Skip to main content

Capture and Analysis of Latent Marks

  • Chapter
  • First Online:
Handbook of Biometrics for Forensic Science

Abstract

The capture and analysis of latent marks in forensics has a history of over a century. The focus of this chapter is on the marks formed by fingerprint patterns. The process starts with the detection and acquisition of the marks using different physical, chemical and optical means. Additionally, experimental approaches for determining the age or exploiting the finger mark persistency, as well as digital enhancement techniques are described. Afterward, the analysis is performed in four steps. Here, features on three different levels are determined, evaluated and compared between two fingerprint patterns. The result of such a comparison, also known as dactyloscopy, is nowadays either an identification, exclusion or inconclusive. In the future those outcomes might be replaced with a likelihood ratio which allows for expressing uncertainties on a statistical foundation. In order to use new methods in court, particular requirements must be assessed. For this, the Daubert challenge, which includes the assessment of several factors by a judge, is briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Champod C, Lennard C, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions. CRC Press

    Google Scholar 

  2. Chen F, Feng J, Jain AK, Zhou J, Zhang J (2011) Separating overlapped fingerprints. IEEE Trans Inf Forensics Secur 6(2):346–359

    Article  Google Scholar 

  3. Qian K, Schott M, Zheng W, Dittmann J (2014) A context-based approach of separating contactless captured high-resolution overlapped fingerprints. IET Biom 3(2):101–112

    Article  Google Scholar 

  4. Merkel R, Gruhn S, Dittmann J, Vielhauer C, Bräutigam A (2012) On non-invasive 2D and 3D chromatic white light image sensors for age determination of latent fingerprints. Forensic Sci Int 222(1–3):52–70

    Article  Google Scholar 

  5. Harper W (1937) Fingerprint forgery—transferred latent fingerprints. J Criminol 28(4):573–580

    Google Scholar 

  6. Wertheim PA (1994) Latent fingerprint fabrication, website request 12/02/2016, see also in Wertheim, Pat A., Detection of Forged and Fabricated Fingerprints. J Forensic Ident, 44(6), pp 652–681. http://www.iowaiai.org/latent-fingerprint-fabrication/

  7. Champod C, Espinoza M (2014) Forgeries of fingerprints in forensic science, In: Marcel S, Nixon MS, Li SZ (eds) Handbook of biometric anti-spoofing, ser. advances in computer vision and pattern recognition. Springer, London, pp 13–34

    Google Scholar 

  8. Hildebrandt M, Dittmann J (2015) StirTraceV2.0: enhanced benchmarking and tuning of printed fingerprint detection. IEEE Trans Inf Forensics Secur 10(4):833–848

    Article  Google Scholar 

  9. Modi SK, Elliott SJ, Whetsone J, Kim H (2007) Impact of age groups on fingerprint recognition performance. In: IEEE workshop on automatic identification advanced technologies, pp 19–23

    Google Scholar 

  10. Neumann C, Champod C, Puch-Solis R, Egli N, Anthonioz A, Bromage-Griffiths A (2007) Computation of likelihood ratios in fingerprint identification for configurations of any number of minutiae. J Forensic Sci 52(1):54–64

    Article  Google Scholar 

  11. Jain AK, Flynn P, Ross A (2008) Handbook of biometrics. Springer, US

    Book  Google Scholar 

  12. Ross A, Jain AK (2004) Biometric sensor interoperability: a case study in fingerprints. In: International workshop on biometric authentication: ECCV 2004, pp 134–145

    Google Scholar 

  13. Mayer JCA (1788) Anatomische Kupfertafeln: nebst dazu gehörigen Erklärungen (Band 4): Eilf Kupfertafeln von den Sinnwerkzeugen und den Brüsten. Berlin, Leipzig, Universitätsbibliothek Heidelberg. http://digi.ub.uni-heidelberg.de/diglit/mayer1788bd4/0006

  14. Purkinje JE (1823) Commentatio de examine physiologico organi visus et systematis cutanei: quam pro loco in gratioso medicorum ordine rite obtinendo die XXII. decembris MDCCCXXIII, H.X.L.C. Vratislaviae: Typus Universitatis. https://archive.org/details/68020950R.nlm.nih.gov

  15. Herschel W J (1916) The origin of finger-printing. Oxford University Press. http://galton.org/fingerprints/books/herschel/herschel-1916-origins-1up.pdf

  16. Faulds H (1880) On the skin-furrows of the hand. Nature (Oct. 28 1880), p. 605

    Google Scholar 

  17. Galton F (1892) Finger prints. Macmillan and Co

    Google Scholar 

  18. Henry E R (1900) Classification and uses of finger prints. George Routledge and Sons https://archive.org/details/ClassificationAndUsesOfFingerPrints

  19. Rudin N, Inman K (2016) The forensic science timeline. http://www.forensicdna.com/timeline.html, Accessed 02 Dec 2016

  20. Kingston CR, Kirk PL (1965) Historical development and evaluation of the ‘12 point rule’ in fingerprint identification. Int Crim Police Rev

    Google Scholar 

  21. Ashbaugh DR (1999) Ridgeology: modern evaluative friction ridge identification. Royal Canadian Mounted Police, Forensic Identification Support Section

    Google Scholar 

  22. Inman K, Rudin N (2000) Principles and practice of criminalistics: the profession of forensic science (Protocols in forensic science). CRC Press

    Google Scholar 

  23. Zhao Q, Jain AK (2010) On the utility of extended fingerprint features: a study on pores. In: Computer vision and pattern recognition workshops (CVPRW), pp 9–16

    Google Scholar 

  24. Bleay SM, Sears VG, Bandey HL, Gibson AP, Bowman VJ, Downham R, Fitzgerald L, Ciuksza T, Ramadani J, Selway C (2012) Fingerprint source book. Home Office CAST, United Kingdom

    Google Scholar 

  25. Dalrymple BE, Duff JM, Menzel ER (1977) Inherent fingerprint luminescence—detection by laser. J Forensic Sci 22:106–115

    Article  Google Scholar 

  26. Salares VR, Eves CR, Carey PR (1979) On the detection of fingerprints by laser excited luminescence. Forensic Sci Int 14:229–237

    Article  Google Scholar 

  27. Lin S-S, Yemelyanov KM, Pugh EN Jr, Engheta N (2006) Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting. J Opt Soc Am A 23(9):2137–2153

    Article  Google Scholar 

  28. German eForensics GmbH, EVISCAN contactless evidence detection. https://www.eviscan.com/files/71/eviscan-brochure-lowres.pdf, Accessed 29 Dec 2015

  29. Kuivalainen K, Peiponen K-E, Myller K (2009) Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface. Meas Sci Technol 20(7):077002

    Article  Google Scholar 

  30. Dubey SK, Mehta DS, Anand A, Shakher C (2008) Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography. J Opt A: Pure Appl Opt, 10(1), 015 307–015 315

    Google Scholar 

  31. Crane NJ, Bartick EG, Perlman RS, Huffman S (2007) Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. J Forensic Sci 52(1):48–53

    Article  Google Scholar 

  32. Makrushin A, Scheidat T, Vielhauer C (2015) Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope. In: Proceedings of SPIE 9409: media watermarking, security, and forensics 2015

    Google Scholar 

  33. Hildebrandt M, Merkel R, Leich M, Kiltz S, Dittmann J, Vielhauer C (2011) Benchmarking contact-less surface measurement devices for fingerprint acquisition in forensic investigations: results for a differential scan approach with a chromatic white light sensor. In: Proceedings of DSP’11, pp 1–6

    Google Scholar 

  34. Kirst S, Vielhauer C (2015) Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios. In: Proceedings of SPIE 9409: media watermarking, security, and forensics 2015

    Google Scholar 

  35. Hildebrandt M, Sturm J, Dittmann J, Vielhauer C (2013) Creation of a public corpus of contact-less acquired latent fingerprints without privacy implications. Commun Multimedia Secur, LNCS 8099:204–206

    Article  Google Scholar 

  36. Cappelli R (2015) Fingerprint sample synthesis. In: Li SZ Jain AK (eds) Encyclopedia of biometrics, 2nd edn. Springer

    Google Scholar 

  37. Merkel R, Dittmann J, Hildebrandt M (2014) Latent fingerprint persistence: a new temporal feature space for forensic trace evidence analysis. In: IEEE international conference on image processing (ICIP), Paris pp. 4952–4956. doi:10.1109/ICIP.2014.7026003

  38. Yoon S, Feng J, Jain AK (2011) Latent fingerprint enhancement via robust orientation field estimation. In: 2011 international joint conference on biometrics (IJCB), pp 1–8

    Google Scholar 

  39. National Institute of Standards and Technology NIST special database 27 [Online]. https://www.nist.gov/srd/nist-special-database-27

  40. Hildebrandt M, Kiltz S, Dittmann J, Vielhauer C (2014) An enhanced feature set for pattern recognition based contrast enhancement of contact-less captured latent fingerprints in digitized crime scene forensics. In: Proceedings of SPIE 9028: media watermarking, security, and forensics 2014

    Google Scholar 

  41. Holder EH, Robinson LO, Laub JH (eds.) (2011) The fingerprint sourcebook, US Department of Justice, Office of Justice Programs, National Institute of Justice, NCJ 225320

    Google Scholar 

  42. Polski J, Smith R, Garrett R, et al (2011) The report of the international association for identification, standardization II committee. Document No. 233980. https://www.ncjrs.gov/pdffiles1/nij/grants/233980.pdf, Accessed 30 Dec 2015

  43. BBC News (2006) Court fingerprint system scrapped. http://news.bbc.co.uk/2/hi/uk_news/scotland/5310246.stm, Accessed 30 Dec 2015

  44. Dixon L, Gill B (2001) Changes in the standards for admitting expert evidence in federal civil cases since the daubert decision. rand institute for civil justice

    Google Scholar 

  45. Benedict N (2004) fingerprints and the daubert standard for admission of scientific evidence: why fingerprints fail and a proposed remedy. Ariz Law Rev 46(3):519–549

    Google Scholar 

  46. Cole SA (2005) More than zero: accounting for error in latent fingerprint identification. J Crim Law Criminol 95(3):985–1078

    MathSciNet  Google Scholar 

  47. Martire KA, Kemp RI, Sayle M, Newell BR (2014) On the interpretation of likelihood ratios in forensic science evidence: presentation formats and the weak evidence effect. In: Forensic science international, vol 240, pp 61–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hildebrandt, M., Dittmann, J., Vielhauer, C. (2017). Capture and Analysis of Latent Marks. In: Tistarelli, M., Champod, C. (eds) Handbook of Biometrics for Forensic Science. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-50673-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50673-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50671-5

  • Online ISBN: 978-3-319-50673-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics