Skip to main content

Adding Turbulence Based on Low-Resolution Cascade Ratios

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

  • 4147 Accesses

Abstract

In this paper we propose a novel method of adding turbulence to low-res. smoke simulation. We consider the physical properties of such low-res. simulation and add turbulence only to the appropriate position where the value of the energy cascade ratio is judged as physically correct. Our method can prevent noise in the whole region of fluid surfaces which appeared with previous methods. We also demonstrate that our method can be combined with a variety of existing methods such as wavelet turbulence and vorticity confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of SIGGRAPH 2001, pp. 15–22. ACM, New York (2001)

    Google Scholar 

  2. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 910–914 (2005)

    Article  Google Scholar 

  3. Kim, T., Thürey, N., James, D., Gross, M.: Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27, 50:1–50:6 (2008)

    Google Scholar 

  4. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large reynolds’ numbers. Dokl. Akad. Nauk SSSR. 30, 301–305 (1941)

    Google Scholar 

  5. Narain, R., Sewall, J., Carlson, M., Lin, M.C.: Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27, 166:1–166:8 (2008)

    Google Scholar 

  6. Zhao, Y., Yuan, Z., Chen, F.: Enhancing fluid animation with adaptive, controllable and intermittent turbulence. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 75–84 (2010)

    Google Scholar 

  7. Sato, S., Morita, T., Dobashi, Y., Yamamoto, T.: A data-driven approach for synthesizing high-resolution animation of fire. In: Proceedings of the Digital Production Symposium, DigiPro 2012, pp. 37–42. ACM, New York (2012)

    Google Scholar 

  8. Thuerey, N., Kim, T., Pfaff, T.: Turbulent fluids. In: ACM SIGGRAPH 2013 Courses, SIGGRAPH 2013, pp. 6:1–6:1. ACM, New York (2013)

    Google Scholar 

  9. Cook, R.L., DeRose, T.: Wavelet noise. ACM Trans. Graph. 24, 803–811 (2005)

    Article  Google Scholar 

  10. Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1985, pp. 287–296. ACM, New York (1985)

    Google Scholar 

  11. Bridson, R., Houriham, J., Nordenstam, M.: Curl-noise for procedural fluid flow. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH 2007. ACM, New York (2007)

    Google Scholar 

  12. Kim, T., Thürey, N.: Wavelet turbulence source code (2008). http://www.cs.cornell.edu/~tedkim/wturb/source.html

  13. Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, Press/Addison-Wesley Publishing Co., pp. 121–128. ACM, New York (1999)

    Google Scholar 

  14. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable Maccormack method. J. Sci. Comput. 35, 350–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Bridson, R., Greif, C.: Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. 34, 52:1–52:8 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Ishimuroya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ishimuroya, M., Kanai, T. (2016). Adding Turbulence Based on Low-Resolution Cascade Ratios. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics