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1 Introduction 
 

 
Network analysts combining culture and networks have shown that culture is linked 

to social relations.  One the one hand, researchers argue that culture  is reproduced 

through interactions and therefore relies on concrete interpersonal ties (e.g., [7, 8, 

36]). On the other hand, it is shown that culture affects structure of social ties (e.g., 

[23, 14]. In sum, culture and social networks are seen as mutually  constitutive,  or 

dual [5, 25]. 

Most of the above studies view culture  as a set of constructs which combine 

ideas, concepts, and meanings shared among individuals (for an overview, see [25]). 

These constructs correspond to similar ways of interpreting the world and condi- 

tion similarities in preferences, tastes, ideas, and judgments (for an overview,  see 

[30]). Cultural  constructs are exhibited in verbal (written or spoken) expressions 

of people who belong to the same culture [26, 38]. In these expressions, structures 

of associations between words rather than the words themselves represent cultural 

meanings [33, 37]. Hence, research has been advocating  a structural  view on ver- 

bally expressed culture [6, 9]. Yet, the relations between social networks and culture 

as structure  have not been sufficiently  analyzed, especially in small groups (see in 

relevant overviews by [25] and [5]). This paper investigates  how social network 

positions of actors in the social networks associate with cultural  constructs they 

create jointly with other group members. 

Using semantic network  analysis based on word collocation [34, 6, 32, 16], we 

trace cultural  constructs as patterns of associations between concepts expressed by 

individuals’ and relate the properties of those cultural constructs to positions in net- 
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works of social ties occupied by individuals. Hence, we apply the growingly  popular 

socio-semantic framework [32, 31, 29, 27]. 

In particular, we focus on groups of visual artists. These groups jointly generate 

culture, most often in observable processes of creating corporeal artistic objects and 

group interactions, exchanging on – often joint – artwork creation, collective exhi- 

bitions, discussions on the events and figures of the artistic  scenes, and other artistic 

and everyday topics. Network  analysis has been widely applied to study creativity 

and social relations between artists. Yet, network studies of art have focused pri- 

marily on organizational and market levels (e.g., [13, 15, 35, 3]), while creativity 

is seen as dependent  on an individual’s [21, 11] position in a network  of external 

relations [20]. The question of how internal networks of art groups operate appears 

to be out of scope. Meanwhile,  it is those internal networks of art groups that bring 

to life novel artistic visions and artistic styles many groups strive for [17] thus gen- 

erating variations in culture. So, it makes sense to take a closer look at such internal 

social networks. Simultaneously, research on language use has been argued to be “a 

powerful way to study the collective action of cultural production in art worlds” [12, 

p. 201]. Developments in semantic networks allow for the exploration of relations 

between cultural production and social networks within art groups. Yet, so far, very 

few studies applied formal semantic network analysis techniques to artistic settings 

[1]. This paper deals with this gap. 
 

 

2 Data 
 

 
The empirical data used in this study covers 3 art groups from St. Petersburg, Russia, 

encoded as ‘A’, ‘B’, and ‘C’. All of them are working  in the format of contemporary 

visual art. They all are characterized by intense interaction  between the members, 

(decades-long) backgrounds shared by most of the members, and regular joint artis- 

tic and/or everyday practices. Hence, their cultural constructs may both affect their 

interactions  and be impacted by these. Besides, the groups actively  produce texts 

and narratives that can be used to capture expressed cultural  constructs. Simultane- 

ously, the groups are different in organization, educational and cultural backgrounds 

of their members, understandings of art and its tasks, forms of spatial embeddedness 

in the city space, and artistic  styles. This provides variability in cases. 

We collected data between 2011 and 2012 via in-depth ethnographic studies con- 

ducted in each of the 3 groups. Because the groups do not have formal boundaries, 

we decided to include only core members in the data collection, that is those mem- 

bers with stable membership and continuous involvement  in the group practice. 

The data consists of two main parts: textual data and sociometric data. The textual 

data includes verbal expressions of the group members with clearly identifiable indi- 

vidual authorship. The corpus of texts is composed of transcripts of 24 open-ended 

narrative interviews,  each 30–240 minutes long, transcripts of dialogues between 

group members coming from 17 ethnographic observations, each 2–8 hours long, as 

well as posts in Russian social media, textual works of the artists, such as newspaper 

articles, prose and poetry. We managed to gain texts by every core member in all the 
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3 groups. Unprocessed individual corpora sized between 4128 and 28928 words per 

member. 

The sociometric data was obtained using the roster recall method surveys cap- 

turing frequency of interactions among members of each group. The question asked 

was “How often do you interact?”, suggesting to choose from 5 response options 

to evaluate frequency  of interactions with each of other members of the group: 

almost never; 1 or less/month; 2–4 times/month; 5–14 times/month; 15 or more 

times/month.  Further,  responses were quantified  on ordinal levels, from 0 for ‘al- 

most never’ to 4 for ‘15 or more times/month’. 25 out of 29 core members responded 

to the survey resulting in a response rate of 86.21%. 
 

 

3 Method 
 

 

3.1 Mapping of the Socio-Semantic Networks 
 

 
To capture patterns of social ties, cultural structures, and structure of relations be- 

tween them, three types of networks were mapped using the data on the three art 

groups: actor-actor (social network representing structure of social ties), concept- 

concept (semantic network representing cultural constructs) and actor-concept (bi- 

modal concept usage network  representing links between individuals  and certain 

cultural constructs).  Combined,  these three types of networks constitute socio- 

semantic networks [32]. 

The edge widths of the actor-actor (social) networks in Fig. 1 are based on ordinal 

levels from 0 to 4 captured by the sociometric survey. Tie strength was taken as an 

average of individuals’ evaluations of frequency of interactions with each other. 

When no response was received from one of the individuals in a dyad,  only the 

strength indicated by the other one served as an input for the social network. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) A (b) B (c) C 

Fig. 1 Social networks of the 3 art groups: “A”, “B”, and “C”. 

 
The other two types of networks were mapped based on the collected texts. Con- 

cepts, which are stems of words used in texts, are the nodes in semantic and actor- 
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concept networks. To map relations between concepts in semantic networks we used 

words collocation technique, which implies that links between nodes are mapped 

based on word stems co-occurrences  in texts. These networks  represent cultural 

constructs expressed by individuals [6, 25]. Relations between concepts and actors 

were mapped based on usage of certain concepts by certain individuals  in their texts. 

Neither frequency of words’ collocation nor frequency of words use were accounted 

for in this analysis, so both semantic and concept usage networks are binary. 

The procedure for mapping  semantic and concept usage networks  was as fol- 

lows. First, the textual data were split into separate files containing all narratives 

and written  texts by each single group member, separately. Then, we removed inter- 

viewers’ and observers’ comments and technical information.  Second, textual data 

were preprocessed in AutoMap [10], applying concept stemming, lowercasing, re- 

moval of punctuation and numerals. A delete list was created and applied, removing 

pronouns, adverbs, prepositions, conjunctions, junk words, as well as less meaning- 

ful verbs, such as ‘say’, ‘talk’, and ‘think’. 

Third, AutoMap was applied to each of these separate files to generate individual 

semantic networks of each artist. Parameters of semantic network generation were 

specified  as follows: window size between 2 and 3 words  was used to map lines 

between concepts; sentence was used as a stop unit. 

Fourth, individual networks of each group member were aggregated into union 

semantic networks (so that links are now based on collocation of concepts in texts 

of any of the artists), while actor-concept networks still contained the information 

on usage of certain concepts by certain actors. 

Fifth, concepts used by only one group member (i.e. having fewer than 2 binary 

actor-concept links) were removed from semantic and actor-concept networks as we 

are interested only in capturing shared cultural constructs. Therefore, our analysis 

includes only concepts used by at least two actors in a group. We note, however that 

in this paper, links between concepts are not necessarily shared. 

The three types of networks (social, semantic, and bipartite concept usage) were 

mapped for each of the three art groups, resulting in 12 networks in total and com- 

prising 3 socio-semantic networks of the 3 groups further used in this analysis. 
 

 

3.2 Operationalization of the Social Network 
 

 
The social network survey recorded the frequency of interactions among members 

of each group. However, this frequency was measured on ordinal levels, which carry 

concerns over numerical comparisons from one level to the next. For example, the 

ratios among levels differ from any estimated levels. So, we instead replace tie 

strengths with estimations of the actual frequency of contact. 

Table 1 enumerates the estimates and ranges (for sampling) for tie strength or- 

dinal scale values. In our subsequent analyses, the estimates, rather than the survey 

responses, are employed.  An alternative approach is to consider uniform sampling 

of tie strengths using the estimated min and max actual frequencies (also shown in 
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Table 1 Mapping of Tie Strengths to Ranges and Estimates 

Survey 
Response Description Min. Max. Estimate 

 

0 Almost Never 0.01 0.1 0.05 
1 1 or less/month 0.1 1.0 0.5 
2 2–4 times/month 1.5 4.5 3.0 
3 5–14 times/month 4.5 14.5 9.5 

4 15 or more times/month 14.5  20.0 20.0 
 
 

 
the tables). Finally, asymmetric interaction  reports are symmetrized by averaging 

the dyadic reports. 
 

 

3.3 Descriptive Statistics 
 

 
We present some descriptive statistics of the social and semantic networks in Table 

2. These groups are relatively  small and may be considered to be small social net- 
 
 

Table 2 Social and semantic network statistics 
 

 A B C 

Actors 6 14 9 
Ties 15 89 28 

Ord. Weighted Ties 44.5 152 53 
Est. Wgt. Ties 163.75 284 141.75 

Interactions/Tie 10.92 3.19 5.06 
Social Network Density 1.000 0.978 0.778 

Concepts 7513 4800 13681 
Semantic Network Density 0.00077 0.00058 0.00039 

 

 
 

works, which bear the characteristic  of being socially cohesive. That is, the social 

networks  are highly dense. By contrast, the semantic networks exhibit extremely 

low densities, which is largely due to the high number of concept nodes and the 

co-word window employed in the semantic network  generation. Despite the huge 

difference between the densities of social and semantic networks, we note that these 

densities are ordered similarly, suggesting a relation  between social networks and 

cultural constructs. For example, the “C” network exhibits both the lowest concept 

and actor network densities. 
 

 

3.4 Extraction  of socio-semantic subgraphs 
 

 
In Fig. 2, we visualize the union graph of the bipartite concept usage network  and the 

unimodal social network for the “C” group. The concept usage network  is optimized 

using the pivot multidimensional scaling (MDS) algorithm [4], as implemented  in 
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Pajek [2], so that structural equivalence is optimally displayed. That is, nodes that 

are connected to similar others are placed in proximity to one another and nodes 

connected to the same other nodes – exactly upon each other, thereby reducing the 

visual complexity induced by the 13,681 observed concepts. Clusters of concepts 

form distinguishable groups or ‘bands’ of concept nodes scattered around nodes of 

actors using them (See Fig. 3). The added value of such an optimization  is that it 

gives a picture  of how actors are grouped together with regard to usage of similar 

sets of concepts and concepts are grouped with regard to their usage by certain sets 

of actors. 
 

 
Fig. 2 Visualization of actor- 
concept and actor-actor net- 
works of group ‘C’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Actor nodes are in yellow and labeled (anonymously).  Concept nodes are col- 

ored according to combinations of actors sharing them and sized by the number of 

structurally-equivalent  concepts. Grey lines refer to concept usages, while overlaid 

red lines represent social ties. 

Due to the nature of pivot MDS algorithm,  some actor nodes usually form a 

triangle-shaped structure with other actor nodes located in the middle of the dia- 

gram. Actor nodes located at triangle’s vertices represent people who use the largest 

amount of concepts shared with other members, while actor nodes located inside 

represent those who use a significantly  smaller number of shared concepts. Thus, 

a distinction  between different positions of actors in the concept usage network  is 

captured. Actor  nodes located a triangle’s vertices appear to be very different  in their 

cultural constructs with regard to each other, as reflected by the content of the con- 

cepts they use. What they have in common is that they use many concepts, which  are 

also used by many others in the group. Hence, they span the semantic space playing 

an important role in culture constructing in the group. Therefore, we label them ‘dis- 

course spanner(s)’ (or DS). Simultaneously, these individuals appear to be informal 

leaders in their groups, acknowledged  as such by other members and demonstrat- 

ing corresponding behavior in group interactions. Due to their strong involvement 

in the formation of their groups’ shared semantics, characteristics of the semantic 
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networks that DS contribute to are most worth considering in order to understand 

how culture is constructed in groups. 

The second type of position in the socio-semantic network is represented by the 

‘majority’ (or M) of other actors who are using shared concepts to a much lesser 

extent and hence are less involved  in culture constructing within their groups. The 

positions of DS and M represent not only two different  types of positions in the 

concept usage structure, but also two distinctive roles in group culture constructing 

corresponding  to these positions. Although in this paper we mainly focus on the DS, 

we still account for M. 

As an important  technical  step, for each group  we extracted different socio- 

semantic subgraphs. These subgraphs include (1) different combinations of DS and 

M actors, (2) concepts shared by them, as suggested by the pivot MDS optimization 

(e.g., blue concepts in Fig. 2 correspond to concepts shared by 1 of the DS and one 

or more of the M), and (3) any links between concepts they have in their semantic 

networks; we note that links between concepts are not necessarily shared. 

Fig. 3 represents an example semantic network  of a socio-semantic  subgraph 

which includes concepts used by the DSs, encoded as CC and CG, share with some 

of the M (green nodes in Fig. 2). It represents, for instance, that the concepts ‘poem’ 

and ‘prose’  are used by DS ‘CC’, DS ‘CG’ and at least one individual  in M; mean- 

while, the association represented by the link ‘poem’-‘prose’  may be characteristic 

of only CC, or CG, or the individual(s)  from among the M.  Due to the limits of 

space, our analysis in this paper considers only those socio-semantic subgraphs that 

include one DS and one or more of the M. 
 

 

4 Results 
 

 
As a starting point, in Table 3, we predict (in the statistical,  non-causal sense) con- 

cept usage by individual actors’ social network position statistics, namely degree 

(CD ) and betweenness (CB ) centralities.3   The former measure captures the extent to 

which an actor interacts with others, while the latter indicates the extent to which 
an actor plays a bridging role within his/her group. [18, 19]. We examine centrality 

measures derived from the undirected, unweighted graphs as well as the estimated, 

empirical  edge weights, in order to address homogeneity of unweighted degree cen- 
tralities due to high density in some groups. The models are applied across all groups 

(total of 29 members), and the dependent variable is log-transformed due its skew- 
ness. 

The results primarily reveal that betweenness (CB ) is positively associated to 

shared concept usage by individuals while degree (or popularity, CD ) is negatively 

associated. The relative,  absolute magnitudes of these effects  vary by the opera- 

 
2 Node size corresponds to betweenness centrality  of concepts. Pendants were recursively  hidden 
in the main picture. The full semantic network is displayed in the lower-right. 
3 Due to the low sample size, we cannot include additional predictors or employ  a nested model. 
However, group size, while significant on its own, is collinear with CD , but does not predict  as well 

not do group-level dummy variables. 
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Fig. 3 Largest pruned component of the semantic network of a socio-semantic  subgraph with CC, 

CG, and M.2 

 
Table 3 Predicting  concept usage by social network measures 
 
 

 
log of Shared Wgted. Centrality 

Predictor Concept Usage  Predictors 

Intercept  7.992***    7.728*** 
(0.429) (0.500) 

CD −0.165***  −2.156* 
(0.043) (0.825) 

CB 0.642* 1.258* 

 
(0.241) (0.604) 

Adj-R2
 0.423 0.162 

n 29 29 

∗ : p < .05; ∗ ∗ ∗ : p < .001 
Note: Second model uses the same dependent variable  as 
the first but alternative, weighted predictors. 
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tionalization of the tie, whether it is mere existence or the strength.4  That is, actors 

use and share with others more concepts when they connect areas of their social net- 

works, while they use and share fewer concepts when they intensely interact with 

their closer circles. This reveals that conceptual prominence of DS is hindered by 

their popularity but is empowered by their ability to connect the group. Given that 

degree and betweenness are often positively correlated, the negative effect of CD re- 

veals that those DS who use particularly  many concepts are rather distinctive  gate- 

keepers than merely merely globally central through high ranking on both measures 

[28, 29, 27]. 

In Table 4, we compare the weighted social network to the ‘concept sharing net- 

work’; the latter is the bipartite  concept usage network  transformed via network 

multiplication (or folding) into a unimodal  actor-actor network in which the edge 

weight represents the extent of shared concepts. For each group and socio-semantic 

subgraph corresponding to different types of roles (DS and M), the correlations be- 

tween the edges of the social network  and those of the concept sharing network 

are tested for significance  under a permutation  test that produces a null distribution 

resistant to type I errors induced by matrix (network or distance) auto-correlation 

[24]; the resulting correlation is called  a ‘QAP correlation’ [22]. We examine the 

relationship between the social ties and concept sharing by pairs of actors for each 

group, in general,  as well as for DS and M subgraphs within each group.  These 

subgraphs strictly contain only social ties among DS (or M, respectively)  and the 

concepts DS (or M) share between them. The edge weights in the concept sharing 

networks are additionally  log-transformed due to skewness. 
 
 

Table 4 QAP correlations between shared concepts and social ties per subgroup 

 
Pearson r 

Name Pearson r  (w/log trans.) n 

Discourse Spanners (DS) Subgraph 

A — — 2 
B .298n.s.  .296n.s.  4 
C .345n.s.  .399n.s.  3 

Majority (M) Subgraph 

A .041n.s.  .035n.s.  4 
B .123n.s.  .128n.s.  10 

C −.337ˆ −.401ˆ 6 
All Members Graph 

A −.034n.s.  −.001n.s.  6 
B .034n.s.  .105n.s.  14 
C −.284ˆ −.350* 9 

n.s. : p ≥ .10; ̂  : p < .10; ∗ : p < .05 
 

 
 
 
 

4 Results from considering weighted concept usage (multiple  use per concept by a single individ- 
ual) are very consistent with the shown results. 
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Despite the small samples, there are some results worth mentioning. First, we 

see that the DS social and concept sharing networks  (for those groups that contain 

more than two DS) exhibit positive, albeit insignificant, correlations. These suggest 

the social ties between DS as a subgroup and concept sharing between them have 

an ambivalent  association: either strong ties act as a normalizing force on inducing 

a common dictionary  or vice versa. 

The M subgraphs also exhibit this ambivalence with the exception of group C, 

whose significantly  negative correlation indicates that the more strongly M actors 

are tied, the fewer concepts they share. This suggests that certain M members of 

group C sought distinction from one another in their cultural constructs. This corre- 

lation remains when we look at the entire C group despite the normalizing nature of 

the DS of that group. 

As the above analysis shows, mere concept sharing  by individuals does not 

demonstrate any prominent relation with social ties. Further, we account for cul- 

tural meanings by considering links between concepts (semantic networks), and we 

search for relations between social ties linking actors and cultural constructs the 

actors jointly express. We compare semantic network statistics of subgraphs that in- 

clude one DS and the M (i.e. separate union semantic networks connecting concepts 

shared by DSs and one or more of Ms) against normalized sum of weights (i.e. the 

sum of dyadic degree centralities divided by maximum sum possible) of the edges 

a DS has with the M. Specifically, we compare graph-level measures (GLMs) com- 

puted for the semantic networks  (per sets of DS+M) against the interaction strength 

the DS exhibits with the M in their respective groups. This comparison (Table 5) 

exposes the extent to which  the cultural  constructs created by discourse spanners to- 

gether with the majority of other actors in their groups relate to cumulative strength 

of social ties between the DS and the M within a group. 
 
 

Table 5 Semantic network statistics v. averaged social network tie strengths 

 
Measure rord  rest rMC 

Density .116n.s.  −.047n.s.  −.001n.s.
 

Degree Centralization .375n.s.  .259n.s.  .314n.s.
 

Betweenness Centralization  .883**    .822**    .814* 

n.s. : p ≥ .10, ∗ : p < .05, ∗∗ : p < .01 

 

 
There are n = 9 DS (3, 2, and 4 for each group respectively). Density indicates 

the unweighted density of the semantic networks in each DS+M socio-semantic 

subgraph. Degree and betweenness centralizations  are variance-based metrics of the 

distribution of nodal degree and betweenness centralities  and are normalized  be- 

tween 0 and 1. They reveal the extent to which the structure contains concepts that 

a) harbor significantly  more semantic linkages to other concepts and b) play promi- 

nent bridging roles in the semantic network, connecting disparate areas of a group’s 

cultural  constructs and thus integrating  them. Together, they can describe proper- 

ties of cultural  constructs. For example, higher density would suggest ‘thickness’ of 
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cultural constructs; and lower degree centralization  may indicate more diversified 

cultural constructs, in contrast to those that are narrowly  focused. 

We report the nominal Pearson correlations  (r) derived from both the ordinal 

responses and empirical  estimates as well as a mean  from Monte Carlo sampled 

tie strengths; these are all consistent with one another for the higher correlations. 

Significant and positive correlations for betweenness centralization indicate that the 

presence of distinct concepts that prominently  bridge semantic networks accompa- 

nies stronger  bonds between a DS and a M. In other words, strong social ties are 

associated with integration of cultural constructs. The other positive correlation, for 

degree centralization, although insignificant,  points towards decreased diversifica- 

tion of cultural  constructs as being associated with stronger social ties between a 

DS and a M. It suggests that the cumulatively  strong ties between DS and M may 

make group discourse elaborate on some narrow set of focal concepts, perhaps mo- 

bilizing the group discourse. Thus, focusing and, especially, integration of cultural 

constructs rather than mere ‘thickness’  of cultural constructs accompany intense 

interactions between DS and the M. 
 

 

5 Conclusion 
 

 
This study focused on relating social networks and cultural constructs in art groups, 

with implications on social and cultural duality extending to other domains. By 

studying the interplay between social and semantic networks, we attempted to shed 

light on the relation social role and position of an individual  have with his/her in- 

volvement in constructing shared culture in a group. Minding that our findings are 

limited due to analysis of cross-sectional data on small groups embedded in a single 

– artistic – setting, we can summarize the following. 

First, the analysis revealed that, even in small groups of friends, higher diversity 

and intensity of direct social ties hinders sharing of cultural constructs. Rather, those 

individuals, who socially  bridge less well-connected  areas of their groups, are the 

ones who engage in the shared cultural constructs with others. 

Second, the amounts of concepts shared by the group members and strength of 

social ties between them are not necessarily related. While those individuals  using 

significant amounts of shared concepts bear some of this association (which Roth 

and Cointet refer to as “semantic homophily” [32], in one of the groups, the mem- 

bers employing significantly  fewer shared concepts exhibit heterophily, whereby 

stronger ties are marked  by lower levels of concept sharing. This finding differs 

from those of [32] (ibid.) which, however, rely on analysis of much larger groups. 

Finally, we found that stronger focusing and higher integration of cultural con- 

structs rather than mere ‘thickness’  of cultural constructs accompany more intense 

interactions between the leaders and the followers.  Our preliminary interpretation 

is that leaders are strategically  interacting  with others in order to jointly construct 

a shared creative vision  and to integrate the group. In this process, leaders rely not 

only on their competence or formal authority, but also on focusing on emerging 

cultural constructs and on interaction with others. The more intensely they interact 
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with the rest of the group, the more they bridge and focus the individual group’s 

cultural constructs on a shared set of concepts serving to span the group’s culture. 

At the moment, we cannot say for sure whether or not it is a phenomenon specific to 

creative settings, and if there is an asymmetric relation. This issue will be addressed 

in our analysis of longitudinal data, currently being collected. 

Overall, we can preliminarily conclude that the socio-semantic network approach 

is capable of delivering findings on the duality of cultural and social structures rel- 

evant to the ongoing  discussion (see [25, 5] Yet, the analysis would benefit from 

a more extensive account of links between concepts (semantic networks) and from 

combining of quantitative and qualitative  data. We expect that joint formal analy- 

sis of semantic network properties with contents of semantic networks, along with 

ethnographic and interview  data, will deliver further insights. 
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