Skip to main content

Analysing the Impact of Rescheduling Time in Hybrid Manufacturing Control

  • Conference paper
  • First Online:
  • 1047 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 694))

Abstract

Hybrid manufacturing control architectures merge the benefits of hierarchical and heterarchical approaches. Disturbances can be handled at upper or lower decision levels, depending on the type of disturbance, its impact and the time the control system has to react. This paper focuses particularly on a disturbance handling mechanism at upper decision levels using a rescheduling manufacturing method. Such rescheduling is more complex that the offline scheduling since the control system must take into account the current system status, obtain a satisfactory performance under the new conditions, and also come up with a new schedule in a restricted amount of time. Then, this paper proposes a simple and generic rescheduling method which, based on the satisfying principle, analyses the trade-off between the rescheduling time and the performance achieved after a perturbation. The proposed approach is validated on a simulation model of a realistic assembly cell and results demonstrate that adaptation of the rescheduling time might be beneficial in terms of overall performance and reactivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dilts, D.M., Boyd, N.P., Whorms, H.H.: The evolution of control architectures for automated manufacturing systems. J. Manuf. Syst. 10(1), 79–93 (1991)

    Article  Google Scholar 

  2. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. EUA Prentice Hall (2014)

    Google Scholar 

  3. De Lara, M., Martinet, V., Doyen, L.: Satisficing versus optimality: criteria for sustainability. Bull. Math. Biol. 77(2), 281–297 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hansson, O., Mayer, A.: The optimality of satisficing solutions. In: Proceedings of the 4th workshop on uncertainty in artificial intelligence (1988)

    Google Scholar 

  5. Cardin, O., Mebarki, N., Pinot, G.: A study of the robustness of the group scheduling method using an emulation of a complex FMS. Int. J. Prod. Econ. 146(1), 199–207 (2013)

    Article  Google Scholar 

  6. Mourtzis, D.: Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era. Logistics Res. 9(1), 1–20 (2016)

    Article  Google Scholar 

  7. Pach, C., Berger, T., Bonte, T., Trentesaux, D.: ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Comput. Ind. 65(4), 706–720 (2014)

    Article  Google Scholar 

  8. Zambrano-Rey, G.: Reducing myopic behavior in fms control, PhD Dissertation. University of Valenciennes and Hainaut-Cambrésis (2014)

    Google Scholar 

  9. Shen, W., Maturana, F., Norrie, D.H.: MetaMorph II: an agent-based architecture for distributed intelligent design and manufacturing. J. Intell. Manuf. 11(3), 237–251 (2000)

    Article  MATH  Google Scholar 

  10. Barbosa, J., Leitão, P., Trentesaux, D., Adam, E.: Enhancing ADACOR with biology insights towards reconfigurable manufacturing systems. In: IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, pp. 2746−2751 (2011)

    Google Scholar 

  11. Li, X., Zhang, C., Gao, L., Li, W., Shao, X.: An agent-based approach for integrated process planning and scheduling. Expert Syst. Appl. 37(2), 1256–1264 (2010)

    Article  Google Scholar 

  12. Nejad, H.T.N., Sugimura, N., Iwamura, K.: Agent-based dynamic integrated process planning and scheduling in flexible manufacturing systems. Int. J. Prod. Res. 49(5), 1373–1389 (2011)

    Article  Google Scholar 

  13. Vieira, G.E., Herrmann, J.W., Lin, E.: Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jimenez, J.F., Bekrar, A., Trentesaux, D., Rey, G.Z., Leitao, P.: Governance mechanism in control architectures for flexible manufacturing systems. IFAC-PapersOnLine 48(3), 1093–1098 (2015)

    Article  Google Scholar 

  15. Wong, T.N., Leung, C.W., Mak, K.L., Fung, R.Y.K.: Integrated process planning and scheduling/rescheduling—an agent-based approach. Int. J. Prod. Res. 44(18–19), 3627–3655 (2006)

