Skip to main content

Change Detection and Object Recognition Using Aerial Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Abstract

This work proposes a strategy for autonomous change detection and classification using aerial robots. For aerial robotic missions that were conducted in different spatio–temporal conditions, the pose–annotated camera data are first compared for similarity in order to identify the correspondence map among the different image sets. Then efficient feature matching techniques relying on binary descriptors are used to estimate the geometric transformations among the corresponding images, and subsequently perform image subtraction and filtering to robustly detect change. To further decrease the computational load, the known poses of the images are used to create local subsets within which similar images are expected to be found. Once change detection is accomplished, a small set of the images that present the maximum levels of change are used to classify the change by searching to recognize a list of known objects through a bag–of–features approach. The proposed algorithm is evaluated using both handheld–smartphone collected data, as well as experiments using an aerial robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust explicit model predictive flight control of unmanned rotorcrafts: design and experimental evaluation. In: 2014 European Control Conference (ECC), pp. 498–503 (2014)

    Google Scholar 

  2. Papachristos, C., Alexis, K., Tzes, A.: Dual authority thrust vectoring of a tri-tiltrotor employing model predictive control. J. Intell. Rob. Syst. 81, 1–34 (2015)

    Google Scholar 

  3. Papachristos, C., Alexis, K., Carrillo, L.R.G., Tzes, A.: Distributed infrastructure inspection path planning for aerial robotics subject to time constraints. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 406–412. IEEE (2016)

    Google Scholar 

  4. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next-best-view” planner for 3d exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468 (2016)

    Google Scholar 

  5. Bircher, A., Kamel, M., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., Siegwart, R.: Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots. Auton. Rob., 1–25 (2015)

    Google Scholar 

  6. Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Uniform coverage structural inspection path-planning for micro aerial vehicles (2015)

    Google Scholar 

  7. Bircher, A., Alexis, K., Schwesinger, U., Omari, S., Burri, M., Siegwart, R.: An incremental sampling-based approach to inspection planning: the rapidly-exploring random tree of trees (2015)

    Google Scholar 

  8. Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-endurance sensing and mapping using a hand-launchable solar-powered UAV. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 441–454. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27702-8_29

    Chapter  Google Scholar 

  9. Minu, S., Shetty, A.: A comparative study of image change detection algorithms in matlab. Aquatic Proc. 4, 1366–1373 (2015)

    Article  Google Scholar 

  10. Fisher, R.: Change detection in color images. In: Proceedings of 7th IEEE Conference on Computer Vision and Pattern. Citeseer (1999)

    Google Scholar 

  11. Lu, D., Mausel, P., Brondizio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25, 2365–2401 (2004)

    Article  Google Scholar 

  12. Coulter, L., Lippitt, C., Stow, D., McCreight, R.: Near real-time change detection for border monitoring. In: Proceedings from the ASPRS Annual Conference, pp. 1–5 (2011)

    Google Scholar 

  13. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989)

    Article  Google Scholar 

  14. Aach, T., Kaup, A., Mester, R.: Statistical model-based change detection in moving video. Sig. Process. 31, 165–180 (1993)

    Article  MATH  Google Scholar 

  15. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14, 294–307 (2005)

    Article  MathSciNet  Google Scholar 

  16. Lucieer, A., de Jong, S., Turner, D.: Mapping landslide displacements using structure from motion (SFM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 38, 97–116 (2013). doi:10.1177/0309133313515293

    Article  Google Scholar 

  17. Wallace, L., Lucieer, A., Watson, C.: Assessing the feasibility of UAV-based lidar for high resolution forest change detection. Proc. ISPRS, Int. Archives Photogramm., Remote Sens. Spat. Inf. Sci. 38, B7 (2012)

    Google Scholar 

  18. Xiao, W., Vallet, B., Paparoditis, N.: Change detection in 3D point clouds acquired by a mobile mapping system. ISPRS Ann. Photogramm., Remote Sens. Spat. Inf. Sci. 1, 331–336 (2013)

    Article  Google Scholar 

  19. Xiao, W.: Detecting changes in trees using multi-temporal airborne LiDAR point clouds. PhD thesis, Masters Thesis, University of Twente, Enschede, The Netherlands (2012)

    Google Scholar 

  20. Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.: Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80, 91–106 (2013)

    Article  Google Scholar 

  21. Chen, G., Hay, G.J., Carvalho, L.M., Wulder, M.A.: Object-based change detection. Int. J. Remote Sens. 33, 4434–4457 (2012)

    Article  Google Scholar 

  22. Khattak, S., Papachristos, C., Alexis, K.: Autonomous change detection using aerial robots dataset. http://changedetectiondataset.wikispaces.com/

  23. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 298–304. IEEE (2015)

    Google Scholar 

  24. Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., Siegwart, R.: Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6423–6430 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Alexis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Khattak, S., Papachristos, C., Alexis, K. (2016). Change Detection and Object Recognition Using Aerial Robots. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics