when physi-
cians are scanning a long patient record for meaningful trends [14].

Clinical guidelines: are systematically developed statements designed to help
practitioners and patients decide on appropriate healthcare for specific clini-
cal conditions and/or circumstances [15]. They may articulate a desired clinical
pathway.

3 State-of-the-Art

One of the main characteristics of clinical data is its temporal nature. EMRs
are composed of longitudinal event sequences which can sometimes be a con-
current set of treatments for various conditions undertaken by a patient over
time. Another important characteristic is the complexity of the data, which can
include many different data types, support many levels of granularity and is
associated with extensive domain knowledge that may be required for context.
Additionally, the type of analysis we want to support may require techniques
that take into account individual patients, or aggregate at the cohort level. As
we are focusing on visualisation, we need to generate visual user interfaces that
can represent such complexity efficiently and effectively without overwhelming
the user. We need to provide query engines and mining methods that can deal
with the temporal and complex nature of the data with efficient interactions. We
also need to ensure that the systems produced are evaluated effectively, which is
difficult when evaluation requires the involvement of busy medical practitioners.
In this section, we review how researchers have tackled some of these problems
so far.

As a starting point, reviews and surveys on the subject of visualisation of
EMR data provide a good introduction to this topic. Turkay et al. [16] give a
recent introduction to the visualisation of large biomedical heterogeneous data
sets and point out the need for mechanisms to improve the interpretability and
usability of interactive visual analyses. They also stress the challenge of inte-
grating data from additional sources, such as the “microscopic” world (systems
biology), the “omics” world or the “macroscopic” (public health informatics)
world, as we move towards precision medicine.

Rind et al. [17] provide a survey comparing a number of state-of-the-art
visualisation research systems for EMR, and separately give examples of visu-
alisations produced by commercial systems. They also give a summary of other
reviews of this subject. Roque et al. [18] also give comparisons of the key infor-
mation visualisation systems for clinical data. Similarly, West et al. [19] provide
a systematic survey of works between 1996 and 2013. Their article is part of
a special issue dedicated to visual analytics to support the analysis of complex
clinical data [20]. Lesselroth and Pieczkiewicz [21] discuss a number of strategies
for visualising EMRs. More generically, methods for visualising time oriented
data have also been surveyed [22].
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Time oriented clinical data has been considered to be important by a number
of researchers. Early work on visualisation of personal histories [23] produced a
system called Lifelines that used graphical time scales to produce a timeline
of a single patient’s temporal events. Medical conditions could be displayed as
horizontal lines, while icons indicated discrete events, such as physician consul-
tations. Line colour and thickness were used to illustrate relationships or the
significance of events. Application of Lifelines to medical records was further
explored in [24]. Lifelines is the basis for many other systems that visualise
time oriented clinical data. The evolution of Lifelines produced a system called
Lifelines2 [25] that displays multiple patient histories aligned on sentinel events
to enable medical researchers to spot precursor, co-occurring, and after-effect
events.

Further work by the same team resulted in LifeFlow [26], which presents a
prototype for the visualisation of event sequences involving millions of patients.
LifeFlow was one of the first systems to provide an overview and enable the
answering of questions such as “what are the most common transfer patterns
between services within the hospital”. Hence Lifeflow attempts to summarise
all possible sequences, together with the temporal spacing of events within the
sequences. It provides one visual abstraction that represents multiple timelines
so it addresses the problem of aggregation. In terms of the interaction capability,
which has become a key issue in visualising clinical information, LifeFlow [26]
provides zooming, sorting, filtering and enables further exploration of events by
hoovering the cursor over parts of the visualisation. It also enables the user to
select non-temporal attributes as the basis for aggregation. This enables com-
parison between different groups.

Shahar et al. [14] also worked with temporal clinical data. In particular they
discuss the extraction of temporal abstractions from electronic data. Such tempo-
ral abstractions combine a domain knowledge-base with interval-based concepts.
A quoted example is the abstraction of Bone Marrow toxicity from raw individual
hematological data. The domain knowledge in this case would establish the con-
text such as following Bone Marrow Transplantation using a particular therapy
protocol. A simpler abstraction may be fever from multiple measures of raised
temperature over time. Temporal abstractions can support intelligent decision-
support systems or be used for the monitoring of clinical guidelines. However,
Shahar et al. argue that temporal abstractions can only be truly useful in a clin-
ical setting if they are accompanied by interactive visualisation and exploration
capabilities which can also take into account medical domain knowledge. For
this, they developed a system called KNAVE-II, a development of a previous
system [27]. The work does not provide, however, capabilities for aggregation of
patients according to some dynamic criteria. In further work [28], the authors
provided such capability under a system called VISITORS.

The issue of introducing context when evaluating patterns in a clinical setting
is also important in other scenarios. For example, Duke et al. [29] present a
system for incorporating knowledge such as a patient’s relevant co-morbidities
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and risk factors when evaluating drug-drug interactions to improve the specificity
of alerts.

Analysis based on comparison of cohorts is also prevalent. Huang et al. [30]
describe a system for exploratory data analysis through a visual interactive en-
vironment to show disease-disease associations over time. The system simplifies
visual complexity by aggregating records over time, clustering patients and filter-
ing association between cohorts. The main visualisation methods used to study
disease trajectories over time are Sankey diagrams [31].

Wong et al. [32] proposed INVISQUE, an interactive visualisation to support
both medical diagnosis and information analysis and discussed the key issues
that need to be addressed when designing interactive visualisation systems for
such purposes. CareVis [33] is another system, specifically designed to provide
visualisation of medical treatment plans and patient data, including contextual
information on treatment steps. It utilises a language called Asbru, designed
to represent clinical guidelines and protocols in eXtensible Markup Language
(XML). Challenges of the data include hierarchical decomposition, flexible exe-
cution order, non-uniform element types and state characteristics of conditions.
CareVis utilises multiple integrated views [34] to represent logical and temporal
aspects of the treatment data. The views can be coupled with colour, brushing
and navigation propagation, hence elements in one view can be linked to the
same elements in the other views allowing for interaction with the visualisation.

Another recent work using Asbru, following from CareVis, and specifically
designed to analyse compliance with clinical guidelines is presented by Bodesin-
sky et al. [35]. The authors use visualisation to integrate information about
executed treatments with Computer Interpretable Guidelines. Combining views
from observation, treatment and guidelines is becoming increasingly important
in the clinical setting.

Very recent work on visualisation of temporal queries, which enables clini-
cians to extract cohorts of patients given temporal constraints is presented by
Krause et al. [36]. Retrospective cohort extraction in the traditional way in-
volves a long and complex process and requires involvement from doctors and
SQL query specialists. SQL queries do not cater well for temporal constraints
and query engines may not optimise well such queries, making the process diffi-
cult and inefficient. A system called COQUITO is proposed as a visual interface
for building COhort QUeries with an ITerative Overview for specifying tempo-
ral constraints on databases. The query mechanism is implemented by a visual
query user interface and provides real-time feedback about result sets. It also
claims to be backed by a Temporal Query Server optimized to support complex
temporal queries on large databases. Another system for constructing visual
temporal queries is DecisionFlow [37]. DecisionFlow enables interactive queries
on high-dimensional datasets (i.e. with thousands of event types).

Given the amount of complex data that needs to be visualised in the context
of medical systems, one common problem is the dense display that can result
and the difficulty this represents for the user. For example, Kamsu-Foguen et
al. [38] discuss the need for intelligent monitoring systems that can help users
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with the massive information influx. This may require the capturing of domain
knowledge to form a physiological/process model as part of the expert interface.
It may also require the use of machine learning to improve interaction of machines
and humans (e.g. reducing data input by inducing entries based on previous
interactions). The software proposed can integrate visual and analytical methods
to filter, display, label and highlight relevant medical information from patient-
time oriented data. At the same time, it can learn from interactions between
medical staff and the system in a particular context, such as modification of
a prescription. It could then be used for instance to capture domain expert
knowledge in respect to medical guideline compliance.

An issue that is also now receiving attention is the efficiency of visual ana-
lytic algorithms as dataset grows. According to Stolper et al. [39] “in the context
of medical data, it is common to find datasets with tens of thousand of dis-
tinct type of medical events, thousands or even millions of patients and multiple
years of medical data per patient.” There are typically delays in the workflow
of analysts launching queries, inspecting results, refining queries and adjusting
parameters and relaunching queries. In this scenario, Stolper et al. propose the
use of progressive visual analytics that enable analysts to explore meaningful
partial results of an algorithm as they become available and interact with the
algorithm to prioritise subspaces of interest. The interface also enables the user
to adjust parameters as algorithms are running, re-start the running but also
store results obtained until that point so that the user can resume previous run
if required.

There are parallels between information visualisation and data mining [40].
Visual Data Mining can integrate the human in the data exploration process
and can be seen as a hypothesis generation process based on visualisations [41].
Data Mining analysis is also being applied to clinical data in conjunction with
visualisation techniques in order to extract knowledge, for example by identi-
fying outliers and deviations in health care data [42]. For clinical pathways,
pathway mining is also prominent and often associated with process mining us-
ing clinical workflow logs to discover medical behaviour and patterns [4]. Perer
and Wang [10] have integrated frequent pattern mining and visualisation so that
the resulting algorithms can handle multiple-levels of detail, temporal context,
concurrency and outcome analysis and visualise the resulting frequent event se-
quences from EMR. This has resulted in a prototype system, Care Pathway Ex-
plorer [43], which can correlate medical events such as diagnosis and treatments
with patient outcome. The system has a user-centric visual interface which can
represent the most frequent patterns mined as bubbles, with the size correspond-
ing to number of times a particular event occurs. It also uses Flow Visualisation
to see how the bubbles connect to each other.

Measuring the quality of the data to be used in an important issue, as rou-
tinely collected data can be of variable quality. It would be very useful for any
system that works with EMR to provide some quality measurements that can be
used for the purposes of including or excluding records for further queries and
clinical studies. For example, Tate et al. [44] elude to work in this area as part of
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their attempt to construct a system that enables querying of large primary care
databases to select GP practices for clinical trials based on suitability of patient
base and measures of data quality.

Another important topic is the visualisation of biological and “omics” data
[16]. In systems biology, Jeanquartier et al. [45] carried out a large survey of
databases that enable the visual analysis of protein networks. Systems such as the
NAViGaTOR 3 extend the basic concept of network visualisation to visual data
mining and allow the creation of integrated networks by combining metabolic
pathways, protein-protein interactions, and drug-target data [41]. Other tech-
niques, such as multilevel glyphs, have been proposed as a multi-dimensional
way to visualise and analyse large biomedical datasets [46] and there is still a
high demand for specialized and highly integrative visual analytic approaches
in the biomedical domain [40], particularly as we move towards personalised
medicine.

The evaluation of information visualisation tools is one of the open challenges
in this area. Often carried out by controlled experiments and the production of
usability reports, this are however described by Shneiderman and Plaisant [47]
as helpful but falling short of expectations. They describe a new paradigm for
evaluation in the form of Multi-dimentional In-depth Long-term Case studies
(MILCs) that may begin with careful steps to gain entry, permission and partic-
ipation of subjects and be followed by intense discussions which provide key data
for evaluations. As MILCs provide multiple methods, given multiple perspectives
on tool usage, they are presented as providing a compelling case for validity and
generality. However, they would require substantial investment in longitudinal
ethnographic studies of large groups which may not be forthcoming.

In the context of evaluation, Pickering et al. [48] recently proposed a step-
wedge cluster randomised trial. This was to test the impact of their system,
AWARE (Ambient Warning and Response Evaluation), on information manage-
ment and workflow on a live clinical intensive care unit setting. Such trials are
not commonly conducted, but can give real measures of efficiency of data utili-
sation and may be a good method of evaluation. They outcome was connected
with time spent in data gathering with and without the system and measures
were gathered by direct observation and survey.

4 Visualisation of Patient-Centric Pathways

The development of patient-centric pathways and related visualisation tools was
first conceptualised as a way to plot and study biomarker trends over time for
individual patients with a specific condition. This was carried out in a case
study on prostate cancer, where the Prostate Specific Antigen (PSA) was the
biomarker test used. The PSA is typically used to measure activity of the cells in
the prostate, both benign or malignant, and guidelines for the management and
screening or prostate cancer suggest that the PSA test can be read at certain
time points to help understand disease progression. As a result, a typical patient
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will have several PSA readings during their journey through care and in their
pathways.

4.1 Pathways

A pathway is comprised of activities each containing the patient identifier, the
event code from a pre-defined dictionary of codes, the time when the activity
occurred (in days, zeroed at diagnosis date) and the value pertaining to that
specific activity. For example, activity A4 at time 105 (days after diagnosis)
describing the surgical removal of the prostate (event code S) for patient id
8 would be described as A4 = (8, 105, S,“M61.1”. In this example, the value
pertaining to surgical activity code S is the procedure code for the type of
surgical operation. We used the OPCS 4.5 Classification of Interventions and
Procedures coding and, in this case, code M61.1 refers to a total excision of
prostate and its capsule. The activity in this example would, in turn, be part of
a pathway, illustrated in Table 1. The pathway data model is defined in more
detail in [3].

4.2 Development of a Graph Plotting System

A first support system was developed to plot the biomarker trends based on the
pathways data model [3]. This allowed the computation of charts showing the
complete PSA trend for each patient in the dataset. The resulting charts were
then divided by treatment type and this provided interesting results and posed
additional clinical questions. Analysis of the charts, working together with the
clinical team, was critical to determine further system requirements and future
developments, including a novel graphical representation of pathways data, de-
scribed later. The data model can be revisited and data elements can be added
or removed, making this approach reproducible in other clinical domains and
extensible to different levels of granularity.

The inspection of PSA trend plots made clear that these should contain ad-
ditional information in order to explain, for example, why the biomarker values
dropped from abnormal to normal levels at particular points in time. For exam-
ple, the most significant drops in PSA should be associated with a particular
radical treatment. This led to the development of a more sophisticated visuali-
sation system, capable of interpreting the pathways and transforming them into
meaningful yet concise graphical representations. The purpose of such visual-
izations is to summarise complex clinical information over large periods of time
into a single graph.

A graph generating system was developed together with the pathways engine,
and comprised an architecture similar to that of the Model-view-controller [49]
(MVC). In this implementation, the architecture, specific for building graphical
representations of pathways, encompasses the following elements with specific
purposes:
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Table 1. Annotated example of a pathway for patient id 8 with 7 activities and 4
distinct data elements (code P - PSA test, D - Diagnosis, G - Histological Gleason
Grade and S - Surgery).

Pathway Activity Time Code Value Description

P = 〈
A1 = (8,−51, P, 13.6),
A2 = (8, 0, D, 2),
A3 = (8, 1, G,“4+3”),
A4 = (8, 105, S,“M61.1”),
A5 = (8, 106, G,“3+4”),
A6 = (8, 183, P, 0.05),
A7 = (8, 456, P, 0.05)
〉

A1 -51 P 13.6 This patient’s first ac-
tivity was a PSA test
(values in ng/ml). In
this case the reading was
abnormal (>4 ng/ml) 51
days before diagnosis.

A2 0 D 2 Diagnosis event, value
shows tumour staging.
In this case stage 2 in-
dicates the tumour is
confined to the prostate
capsule. At this point,
a biopsy was undertaken
(poorly recorded in our
EMR systems at the
time).

A3 1 G 4+3 The result of the histo-
logical assessment of the
Gleason grade, that is,
the degree of cell differ-
entiation, in this case a
Gleason sum of 7.

A4 105 S M61.1 The patient then under-
went surgery, with an
OPCS procedure code of
M61.1 indicating total
excision of prostate and
its capsule.

A5 106 G 3+4 The revised Gleason
grade with a more com-
plete sample taken from
the surgical operation
was still a Gleason sum
of 7 but now predomi-
nantly showing more of
type 3 than type 4.

A6 183 P 0.05 Post-treatment PSA
test was carried out
showing a value less
than 0.1, denoting
effective treatment in
reducing the amount of
PSA produced in this
patient.

A7 456 P 0.05 Follow-up PSA test
reaffirming that the
treatment was suc-
cessful around a year
after the treatment was
performed.



Visualisation of Integrated Patient-Centric Data 11

Fig. 1. Architecture of the graph generating system.

– the Data Model, responsible for maintaining the definitions and rules for
the interpretation of the pathways data using an extended dictionary that
contains information on how events are drawn;

– the Plot Engine, a controller that communicates user or system requests
and is responsible for the interaction between the model, the view and the
system;

– the Graphical User Interface (containing the view), that receives instructions
based on the model and generates a graphical representation of a pathway.
This dynamic interface can also allow users to interact with the graphs by
communicating information back to the engine.

Figure 1 depicts the architecture of the system. Information available from
a Data Store is transformed according to definitions set out by the Data Model
and it is then fed to the Plot Engine. In turn, the engine utilises rules on how
to draw the graph that is ultimately sent to the Graphical User Interface.

4.3 Graphical Representation

Figure 2 shows the layout of a graph, or pathway plot, and the areas of the graph
where information is displayed. The y-axis represents the biomarker values (in
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this case, PSA) and the x-axis represents time, in days, zeroed at diagnosis date.
The biomarker readings are plotted in the center and events (such as treatments
or death) are marked with a vertical line (Line).

Treatments and other events can be colour-coded and, above the plot, the
corresponding pathway code (e.g. S for Surgery) is shown in the Line headings
area. The footer area displays additional information pertaining to events (such
as Gleason grades, i.e. the level of cell differentiation seen in the biopsy, or
patient age at diagnosis) and the right column area on the right of the plot
displays additional information on the patient that is not time-dependent, such
as deprivation score, additional diagnoses or alerts.

Fig. 2. The schematic layout of a pathway plot.

The graph generating system includes additional interaction capabilities and
analysis tools. Rather than relying on static graphical representations of the
pathways, the MVC architecture embedded within the system, produces real-
time plots of the pathways, as they are read from the database. Dynamic inter-
actions were also introduced enabling users to zoom in, re-scale and navigate the
pathway plot. This is particularly important as the scales of the plots may render
some drawn objects too close to each other. A mechanism for graphical conflict
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resolution (i.e. avoiding overlapping elements) was also introduced. Examples of
pathway plots produced by this system are given in section 6.

5 Visualization of Aggregated Pathways

We now explore how to aggregate pathways in a visualisation. The pathways data
model enables the production of succinct sequences of activity codes. Truncat-
ing the sequence strings (i.e. collapsing sequentially repeating elements into one)
enables the aggregation of pathways with similar sequential activities. We devel-
oped a web-based software, called ExploraTree, to produce and display an inter-
active tree of the full cohort of prostate cancer patients based on the available
data elements. The technologies used include HTML, CSS, JSON, JavaScript
and the InfoVis toolkit. The pathways engine was used to produce the correct
data format for a tree representation using JSON and the JavaScript InfoVis
toolkit.

In order to accurately aggregate patients with similar sequences of activities,
new data elements were introduced in the data dictionary. In the core data
dictionary, a patient’s death was encoded by only one data element (code Z). In
the new encoding, patients who died of prostate cancer were kept with code Z
while those who died of other causes were identified with code Y and those who
survived, with code X. This ensures that all patients have a terminal element
indicating whether they are alive at the end of their follow-up period. Because in
this cohort not all patients are followed-up the same amount of time, all terminal
elements (X,Y,Z) were given additional child nodes that represent the amount
of time the patients were followed-up in years (1 to 5 and ’+’ for over 5 years).
The aggregated pathways tree is illustrated in Figure 3.

Figure 3 shows the cohort tree and highlighted sequence 〈P,D,H, P,X〉,
that is, patients who started their pathway with one or more PSA tests (code P,
n=1596), followed by a diagnosis of cancer (code D, n=1502), hormone therapy as
first treatment (code H, n=747), other PSA test(s) (n=557) and finally were last
seen alive in this cohort (code X). 90% of patients with the highlighted pathway
(n=266) were followed-up 3 or more years and one patient was followed-up less
than one year.

This aggregation also allows comparing patients that followed similar path-
ways but who died of prostate cancer (〈P,D,H, P, Z〉). In the case of patients
with a sequence prefix 〈P,D,H, P 〉, 9% (n=48) died of prostate cancer (code Z),
13% died of other causes (code Y), 48% survived, and the remaining patients
continued with other activities (H - Hormone Therapy, W - Active Surveillance,
R - Radiotherapy, S - Surgery).

Visualising the cohort in this manner is important as it enables the selection
of subsets of data for specific clinical studies as well as an inspection of the
sequential routes that patients take through care. The sequence highlighted in
Figure 3 corresponds to the most common route (with most support on each
node sequentially).
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Fig. 3. CaP VIS ExploraTree software displaying a selected pathway (patients with the
same sequential activities). The selected pathway nodes are highlighted and terminal
nodes are marked as red for patients that died and green for patients that were last
seen alive in this cohort.

It is possible to add more meaning to the visualisation and the pathways by
introducing additional data elements and remodeling the data dictionary. For
example, instead of using a single code for diagnosis it is possible to have a
breakdown of the tumour staging or Gleason grade at diagnosis so as to group
similar sequences with this information instead. However, due to the small size
of this cohort, increasing granularity in the pathways dictionary would result in
fewer patients in each node. For this reason no additional changes were made to
the pathways dictionary used for the ExploraTree, but our approach is flexible
enough to allow such modifications.

6 Application Areas

This section lists four broad areas where visualisation tools have been applied
and are expected to be most useful. Pathway plots illustrating relevant examples
are given for each of the areas.

6.1 Decision Support and EMR Enhancement

Recommendations for further research in clinical decision support and expert
systems [50] suggest that software that integrates complex data and generates
graphical representations is needed to support the analysis and understanding
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of the data. Visualisations could also be used to enhance EMR systems as these
do not typically provide visually meaningful summaries of patient-centric data.

The pathways software was developed so that additional clinical information,
such as histopathology text reports, descriptive statistics, and graphical repre-
sentation could all be available in one place. This created an environment that
enables evidence based medicine, supports decision making. Clinicians are able
to retrieve similar cases by searching the desired pathway sequences and visually
inspect them, thereby gaining insights to support their decisions. In addition,
other information derived from domain knowledge such as PSA kinetics (how
fast PSA readings are doubling in time and rate of increase, both predictive of
outcome) can be shown in the developed system before or after diagnosis and
treatment. The flexible pathways data model has also enabled other aspects to
be incorporated. For example, rules can be applied to measure adherence to
guidelines.

Figure 4 shows four pathway plots for the same patient, a 69 year old di-
agnosed with tumour stage 3 prostate cancer and a Gleason sum of 9. Plot A
shows the original plot where the PSA is seen to have dropped after the patient
underwent hormone therapy (code H). The thick red line at the end of the path-
way denotes when the patient died. When producing this pathway’s plots, the
dictionary was extended so that the treatments retrieved from the local cancer
registry (and additional source of validation data) appear with a suffix “1” in
the vertical lines’ headings (code H1). In this case, regarding the date when the
patient first commenced hormone therapy, a time discrepancy of 51 days was
seen between the two data sources, where the hospital recorded the later date.
Hence this serves to inform on data quality issues (further discussed in the next
section). The discrepancy in dates in this case did not introduce uncertainty as
the effect of the treatment is seen in the subsequent PSA readings.

The pathway plot in Figure 4 then shows a PSA relapse in the last two
readings. Shortly after the last PSA reading, the patient died of a pulmonary
embolism (ICD I26) and prostate cancer (ICD C61) as a secondary condition
leading to death. Shortly before death the patient was diagnosed with a sec-
ondary and unspecified malignant neoplasm of inguinal and lower limb nodes
(ICD C77.4). This was revealed by the additional data collected on hospital
episodes and is presented in the visualisation.

Figure 4 Plot B shows an additional element of the pathway, a blood test,
Alkaline Phosphatase (ALP) and its normal range in the shaded area. When
a patient’s advanced cancer metastasises to the bones, ALP can be increased
due to active bone formation. Indeed studies have shown that prostate cancer
patients with a serum ALP reading of more than twice the normal upper limit
had a significantly lower survival rate than their respective counterparts [51].
This is observed in this pathway, although, an increased ALP could be due to
other reasons such as an obstructed bile duct or liver disease.

Lastly, plots C and D supplement the pathway with another blood test, Cre-
atinine. Creatinine has been reportedly associated with more advanced disease
and decreased survival [52]. However, any condition that impairs the function
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Fig. 4. Four pathway plots of the same patient (175) with sequence 〈P,D,H, P 〉. Plot A
shows the original plot with the PSA trend alone. Plot B shows the same information as
plot A with additional Alkaline Phosphatase readings and their normal range (shaded
area). Plot C shows Creatinine readings and Plot D shows the same information and
hospital events (code K).

of the kidneys is likely to raise the creatinine levels in the blood and act as a
confounding factor. In plot C, a flare in the values of Creatinine readings was
observed within the first 3 months. By introducing additional data elements
from the hospital episode statistics in plot D, a hospital episode (marked with
pathway code K) was found with an associated primary diagnosis of acute kid-
ney failure. Additional detail on episodes is obtainable by interacting with the
visualisation. Although a kidney stone was not coded in this (or any) episode
for this patient, a catheterisation of the bladder was performed during the same
hospital visit, and an inspection of the patient notes confirmed a kidney stone
was the cause of the acute kidney failure. The second hospital episode in this
pathway, also marked with code K, was for the removal of the catheter, and the
last hospital episode included a diagnosis of a secondary and unspecified ma-
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lignant neoplasm of inguinal and lower limb nodes and a pulmonary embolism,
caused by the first. This level of information that can be added to the pathway
would also allow, for example in other cases, to evaluate renal impairment and
prostate cancer. Indeed, in this respect, it has been reported that renal impair-
ment in men undergoing prostatectomy represents substantial and unrecognised
morbidity [53].

The introduction of additional detail helped to explain the Creatinine flare
for this patient and provided interesting insights that would otherwise not be
easily explored. The pathway plots provided sufficient information for the in-
terpretation of the pathway yet highlighted potential issues with the quality of
the data. Indeed discrepancies in treatment dates across data sources may in-
troduce additional challenges. As such, it is important to be able to differentiate
between pathways that have sufficient information and provide an accurate rep-
resentation of the patient’s history and those that do not. The evaluation of the
completeness and utility of the generated pathways for investigating biomarker
trends is explored in more detail in the next section.

6.2 Data Quality

Methods for the evaluation of data quality dimensions are lacking [54] and vi-
sualisation tools can play an important role in quality assurance. Since the de-
velopment of the pathways framework, one of the first and foremost concerns
pertained to the quality of the data being visualised. For the first time since
EMR systems were introduced in our hospital, it was possible to visualise inte-
grated data and observe inconsistencies in the ways in which information had
been recorded over time. By expanding the data dictionary to include additional
information from an external data source, the regional Cancer Registry, it was
possible to identify incongruent data across sources.

Figure 5 shows a pathway plot of a patient with Gleason grade 7 prostate
cancer who underwent a radical prostatectomy. Information from the Cancer
Registry was obtained to validate treatment data and this is included with code
S1. In this case, the dates and details of the procedure are in agreement and
this patient could easily pass for having a complete record. When plotting the
pathway, however, a visual inspection highlighted a significant drop in the PSA
values for which there is no clear justification based on the information available.
It is unlikely that the PSA values dropped below the 4 ng/ml normal threshold
without an intervention. This means that either the treatment date is incorrect
in both sources or there is missing information as the patient is likely to have
received treatment from another provider while the blood tests continued to be
performed by the same laboratory. In this case the plausibility and concordance
data quality dimensions were assessed with this visualisation.

Other data quality examples include mismatch of treatment dates (as seen
earlier in Figure 4) and missing or implausible information. Based on the path-
ways framework, rules can be devised to inspect individual pathways and de-
termine how complete they might be. For example, in previous work [3] rules
pertaining to the availability, positioning and substantiation of the drops in PSA
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Fig. 5. A Pathway plot for a patient diagnosed with Gleason grade 7 prostate cancer
who underwent a radical prostatectomy (code S).

were proposed to determine which pathways would be eligible for further clinical
research.

6.3 Cohort Selection, Analysis and Research

Two of the preliminary interests in developing graphical representations of path-
ways were to compare the shapes of the biomarker curves and also to be able
to aggregate patients with similar features. Having pathways expressed as se-
quences of activity codes has helped to develop the ExploraTree tool, seen in
Figure 3. Depending on how the data points and outcomes are modelled, the
trees produced will have varying degrees of granularity and clinical interest. In
the example shown earlier, ExploraTree is aggregating patients with similar data
points appearing sequentially in time. However, codes for PSA tests (P) could
be further broken down into abnormal (say, A) and normal (N) PSA values and
this would create more clinically meaningful groups. The ExploraTree software
can then help to select relevant cohorts for research, to determine if there are
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enough members in a particular group of interest and to facilitate recruitment
for prospective studies.

Pathway plots allow more detailed and complex information to be presented
in a single graphical representation. This enables researchers to observe several
data points together and to study new outcomes. For example, Figure 6 plots
Haemoglobin in addition to the PSA and shows normal perioperative bleeding
when the patient underwent surgery. This information is not usually examined
together yet it enables the assessment of the effect that surgical procedures have
on patients and also, the length of time it takes for them to recover after surgery.
The latter is an interesting current research question that arised from the visual
inspection of the pathways. It is also possible to determine and study different
outcomes such as hormone escaped, development of metastases or biochemical
recurrence after treatment. Research on services and adherence to guidelines
is also possible using the pathway framework [3]. Integration of clinical EMR
data with “omics” data is also a topic that should deserve attention in future
developments. Pathways with this additional information can be more valuable
for precision medicine and their visualisations should also help take knowledge
of clinical practice out of the hospitals and bring it to biologists, geneticists and
other scientists.

6.4 Knowledge Discovery Support

Visualisation tools are often overlooked when working on knowledge discovery
problems in healthcare. One of the most common barriers in machine learning in
healthcare is that the models and results produced are not intelligible and work
in this area is becoming more topical [55]. Decision trees continue to be the gold
standard of intelligible models and more work is needed to create visualisation
tools that describe complex models.

Data and process mining techniques are often suggested for the analysis of
workflows and pathways, however, most of these techniques have been found
unsuitable when applied to heterogeneous routine clinical data. The evaluation
of the quality of event logs in process mining relies on trustworthiness (recorded
events actually happened), completeness and well defined semantics [56]. These
can be achieved by selecting pathways with required data points using the path-
ways framework. The visualisation system allows for the close inspection and
contextualisation of pathways, illustrating particular paths with similar features.
It has been reported that a combination of visual analytics with automated pro-
cess mining techniques would make possible the extraction of more novel insights
from event data [56] and further work in this area is needed.

The pathways framework through its graphical representations could also be
an interesting way of representing a model, whereby an ideal pathway would
be presented and then compared to actual pathways and deviation could be
measured, although further work in this area is required. Additional analysis of
the shape of the curves represented (for example, clustering of biomarker trends)
is also possible using this framework and some work has already been done in
this area using fusion methods [57].
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Fig. 6. A Pathway plot showing the effect of a prostatectomy in the Haemoglobin and
PSA readings. The green shaded area depicts the normal range for Haemoglobin.

7 Open Problems

Some of the main problems relating to the improvement of health and healthcare
with interactive visualisation methods are reviewed by Shneiderman et al. [6],
Aigner et al. [58], Caban and Gotz [20], and West et al. [19]. Some of these
challenges arise because healthcare must become more “predictive, preemptive,
personalised and participative” [6]. Although the efforts described in section
3 and our own efforts are directed to some of this challenges, most systems
described to not provide completely satisfactory responses. The open problems
summarised from the papers above and from the work presented here include:

– An enduring problem in visualising clinical data is the scale and complexity
of the data. Data is not only vast in terms of the number of records but it also
includes several different data types (e.g. numeric, categorical, text, images),
semantic structures inherent of time data such as cycles and re-occurrences
and intertwining conditions and treatment processes. Visual techniques must
analyse data in the context of this complexity and summarise it in order to
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assist busy clinicians with getting timely information in the right format.
This requires tools that enable the user to see the overall perspective with
powerful yet simple visualisations and then look for anomalies and drill for
details of predictable risks early.

– The systems must be capable of scaling up to cohort analysis. Visualising
one patient’s trajectory can enable monitoring of treatment process for that
particular patient. However, it is often necessary to scale the analysis to a
cohort of patients as clinicians can then compare responses of diverse patients
and assess effectiveness of therapy in the larger scale.

– Context and domain knowledge is very important in clinical decision making
so systems must be able to efficiently represent domain knowledge and reason
with it to make temporal abstractions, to look at conditions in the context
of many clinical parameters such as co-morbidities, medication and history.
It may also be desirable to compare cohorts across clinicians, time periods
and geographical locations.

– It is increasingly necessary to provide systems that can facilitate multi-
disciplinary decision making. Such teams may involve nurses, social workers,
physicians and patients. Hence the presentation of knowledge, flexible query-
ing and analysis should accommodate the demands of multiple users with
different perspectives and needs. Visualisation tools should play an impor-
tant role in delivering and interacting with patient data.

– It is often necessary to understand similarity in the context of heterogeneous
data but this is not a well developed area of research. Data mining tasks such
as classification, clustering, association rules and deviation detection need
to be developed to work with heterogeneous temporal data and to produce
intelligible results and meaningful visualisations.

– Data that is routinely collected is plagued by missing values, erroneous values
and inaccuracies. Systems that analyse such data must be well equipped to
deal with uncertainty. However, uncertainty is a well known open problem
in computing. Issues of data quality take their own dimension in a time
oriented scenario and can require specific treatment [59]. It is necessary to
pre-process the data to uncover data quality issues and exclude dubious data
from further analysis. It is also important to quantify data quality dimensions
by producing standard measures that can be presented (visually) alongside
the data. In addition, presentation of uncertainty in a meaningful way, for
example in the context of risk, is still an open research area.

– Currently, according to Kopanitsa et al. [60], there is a gap in transforming
knowledge from domain model to interface model. Hence there is a need to
turn hard-coded user interfaces into generic methods by a process of stan-
dardisation. Standardisation exists for data storage and exchange and they
provide a good basis for further efforts. This may also make data more acces-
sible to patients, which may be an important consideration for personalised
and participative medicine.

– The design of better interfaces was highlighted as a challenge early on [61]
and continues to be an open issue. In particular application of cognitive
engineering methods [62] may be beneficial for informing design and for
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uncovering information needs in clinical systems. There is a requirement for
analysing and understanding the process of visual interaction, for example
by using logs. Interaction with the visualisation tools is key and must cater
for different types of users with different priorities as already discussed.

8 Conclusion and Future Outlook

A picture can arguably be worth a thousand words and in the case of the path-
ways, a pathway plot is worth, on average, 188 activities using our prostate
cancer cohort. For immediate decision-making by clinicians at the point of care,
information should be brief and easily interpreted [63] and visualisation tools, if
well designed, have a great potential to become part of clinical practice by sum-
marising complex activities in one graphical representation. However, optimal
visualisation of clinical data is complex and several open problems remain.

In this paper, clinical pathways were used to demonstrate the potential of
visualising routinely collected data using a case study on prostate cancer. The
underlying data model enables the summarisation and extension of pathways as
well as the aggregation of similar sequences. It is also possible to capture and plot
pathways with concurrent elements and to develop algorithms to further explore
the data and investigate quality issues. Furthermore, the pathways framework
has facilitated interpretation, communication and debate between experts. More
work is now needed to assess similar tools in other settings and domains. In this
paper, four key areas that hold promise in the future of visualisation in healthcare
were identified: decision support and EMR enhancement; data quality; cohort
selection, analysis and research; and knowledge discovery. Further work in each
of these areas will bring clinical practice closer to the best available evidence and
improve the quality and utility of the big data that is available in EMR systems.
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