    Article  MATH  Google Scholar 

  16. Jimenez, J.F., Bekrar, A., Trentesaux, D., Leitão, P.: A switching mechanism framework for optimal coupling of predictive scheduling and reactive control in manufacturing hybrid control architectures. Int. J. Prod. Res. 1−16 (2016)

    Google Scholar 

  17. Zambrano-Rey, G.Z., Bonte, T., Prabhu, V., Trentesaux, D.: Reducing myopic behavior in FMS control: A semi-heterarchical simulation–optimization approach. Simul. Model. Pract. Theory 46, 53–75 (2014)

    Article  Google Scholar 

  18. ElMaraghy, H.A., ElMekkawy, T.Y.: Deadlock-free rescheduling in flexible manufacturing systems. CIRP Ann. Manuf. Technol. 51(1), 371–374 (2002)

    Article  MATH  Google Scholar 

  19. Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S.M.: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Comput. Oper. Res. 73, 56–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zakaria, Z., Petrovic, S.: Genetic algorithms for match-up rescheduling of the flexible manufacturing systems. Comput. Ind. Eng. 62(2), 670–686 (2012)

    Article  Google Scholar 

  21. Novas, J.M., Van Belle, J., Saint Germain, B., Valckenaers, P.: A collaborative framework between a scheduling system and a holonic manufacturing execution system. In: Proceeding of SOHOMA Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. pp. 3–17. Springer (2013)

    Google Scholar 

  22. Yu, G.D., Yang, Y., Zhao, X., Li, G.: Multi-objective rescheduling model for product collaborative design considering disturbance. Int. J. Simul. Model. 13(4), 472–484 (2014)

    Article  Google Scholar 

  23. Gao, K.Z., Suganthan, P.N., Tasgetiren, M.F., Pan, Q.K., Sun, Q.Q.: Effective ensembles of heuristics for scheduling flexible job shop problem with new job insertion. Comput. Ind. Eng. 90, 107–117 (2015)

    Article  Google Scholar 

  24. Pfeiffer, A., Kádár, B., Monostori, L., Karnok, D.: Simulation as one of the core technologies for digital enterprises: assessment of hybrid rescheduling methods. Int. J. Comput. Integr. Manuf. 21(2), 206–214 (2008)

    Article  Google Scholar 

  25. Fattahi, P., Fallahi, A.: Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP J. Manufact. Sci. Technol. 2(2), 114–123 (2010)

    Article  Google Scholar 

  26. Gao, K.Z., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F., Sadollah, A.: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowl. Based Syst. (2016)

    Google Scholar 

  27. Conway, R.W., Maxwell, L., Miller, L.W.: Theory of scheduling. Dover

    Google Scholar 

  28. Shirazi, B., Mahdavi, I., Mahdavi-Amiri, N.: iCoSim-FMS: An intelligent co-simulator for the adaptive control of complex flexible manufacturing systems. Simul. Model. Pract. Theory 19(7), 1668–1688 (2011)

    Article  Google Scholar 

  29. Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., Leitão, P.: Pollux: a dynamic hybrid control architecture for flexible job shop systems. Int. J. Prod. Res. 1–19 (2016)

    Google Scholar 

  30. Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., Leitao, P., Barbosa, J.: Benchmarking flexible job-shop scheduling and control systems. Control Eng. Pract. 21(9), 1204–1225 (2013)

    Article  Google Scholar 

  31. Wilensky, U.: NetLogo: Center for Connected Learning and Computer-based Modelling, Northwest. University, Evanston (1999)

    Google Scholar 

  32. Glover, F., Kochenberger, G.: Handbook of Metaheuristics 1 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Fernando Jimenez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jimenez, JF., Zambrano-Rey, G., Bekrar, A., Trentesaux, D., Leitão, P. (2017). Analysing the Impact of Rescheduling Time in Hybrid Manufacturing Control. In: Borangiu, T., Trentesaux, D., Thomas, A., Leitão, P., Oliveira, J. (eds) Service Orientation in Holonic and Multi-Agent Manufacturing . SOHOMA 2016. Studies in Computational Intelligence, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-51100-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51100-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51099-6

  • Online ISBN: 978-3-319-51100-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics