Mobile Health

James M. Rehg • Susan A. Murphy • Santosh Kumar Editors

Mobile Health

Sensors, Analytic Methods, and Applications

Foreword by Deborah Estrin, Ph.D

Editors James M. Rehg College of Computing Georgia Institute of Technology Atlanta, GA, USA

Santosh Kumar Department of Computer Science University of Memphis Memphis, TN, USA Susan A. Murphy Department of Statistics University of Michigan Ann Arbor, MI, USA

ISBN 978-3-319-51393-5 DOI 10.1007/978-3-319-51394-2 ISBN 978-3-319-51394-2 (eBook)

Library of Congress Control Number: 2017944723

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland For Jim and Marci—J.M.R. For Terry—S.A.M. For Smriti—S.K.

Foreword

The confluence of advances in mobile computing, wireless sensors, and digitization of healthcare has led to the emergence of mobile health (mHealth) during the past decade. mHealth broadly refers to the use of mobile technologies for managing health and wellness in the natural environment. Wearable fitness trackers and smartwatches are increasingly popular mHealth accessories and have contributed to enthusiastic interest on the part of the public in self-monitoring devices and practices.

Concurrent with growing interest and activity from the technology industry, there is growing interest in the computing research community in mHealth. mHealth represents a promising research area in computing that can make important contributions to society by advancing scientific understanding, driving technology advances, and improving health and wellness.

mHealth is unusually broad in its need for and relevance to computing research cutting across many subdisciplines within computing; they include sensor design, mobile computing, networking, signal processing, data modeling, bioinformatics, machine learning, visualization, privacy and security, and human–computer interaction. Numerous workshops and conferences have also emerged in the area of mHealth, including National Institutes of Health (NIH) and National Science Foundation (NSF) backed summer institutes that provide immersive multidisciplinary training to faculty, postdoctoral fellows, and predoctoral candidates.

Both undergraduate and graduate level courses have also begun to address mHealth as an important component or as the primary focus, but in both cases there has not existed a high-quality reference book that provides a comprehensive introduction to mHealth for the computing community, especially for those just beginning to work in this area. This book fills this important gap by focusing on the sensing and modeling aspects of mHealth, while showcasing compelling and motivating applications, design and evaluation of sensors, markers derived from mobile sensors, and interventions designed to be triggered by sensor-derived markers.

I expect this book to become an indispensable resource for community members as they address new research problems, prepare publications and grant applications, plan courses, and act as consultants to other practitioners or researchers. The online lectures to accompany each chapter will make it particularly valued by students, faculty, and practitioners.

The authors of this book, led by the editors James Rehg, Susan Murphy, and Santosh Kumar, represent many of the most respected and accomplished leaders in this rapidly growing field. They together represent the diversity of disciplines that make up mHealth.

Robert V. Tishman Founder's Chair Department of Computer Science Cornell Tech, New York, NY, USA Deborah Estrin

Preface

The field of mobile health (mHealth) is focused on the use of mobile technologies to improve health outcomes through sensing of behavioral and physiological states and interaction with individuals to facilitate health-related behavior change. Its promise is the ability to automatically identify and characterize the behaviors and decisions of everyday life that play a critical role in an individual's health and well-being, and provide personalized assistance and interventions under real-life field conditions to enable an individual to control their health, manage existing health conditions, and prevent future health problems from emerging. Examples of mHealth applications include physical activity tracking and encouragement, stress management, and preventing relapse to addictive behaviors, among many others.

The mHealth field is currently experiencing rapid growth, driven by advances in on-body sensor technology and its adoption by users, big data analytics, cloud computing, and the increasingly large-scale use of data in medicine. As a consequence of these diverse influences, the mHealth literature is scattered across a variety of conference proceedings and journals, making it challenging for researchers to obtain a holistic view of this emerging technology. This volume provides a solution in the form of a comprehensive introduction to the current state of the art in mHealth technology, with the agenda of advancing a systematic approach to mobile data analysis and exploitation.

This book is designed to be accessible to technology-oriented researchers and practitioners with backgrounds in computer science, engineering, statistics, and applied mathematics. The chapters provide a comprehensive overview of the major topics in sensing, analytics, and mobile computing which are critical to the design and deployment of mHealth systems. As a result, the book enables researchers and practitioners who are entering the mHealth field to obtain a complete introduction to current research and practice. Our contributing authors include many of the leading researchers and practitioners in the mHealth field.

Introduction to the Book

Chronic health conditions are a major burden of disease in the United States and the world, and they are increasing in prevalence due to improvements in critical care, longer life, and changing lifestyles. Chronic diseases such as cardiovascular disease, cancer, diabetes, obesity, hypertension, and asthma need to be managed throughout the entire life of the patient with an appropriate medication regimen and lifestyle modifications. Mobile health (mHealth) can help both in assisting with the management of chronic diseases for those who have already become patients and in helping to prevent their occurrence in at-risk individuals. Chronic conditions such as smoking and other forms of dependence, along with developmental conditions such as autism and mental health conditions such as depression, also persist over time and can benefit from the use of mobile health technologies to support more effective, individualized approaches to behavior change and management.

Chronic diseases are usually complex in their etiology as they are caused by multiple risk factors that interact in complex patterns and include genetic, behavioral, social, and environmental components. The modifiable risk factors are the behavioral, social, and environmental components that can be monitored with mHealth in the user's natural environment. A key promise of mobile health technology is to provide, for the first time, the ability to not only monitor risk factors but also monitor the health states of individuals in their natural environment and quantify the interactions between the risk factors, their temporal dynamics, and outcomes, in order to gain a deeper insight into the factors that contribute to health and disease risk. Such activities would yield new levels of biomedical understanding and significantly improve clinicians' ability to identify person-specific disease risk and treatment response. For example, such ubiquitous monitoring with mHealth can help discover early indicators, antecedents, and precipitants, which can then be used in preventive interventions to reduce incidence rates of chronic diseases. Moreover, the availability of mobile computing platforms (in the form of smartphones) provides new opportunities to develop personalized prevention and treatment programs that can complement existing clinical mechanisms of care. By measuring the changes in health states, risk factors, daily behaviors, and medication adherence, mHealth can also help in detecting trends and adapting treatment and interventions so as to better manage the health and wellness of chronic disease patients, with a resulting reduction in adverse health events that require hospital readmission.

Advances in sensing and analytic methods, along with the proliferation of mobile platforms, have laid the groundwork for the collection of mobile sensor data, the quantification of risk factors, the measurement of changes in health status, and the delivery of treatment in the natural environment. However, substantial research is needed in order to realize the potential of this technology to improve health outcomes. The chapters in this volume provide a description of the challenges that must be overcome, along with some promising solution approaches. The chapters are organized into four parts: I. mHealth Applications and Tools; II. Sensors to mHealth Markers; III. Markers to mHealth Predictors; and IV. Predictors to mHealth

Interventions. This organization provides a useful conceptualization of the process of going from on-body sensor data to mobile interventions.

The first part on "mHealth Applications and Tools" provides a series of examples of health conditions and biomedical research questions that can be addressed using mHealth technology and methods. A range of study designs are represented. One category focuses on a particular mHealth technology and assesses its utility in the context of a specific health concern or population. A second category focuses on a specific health condition and prospectively explores the value of mHealth technologies in characterizing and quantifying trajectories of risk. A third category offers lessons learned in the design and implementation of mHealth studies or the use of particular sensing technologies. The populations addressed in these papers range from college students to older adults. A variety of intervention targets are described, ranging from the maintenance of circadian rhythms to the reduction in caloric consumption and the increase of physical activity. These papers collectively provide a useful introduction to the breadth of mHealth technologies and the current state of the art in their application.

While the increased availability of affordable sensors with improving battery life has driven the commercial growth of the mHealth market, the process of converting noisy on-body sensor data into valid and accurate measurements of behavioral, physiological, and environmental risk factors remains challenging. The chapters in Part II, "Sensors to mHealth Markers," outline these challenges in detail and describe a variety of solution approaches. The chapters in this part cover a wide range of sensing technologies, including motion and activity sensing, acoustic analysis, optical sensing, and radar-based imaging. The central concern of this part is the development of computational models. Models must be informed by the physiological mechanisms and behavioral theory that guide our understanding of mobile health applications. At the same time, models must be able to address the challenges of streaming sensor data, namely its high volume, velocity, variety, variability, versatility, and the semantic gap between the data and underlying mHealth constructs of interest. A variety of modeling tools are used by the chapters in this part, including both probabilistic data models and classifierbased approaches. The validation of markers derived from on-body sensors against existing gold standard measures is another important topic. Validation can be done under laboratory conditions by collecting reference data from gold standard clinical instruments simultaneously with mHealth sensors. Validation in the field is much more challenging and typically involves a combination of self-report and human annotation to establish a reference. The techniques and approaches described in these chapters will provide a valuable resource for researchers and practitioners who are interested in developing novel mHealth markers or in using such markers in applications.

Given the ability to convert raw on-body sensor streams into mHealth markers, the next step in the processing pipeline is to convert multiple time series of marker values into predictions of risk for future adverse outcomes. Predictions of future risk are vital to the delivery of mobile interventions, as they can be used to pinpoint windows of opportunity in which to act, before an undesired outcome occurs. Part III, "Markers to mHealth Predictors," presents an introduction to the prediction task. Prediction is challenging because it requires the ability to make statements about future events for which no measurements are currently available. Moreover, the targets for prediction tend to be complex constructs which necessarily draw upon multiple streams of markers. The prediction of lapse in smoking cessation, for example, might utilize information about stress, craving, negative affect, and the presence or absence of social supports. The chapters in Part III cover a range of topics, from visualization techniques for uncovering patterns in marker streams to machine learning methods for capturing the temporal dynamics of multimodal patterns of markers, and finally ending with a case study on stress prediction in the context of a stress management intervention. While the prediction task has its own unique challenges, it shares with the task of marker generation the need to build effective computational models that capture the complex dynamics of noisy signals. The inherent complexity of the mHealth domain, in which both sensor signals and their derived markers exhibit tremendous variability in their properties and dynamics over time, creates a number of exciting research opportunities in machine learning and stochastic modeling. The chapters in this part provide an introduction to this exciting research area and will hopefully serve as inspiration for future research activities.

The final set of chapters addresses the use of predictions of future risk to develop and deliver mobile interventions. While the widespread adoption of smartphones has made it feasible to deploy mobile interventions on a large scale, many challenges remain in bringing about effective behavior change and an improvement in health outcomes. These challenges, along with a variety of solution approaches, are presented in Part IV, "Predictors to mHealth Interventions." A key challenge is to optimize interventions so that they are tailored to the needs and context of the participants, and optimize a cost or provide a benefit to the participants. One approach is to use reinforcement learning algorithms to optimize both the content of an intervention and the timing of its delivery. Another approach is to formulate intervention design as a control systems problem, in which a dynamical model is used to describe the evolution of a participant's state over time and the intervention takes the form of a feedback law which maintains the homeostasis of the closed loop system. In addition to these diverse methodological approaches, Part IV also provides examples of specific intervention designs for a gamut of behavioral health applications, including smoking cessation, increased physical activity, and chronic pain management.

Collectively, these four parts comprise a comprehensive and in-depth treatment of mobile health technologies, methodologies, and applications. We believe these chapters provide a useful characterization of the current state of mHealth research and practice. It is clear that we are at the cusp of a dramatic increase in the development and adoption of mHealth technologies. Substantial work remains to be done, however, in order to realize the potential of this new field and bring about meaningful improvements in health on a large scale. Achieving this goal will require a transdisciplinary approach and a strong partnership between experts in sensor Preface

design, mobile systems, machine learning, pattern mining, big data computing, health informatics, behavioral medicine, experiment design, clinical research, and health research. This collective effort will be a critical factor in achieving the broadly held societal goals of reducing healthcare costs and improving individual and population health outcomes.

Atlanta, GA, USA Ann Arbor, MI, USA Memphis, TN, USA James M. Rehg Susan A. Murphy Santosh Kumar

Acknowledgements

We want to express our thanks to all of the authors whose work is contained in this book. Their diligent efforts enabled the production of an integrated volume which covers the breadth of the mHealth field, and we are grateful for their flexibility and willingness to adapt their work to meet the needs of this collection.

The staff at Springer provided valuable support for the development, editing, publication, and marketing of this volume. We want to especially thank Melissa Fearon for her enthusiasm and all of her efforts to keep us on schedule.

The editors express their sincerest gratitude to Barbara Burch Kuhn, Director of Communications and Media at the MD2K Center of Excellence headquartered at the University of Memphis. She was an equal partner of the editors in the preparation of this book. She contributed tremendously to this effort via her coordination, communication, and organizational skills.

The editors also acknowledge support by the National Science Foundation under award numbers CNS-1212901, IIS-1231754, IIS-1029679, and IIS-1446409, by the National Institutes of Health under grants R01AA023187, R01CA190329, R01HL125440, R01MD010362, R01DA035502 (by NIDA) through funds provided by the trans-NIH OppNet initiative, P50DA039838, and U54EB020404 (by NIBIB) through funds provided by the trans-NIH Big Data-to-Knowledge (BD2K) initiative, and by the Intel Science and Technology Center in Pervasive Computing.

We wish to express our thanks to our colleagues, friends, and families, whose patience and encouragement sustained us through our efforts in producing this volume.

Contents

Part I mHealth Applications and Tools

Introduction to Part I: mHealth Applications and Tools Santosh Kumar, James M. Rehg, and Susan A. Murphy	3
StudentLife: Using Smartphones to Assess Mental Healthand Academic Performance of College StudentsRui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari,Stefanie Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T. Campbell	7
Circadian Computing: Sensing, Modeling, and Maintaining Biological Rhythms Saeed Abdullah, Elizabeth L. Murnane, Mark Matthews, and Tanzeem Choudhury	35
Design Lessons from a Micro-Randomized Pilot Study in Mobile Health Shawna N. Smith, Andy Jinseok Lee, Kelly Hall, Nicholas J. Seewald, Audrey Boruvka, Susan A. Murphy, and Predrag Klasnja	59
The Use of Asset-Based Community Development in a Research Project Aimed at Developing mHealth Technologies for Older Adults David H. Gustafson, Fiona McTavish, David H. Gustafson Jr., Scott Gatzke, Christa Glowacki, Brett Iverson, Pat Batemon, and Roberta A. Johnson	83
Designing Mobile Health Technologies for Self-Monitoring: The Bite Counter as a Case Study Eric R. Muth and Adam Hoover	101

mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor Data	121
Part II Sensors to mHealth Markers	
Introduction to Part II: Sensors to mHealth Markers Santosh Kumar, James M. Rehg, and Susan A. Murphy	147
Challenges and Opportunities in Automated Detection of Eating Activity	151
Edison Thomaz, Irfan A. Essa, and Gregory D. Abowd	
Detecting Eating and Smoking Behaviors Using Smartwatches Abhinav Parate and Deepak Ganesan	175
Wearable Motion Sensing Devices and Algorithms for Precise Healthcare Diagnostics and Guidance Yan Wang, Mahdi Ashktorab, Hua-I Chang, Xiaoxu Wu, Gregory Pottie, and William Kaiser	203
Paralinguistic Analysis of Children's Speech in Natural Environments Hrishikesh Rao, Mark A. Clements, Yin Li, Meghan R. Swanson, Joseph Piven, and Daniel S. Messinger	219
Pulmonary Monitoring Using Smartphones Eric C. Larson, Elliot Saba, Spencer Kaiser, Mayank Goel, and Shwetak N. Patel	239
Wearable Sensing of Left Ventricular Function Omer T. Inan	265
A New Direction for Biosensing: RF Sensors for Monitoring Cardio-Pulmonary Function Ju Gao, Siddharth Baskar, Diyan Teng, Mustafa al'Absi, Santosh Kumar and Emre Ertin	289
Wearable Optical Sensors Zachary S. Ballard and Aydogan Ozcan	313
Part III Markers to mHealth Predictors	
Introduction to Part III: Markers to mHealth Predictors James M. Rehg, Susan A. Murphy, and Santosh Kumar	345

Contents

Exploratory Visual Analytics of Mobile Health Data: Sensemaking Challenges and Opportunities	349
Peter J. Polack Jr., Moushumi Sharmin, Kaya de Barbaro, Minsuk Kahng, Shang-Tse Chen, and Duen Horng Chau	
Learning Continuous-Time Hidden Markov Models for Event Data Yu-Ying Liu, Alexander Moreno, Shuang Li, Fuxin Li, Le Song, and James M. Rehg	361
Time Series Feature Learning with Applications to Health Care Zhengping Che, Sanjay Purushotham, David Kale, Wenzhe Li, Mohammad Taha Bahadori, Robinder Khemani, and Yan Liu	389
From Markers to Interventions: The Case of Just-in-Time Stress Intervention Hillol Sarker, Karen Hovsepian, Soujanya Chatterjee, Inbal Nahum-Shani, Susan A. Murphy, Bonnie Spring, Emre Ertin, Mustafa al'Absi, Motohiro Nakajima, and Santosh Kumar	411
Part IV Predictors to mHealth Interventions	
Introduction to Part IV: Predictors to mHealth Interventions Susan A. Murphy, James M. Rehg, and Santosh Kumar	437
Modeling Opportunities in mHealth Cyber-Physical Systems Wendy Nilsen, Emre Ertin, Eric B. Hekler, Santosh Kumar, Insup Lee, Rahul Mangharam, Misha Pavel, James M. Rehg, William Riley, Daniel E. Rivera, and Donna Spruijt-Metz	443
Control Systems Engineering for Optimizing Behavioral mHealth	
Interventions	455
From Ads to Interventions: Contextual Bandits in Mobile Health Ambuj Tewari and Susan A. Murphy	495
Towards Health Recommendation Systems: An Approach for Providing Automated Personalized Health Feedback from Mobile Data Mashfiqui Rabbi, Min Hane Aung, and Tanzeem Choudhury	519

List of Figures

StudentLife: Using Smartphones to Assess Mental Health and Academic Performance of College Students

Fig. 1	Compliance and quality of StudentLife data collected across	
-	the term. (a) Automatic sensing data quality over the term.	
	(b) EMA data quality over the term	13
Fig. 2	StudentLife app, sensing and analytics system architecture	14
Fig. 3	MobileEMA: first the PAM popup fires followed by one of	
	the StudentLife EMAs—in this example the single item stress	
	EMA. (a) PAM EMA. (b) Stress EMA	16
Fig. 4	Statistics on class meeting times and sleep onset time (i.e.,	
	bedtime). (a) Meeting time for all classes over the term.	
	(b) Sleep onset time distribution for all students over the term	18
Fig. 5	Dartmouth term lifecycle: collective behavioral trends	
	for all students over the term. (a) EMA and sleep data.	
	(b) Automatic sensing data. (c) Location-based data	28

Circadian Computing: Sensing, Modeling, and Maintaining Biological Rhythms

Fig. 1	Sleep and the human circadian system	39
Fig. 2	Sample paper-based Social Rhythm Metric form that is used	
	to assess circadian disruptions in bipolar disorder	44
Fig. 3	Average sleep onset and duration across participants from	
	phone and journal data from Abdullah et al. [2]. Sleep	
	events coincide with phone non-usage, which can be used	
	to passively track circadian disruptions (e.g., social jet lag)	46

Fig. 4	Relative response time (RRT)—an indicator of alertness based on the Psychomotor Vigilance Test—of early chronotypes compared to late chronotypes across the day. <i>Blue and red</i> indicate higher RRT for early and late types, respectively. In the morning, early chronotypes display much higher alertness than late types, while the opposite is observed later in the day	47
Design 1	Lessons from a Micro-Randomized Pilot Study in Mobile Health	
Fig. 1	Screenshots of components of the HeartSteps app	64
Fig. 2	HeartSteps Study system design	70
-	ng Mobile Health Technologies for Self-Monitoring:	
Fig. 1	e Counter as a Case Study The commercially available Bite Counter, now marketed as	
1 lg. 1	the ELMM (eat less, move more) watch; see: http://www.	
	myelmm.com. (a) Bite Counter close-up. (b) Bite Counter in siteu .	103
Fig. 2	Wrist roll motion during the taking of a bite of food occurs	105
1 15. 2	regardless of the type of food or utensil	108
Fig. 3	 Kilocalories versus bites. Each data point is one meal. Each plot is all meals for one participant for 2 weeks. The data on the left show a 0.4 correlation for one participant and the data on the right show a 0.7 correlation for a second participant. (a) Example low correlation. (b) Example high correlation 	100
Fig. 4	Comparison of correlation of our measure with energy intake, versus correlations of physical activity monitor measures with energy expenditure. (a) Distribution of correlations of bites with calories. (b) Distribution of correlations of steps with energy expenditure	110
Fig. 5	Human calorie estimation error (HCE error) with and without caloric information (CI) present versus bite count based	110
	calorie estimation error (BCE error) for the same groups	111
Fig. 6	The design progression of the Bite Counter. (a) Version 1 (2007). Tethered sensor. (b) Version 2 (2008). Wireless sensor. (c) Version 3 (2010). Self-contained unit, custom case. (d) Version 4 (2011). Manufactured unit. (e) Version 5 (2015), 2nd generation manufacturing	113

mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor Data

Fig. 1	mDebugger framework—a data diagnostic approach for	
	identifying and quantifying major sources of data loss (and	
	computing data yield) when data are being collected using	
	wireless wearable physiological sensors and a smartphone in	
	the user's natural environment	124

Fig. 2	Pattern of active data capture using wearable wireless physiological sensors over 1 week in the natural environment. The <i>x</i> -axis shows the time of day, and the <i>y</i> -axis shows each of the 7 days. Each <i>blue horizontal bar</i> indicates the start and	
	end of a sensor on-body episode	126
Fig. 3	$b_{i}.t_{start}$ and $b_{i}.t_{end}$ are the start-time and end-time of sensor	
	on-body segment b_i respectively. Active period is computed	
	by combining consecutive sensor on-body segments based on	
	the users' sleep or resting time, λ	126
Fig. 4	Top left (a) quadrant shows a standard ECG cycle. Top right	
	(b) quadrant shows typical acceptable and unacceptable ECG	
	data collected in the field. Similarly, <i>bottom left</i> (c) quadrant	
	shows typical respiration pattern under rest condition and	
	<i>bottom right</i> (d) quadrant shows acceptable and unacceptable	100
D : 7	respiration signal captured in the field	128
Fig. 5	Users could visualize their real-time physiological data on the	
	phone screen. This helped users ensure that the attachment of	101
	the sensors was correct	131
Fig. 6	An example of mDebbuger process to assess and diagnose	
	mobile sensor data. The <i>first two rows</i> show raw ECG and	
	respiration (RIP) signal respectively. Several segments of	
	the raw signals show an irregular heart beat or respiration	
	cycle. Our algorithms automatically identify acceptable ECG	
	and acceptable RIP data. For example, [b,d], [f,g], [i,k] are	
	acceptable ECG segments and [a,c], [e,h], [j,l] are acceptable	
	respiration segments. By fusing acceptable segments from	
	both ECG and RIP data, sensor on-body segments are	
	constructed. For example, [b,d] and [a,c] segments are used	
	to construct [a,d] on-body segments. Active periods are calculated by merging sensor on-body periods close enough	
	to each other during waking hours. For example, sensor on-body segments [a,d] and [e,h] constitute active period	
	segment [a,h]	133
Fig. 7	AutoSense chestband and inertial wristband sensors used in	155
11g. /	user studies. Wrist sensors were used only in Study 2 (with	
	newly abstinent smokers)	134
	newly adstitient shlokels)	134
Challen	ges and Opportunities in Automated Detection of Eating Activity	
Fig. 1	An application on a standard mobile phone passively captured	
8	first-person point-of-view images (FPPOV)	154
Fig. 2	The image grid interface was designed to help Amazon's	
0	Mechanical Turk workers browse a large number of photos	
	more efficiently. Hovering the cursor over an images	
	expanded it such that it can be examined in more detail, as	
	shown in the <i>middle</i> of the <i>first row</i>	155

Fig. 3	Confusion Matrix for the 19 classes of the dataset with columns as the predicted labels and rows as the actual labels	158
Fig. 4	The audio processing pipeline consists of audio framing, audio feature extraction, frame clustering, frame clustering,	
	and classification	160
Fig. 5	Audio was captured by a smartphone attached to the wrist	161
Fig. 6	running an off-the-shelf audio recording mobile application The data processing pipeline of the eating moment detection system. In the approach, food intake gestures are firstly identified from sensor data, and eating moments are	161
Fig. 7	subsequently estimated by clustering intake gestures over time The accelerometer data (<i>x</i> -axis) of three participants as they ate a serving of lasagna depicts personal variation in eating styles and makes intra-class diversity evident. The <i>red dots</i>	
	are intake gesture markers	169
Detecti	ng Eating and Smoking Behaviors Using Smartwatches	
Fig. 1	Gesture-driven activity recognition pipeline	178
Fig. 2	Figure showing the frame of reference and the axis orientations used in Android-wear OS based smartwatches. The x and y axis of the frame of reference are along the face of the watch and are mutually perpendicular to each other. The z axis points towards the outside of the face of the watch.	
	The coordinates behind the screen have negative <i>z</i> values	181
Fig. 3	Sensor signals observed for smoking a cigarette puff hand gesture. The value triplets $\langle a_x, a_y, a_z \rangle$, $\langle g_x, g_y, g_z \rangle$ and $\langle c_x, c_y, c_z \rangle$ present the signals of accelerometer, gyroscope and compass respectively. The <i>first gray shaded area</i> marks the interval when the hand holding the cigarette is moving towards the mouth. The <i>second gray shaded area</i> marks the interval when the hand falls back to a resting position. The period in between the two areas is when a person is taking a	181
Fig. 4	puff without moving the hands A person performing the smoking gesture starts from "a rest position" in which the arm is relaxed, then move their arm towards the mouth, and move their arm back to a possibly different rest position in the end. Thus, hand to mouth gestures tend to lie between these resting positions. (a) The segment between the resting positions can be identified from the time-series of wrist-coordinates by tracking the periods of large arm movements. (b) The period of large arm movements can also be obtained by using two moving averages of the gyroscope magnitude computed over windows of sizes 0.8 s	183
	and 8 s respectively	184

Fig. 5	The search space for segments is reduced by limiting the size of the segment and the points where these segments can begin	186
Fig. 6	Motion segments generated using the SWAB algorithm [8] over <i>x</i> -axis acceleration observed for a smoking gesture. A	100
	gesture segment is composed of two or more consecutive	107
E: 7	motions segments	187
Fig. 7	Left to right HMM models are a popular choice for gesture	
	recognition due to the temporal ordering of sub-gestures	
	observed in a hand gesture. a_{ij} gives the probability of state	
	transition from s_i to s_j . (a) Left-right model. (b) Left-right	102
D ' 0	banded model	193
Fig. 8	BiteCounter [6] observes a sequential pattern of	
	threshold-crossing events in the roll-velocity of a wrist to	
	detect a food-intake gesture. The thresholds $t_1, t_2, \delta_1, \delta_2$ are	
	learnt empirically	193
Fig. 9	In a typical session of gesture-driven activity like smoking,	
	the characteristic gestures (e.g. taking a cigarette puff) form	
	a temporal cluster i.e. the gestures are repeated at least a	
	few times, and are found relatively close to each other in	
	time. From the time-series of recognized gestures, we can	
	extract these temporal clusters to identify an activity session.	
	Any isolated recognized gesture that is not a member of any	
	cluster can be discarded as a false positive	195
Fig. 1	0 Most human activities exhibit temporal consistency i.e.	
	a person currently performing a certain activity is likely	
	to continue with the same activity in the near future. In	
	a gesture-driven activity, this means that the consecutive	
	segments in a sequence are more likely to have the same	
	rather than different activity labels while the gesture labels	
	may change. Conditional Random Fields (CRF) is a model	
	that takes into account this temporal consistency and outputs	
	smooth and consistent activity labels based on the input	
	sequence of gesture labels	197
Fig. 1		
0	models. ST and ET are the start and the end dummy states	
	respectively. (a) Left-right banded models for gestures G_1 to	
	G_k . (b) General non-gesture model	198
Fig. 1	-	199
-8. 1	0 · · · · · · · · · · · · · · · · · · ·	

Wearable Motion Sensing Devices and Algorithms for Precise Healthcare Diagnostics and Guidance

Fig. 1 Typical MEMS architecture diagram showing (a) single axis accelerometer sensitive to acceleration in the direction of the indicated *arrows* and (b) single axis gyroscope sensitive to the rate of rotation for a rotation vector perpendicular to the page ... 206

Fig. 2	(a) Subject standing in front of the Kinect sensor with inertial sensors placed on the wrist. (b) Virtual reconstruction of the	
	subject by the Kinect sensor. Data from both the Kinect and	
	inertial sensors are fused to achieve opportunistic calibration	
	of sensor placement errors	207
Fig. 3	Inertial sensor system within a sealed enclosure	209
Fig. 4	Plot showing: (a) captured accelerometer data, (b) the double	
e	integrated result including drift, (c) estimated linear drift, and	
	(d) double integrated result after ZUPT is used to remove drift	212
Fig. 5	Sensor based reconstruction of foot trajectory during stair	
-	ascent, stair descent, and level walking	212
Fig. 6	Components of the SIRRACT sensor kit supplied to subjects	
e	is shown. At <i>lower left</i> is the system smartphone. At upper	
	center is the ankle worn Velcro attachment for the sensor. The	
	wireless charging unit with a recess accepting the sensor is at	
	lower center. The motion sensor system is shown at <i>lower right</i>	214
Daualina	nistia Analysia of Children's Susaah in Natural Fusing unanta	
-	uistic Analysis of Children's Speech in Natural Environments	
Fig. 1	Stages of the dyadic interaction between child and examiner	221
E a	in the MMDB	221
Fig. 2	MMDB session annotations in ELAN	222
Fig. 3	LENA audio recording device used for infant vocal	224
F ' 4	development analysis	224
Fig. 4	Waveform of laughter sample from the MAHNOB [19]	226
Ein 5	database along with the spectrogram displayed below it	226
Fig. 5	Waveform of speech sample from the MAHNOB database	226
	[19] along with the spectrogram displayed below it	226
Fig. 6	Features selected for the three classification tasks viz. speech	
	vs. laughter, fussing/crying vs. laughter, and non-laughter vs.	220
D : 7	laughter	228
Fig. 7	Structure of a restricted Boltzmann machine (RBM) with	
- . 0	connections between visible layer, V , and hidden layer, H	232
Fig. 8	Working of the contrastive divergence (CD) algorithm	
-	between the hidden and visible units in an RBM	233
Fig. 9	Architecture of the system employed for multi-modal laughter	
	detection using combination of filter and wrapper-based	
	feature selection schemes	234
Fig. 10	Architecture of the system employed for multi-modal laughter	_
	detection using RBMs	235
Pulmona	ary Monitoring Using Smartphones	

Fig. 1	Example text messages from Yun et al. (Top: query-based	
	message, Center: knowledge-based question, Bottom:	
	response to knowledge-based question) [76]	246

Screen shots from the Asthma Mobile Health study being	
conducted by Chan et al. at Mount Sinai [8]. (Left: a	
dashboard highlighting GINA evaluation results, Right: a	
general dashboard indicating how the user has performed	
today)	247
A spectrogram of ambient noises from a lapel microphone.	
The cough sound has distinct spectral characteristics from the	
surrounding noises [34]	251
Example flow/volume curves showing typical behavior of	
normal, obstructive, and restrictive subjects [33]	255
Left; The vortex whistle directs incoming air flow into	
vortex within a resonating chamber, creating a frequency	
proportional to the amount of incoming flow. Center; Sato's	
[21] design has many parameters that alter the performance	
of the whistle. <i>Right</i> ; DigiDoc Technologies whistle	258
	 conducted by Chan et al. at Mount Sinai [8]. (<i>Left</i>: a dashboard highlighting GINA evaluation results, <i>Right</i>: a general dashboard indicating how the user has performed today) A spectrogram of ambient noises from a lapel microphone. The cough sound has distinct spectral characteristics from the surrounding noises [34] Example flow/volume curves showing typical behavior of normal, obstructive, and restrictive subjects [33] <i>Left</i>; The vortex whistle directs incoming air flow into vortex within a resonating chamber, creating a frequency proportional to the amount of incoming flow. <i>Center</i>; Sato's [21] design has many parameters that alter the performance

Wearable Sensing of Left Ventricular Function

Fig. 1	From [11]. Diagram illustrating the relative timing of the ballistocardiogram, phonocardiogram, and impedance cardiogram signals with respect to other more well-known cardiac signals. The pre-ejection period is the isovolumetric contraction time of the heart, or the delay from the start of ventricular depolarization to the outflow of blood from the ventricles. Stroke volume can be seen in the left ventricular volume curve as the minimum volume subtracted from the	
	maximum volume value	268
Fig. 2	Illustration of the heart in the four phases of the cardiac	
	cycle. The four chambers of the heart are shown-the left	
	and right atria (LA and RA) and ventricles (LV and RV)-in	
	addition to the two arteries allowing blood to flow out from	
	the ventricles-the pulmonary artery and the aorta. The	
	valves separating the atria and ventricles (mitral and tricuspid	
	valves on the left and right side, respectively) as well as the	
	valves separating the ventricles and main arteries (aortic	
	and pulmonary valves for the left and right, respectively)	
	are also shown. The top two phases (1 and 2) correspond	
	to diastole, and include isovolumetric relaxation (where all	
	valves are closed, and the ventricular pressures are decreasing	
	as indicated) and diastolic filling; the bottom two (3 and 4)	
	correspond to systole, and include the pre-ejection period	
	(where all valves are closed, but the ventricular pressures are	
	increasing as indicated) and systolic ejection. Blood only	
	flows in and out of the heart during phases 2 and 4	270

Fig. 3	Sensor type and typical placement options for wearable left	
	ventricular function sensing. The typical labeling conventions	
	for the inertial measurements (i.e., ballistocardiogram and	
	seismocardiogram signals) is shown in the upper left	273
Fig. 4	Adapted from [28]. Diagram of the impedance cardiogram	
	(ICG) signal's characteristic points shown below an	
	electrocardiogram (ECG) waveform. The B-point	
	corresponds to the opening of the aortic valve, and thus the	
	interval from the ECG Q-point to the ICG B-point is the	
	pre-ejection period (PEP). The X-point of ICG corresponds	
	to the closure of the aortic valve, and thus the left ventricular	
	ejection time (LVET) is measured from the B- to the X-point	
	of the ICG. The calculation of SV from the ICG waveform	
	is typically performed using these timing intervals together	
	with the maximum derivative of the impedance, and thus the	
	maximum value of the ICG waveform (dZ/dt_{max})	274
Fig. 5	From [49]. Simultaneously acquired Lead II	271
1 15. 5	electrocardiogram (ECG); three-axis seismocardiogram	
	(SCG) with <i>z</i> indicating the dorso-ventral axis, <i>x</i> indicating	
	the right-to-left lateral axis, and y indicating the head-to-foot	
	axis; weighing scale based head-to-foot ballistocardiogram	
	(BCG); impedance cardiogram (ICG); and arterial blood	
	pressure (ABP) measured at the finger, signals from one	
	subject, illustrating the relative timing and amplitude features	276
	of the signals	276
Fig. 6	From [59]. Pulse transit time (PTT) provides a basis for	
	ubiquitous blood pressure (BP) monitoring. (a) PTT is the	
	time delay for the arterial pressure wave to travel between two	
	arterial sites and can be estimated simply from the relative	
	timing between proximal and distal arterial waveforms. (b)	
	PTT is often inversely related to BP	278
Fig. 7	After [53]. (a) Ballistocardiogram (BCG) heartbeat signatures	
	from six different healthy subjects (all shown on the same	
	time and amplitude scales). The inter-subject variability in	
	BCG features is high. (b) BCG heartbeat signatures from the	
	same subject taken on 50 different recording dates and times	
	over the period of 2 weeks. The intra-subject variability in the	
	key BCG features is minimal	281
A NT T	D'an d'an fan D'anna'n a DE Ganana fan Man'da '	
	Direction for Biosensing: RF Sensors for Monitoring	
	Pulmonary Function	202
Fig. 1	System model for UWB radar sensor	293

1 15. 1	System model for e w B fudur sensor	2/5
Fig. 2	Cryosection of a human thorax from visible human project	294
Fig. 3	EasySense system. (a) EasySense system architecture, (b)	
	EasySense measurement setup	295

Fig. 4	Experimental setup with the heart phantom. (a) Heart	
	phantom, (b) Heart phantom with EasySense	297
Fig. 5	Heart rate tracking with simple FFT algorithm. (a) 30 bpm	
	EasySense heart rate estimate, (b) 60 bpm EasySense heart	
	rate estimate, (c) 90 bpm EasySense heart rate estimate	297
Fig. 6	Measurements with the heart phantom in time and frequency	
	domain. (a) 30 bpm EasySense measurement CH1, (b)	
	30 bpm EasySense measurement CH2, (c) 30 bpm EasySense	
	measurement CH3, (d) 30 bpm EasySense measurement CH4,	
	(e) 30 bpm EasySense FFT CH1, (f) 30 bpm EasySense FFT	
	CH2, (g) 30 bpm EasySense FFT CH3, (h) 30 bpm EasySense	
	FFT CH4, (i) 60 bpm EasySense measurement CH1, (j)	
	60 bpm EasySense measurement CH2, (k) 60 bpm EasySense	
	measurement CH3, (I) 60 bpm EasySense measurement CH4,	
	(m) 60 bpm EasySense FFT CH1, (n) 60 bpm EasySense FFT	
	CH2, (o) 60 bpm EasySense FFT CH3, (p) 60 bpm EasySense	
	FFT CH4, (q) 90 bpm EasySense measurement CH1, (r)	
	90 bpm EasySense measurement CH2, (s) 90 bpm EasySense	
	measurement CH3, (t) 90 bpm EasySense measurement CH4,	
	(u) 90 bpm EasySense FFT CH1, (v) 90 bpm EasySense	
	FFT CH2, (w) 90 bpm EasySense FFT CH3, (x) 90 bpm	
	EasySense FFT CH4	298
Fig. 7	GLRT statistics of the subspace detector provides localization	
-	of heart-beats	300
Fig. 8	Assessing R-peak location accuracy of EasySense using	
	ECG as the standard measure. (a) ECG measurement v.s.	
	EasySense GLRT statistics, (b) Comparison of RR intervals	
	extracted from ECG and EasySense measurements	301
Fig. 9	HRV energy spectrum computed using the Welch's	
	periodogram	303
Fig. 10	Respiration rate comparison between AutoSense and	
	EasySense. (a) AutoSense respiration rate v.s. EasySense	
	respiration rate (window of 30 s, step 5 s), (b) Bland-Altman	
	agreement plot	304
Fig. 11	Respiratory effort recovery result. (a) AutoSense respiratory	
	effort v.s. EasySense recovered respiratory effort. (b)	
	AutoSense respiratory effort with EasySense measurement	
	(background)	304
Fig. 12	Antenna placement	306
Fig. 13	UWB pulse in passband and baseband	307
Fig. 14	Estimated MI value on the same subject from three different	
-	measurements collected sequentially	309
Fig. 15	EasySense FFT (top) v.s. ECG FFT (bottom)	309
Fig. 16	Original heart motion image v.s. MI guided heart motion	
	image	310

Wearable Optical Sensors

Fig. 1	(a) All optical respiratory monitoring harness for use during MRI with both abdominal (<i>white band, lower middle</i>) and	
	thoracic (<i>black band</i> , <i>upper right</i>) sensing textiles, (b)	
	example of textile-integrated macro-bending fiber sensor	
	for abdominal respiratory monitoring, (c) FBG sensor	
	for thoracic respiratory monitoring, and (d) embedded	
	Optical Time Domain Reflectometry (OTDR) sensor made	
	from 500 μ m core PMMA step-index POF for abdominal	201
	respiratory monitoring [38, 39, 48]	321
Fig. 2	Detection of multiple heavy metal ions via fluorescent	
	attoreactor matts. (a) Response of cross-reactive attoreactor	
	matts over four emission channels; (b) Linear Discriminant	
	Analysis (LDA) classifying heavy metal ions; (c) attoreactor	
	mask fabricated onto a glove via shadow mask deposition;	
	(d) fluorescence of attoreactor matt under 365 nm; (e) Partial	
	immersion into 20 μ m Co ²⁺ ion solution and (f) the resulting	
	fluorescent attenuation with 365 nm excitation [70]	326
Fig. 3	(a) An all-organic pulse oximeter prototype. (b) Example of	
	fully integrated future all-organic pulse oximeter made for	
	disposable, one-time-use [30]	328
Fig. 4	Tzoa enviro-tracker and mobile app for air-quality mapping.	
	Image credit: Clad Wearables LLC [112]	331
Fig. 5	(a) Google Glass based chlorophyll measurement;	
	(b) custom-designed leaf holder and illumination unit;	
	(c) Google Glass based RDT reader; (d) image capture of the	
	test strip and the QR code as well as the associated processing	
	flow [71, 118]	332
	ng Continuous-Time Hidden Markov Models for Event Data	
Fig. 1	The DT-HMM and the CT-HMM. In the DT-HMM, the	
	observations O_t and state transitions S_t occur at fixed time	
	intervals Δ_t , and the states S_t are the only source of latent	
	information. In the CT-HMM, the observations O_t arrive at	
	irregular time intervals, and there are two sources of latent	
	information: the states S_t and the transition times (t'_1, t'_2, \ldots)	
	between the states	363
Fig. 2	Illustration of the decomposition of the expectation	
	calculations (Eq. 13) according to their inner-outer structure,	
	where k and l represent the two possible end-states at	
	successive observation times (t_1, t_2) , and i, j denotes a state	
	transition from <i>i</i> to <i>j</i> within the time interval. $p_{kl O}$ represents	
	$p(s(t_v) = k; s(t_{v+1}) = l O, T, \hat{Q}_0)$ and $n_{ij} k, l$ denotes	
	$E[n_{ij} s(t_v) = k, s(t_{v+1}) = l, \hat{Q}_0] \text{ in Eq. (13)}$	369
	$L_{[ij]}(v_{ij}) = \kappa, s(v_{ij+1}) = i, g_{0}$ in Eq. (13)	509

Fig. 3	Illustration of the computation of the posterior state probabilities $p(s(t_v) = k, s(t_{v+1}) = l O, T, \hat{Q}_0)$. An equivalent time-inhomogeneous HMM is formed where the state transition probability matrix varies over time (denoted as	
	$P^{v}(\tau_{v})$ here). α and β are the forward and backward variables	200
Fig. 4	used in the forward-backward algorithm [26] Visualization of disease progression from two datasets: (a) Nodes represent states of glaucoma, with the node color encoding the average sojourn time (<i>red</i> to green: 0–5 years and above). The <i>blue</i> links between nodes indicate the most probable (i.e. strongest) transitions between adjacent states, selected from among the three allowed transitions (i.e., down, to the right, and diagonally). The line width and the node size reflect the expected count of patients passing through a transition or state. (b) The representation for AD is similar to (a) with the strongest transition from each state being coded	369
	(a) with the strongest transition from each state being coded as follows: $A\beta$ direction (<i>blue</i>), hippo (<i>green</i>), cog (<i>red</i>), $A\beta$ +hippo (<i>cyan</i>), $A\beta$ +cog (<i>magenta</i>), hippo+cog (<i>yellow</i>), $A\beta$ +hippo+ cog(<i>black</i>). The node color represents the average sojourn time (<i>red</i> to <i>green</i> : 0–3 years and above). http://www. cbs.gatech.edu/CT-HMM	381
Fig. 5	Time comparison for the average time per iteration between <i>soft Expm</i> , <i>soft Eigen</i> and <i>hard Unif</i> for both experiments. <i>Soft Eigen</i> is the fastest method, over an order of magnitude faster than <i>soft Expm</i> in both cases. Thus, it should be used unless the eigendecomposition fails, in which case there is a tradeoff between <i>soft Expm</i> for accuracy and <i>hard Unif</i> for	383
	speed	383
	eries Feature Learning with Applications to Health Care	
Fig. 1	A miniature illustration of the deep network with the	202
Eia 2	regularization on categorical structure	393 396
Fig. 2 Fig. 3	How adding various units changes the weights <i>W</i> Weight distributions for three layers of a neural network after pretraining	390 398
Fig. 4	Weight distributions for three layers of a neural network after finetuning	398
Fig. 5	Training pipeline for mimic method	399
Fig. 6	Similarity matrix examples of different priors for the ICU (a – c) and Physionet (d) data sets. <i>x</i> -axis and <i>y</i> -axis refer to the tasks. Colors represent the similarity values, <i>black</i> : 0; <i>white</i> : 1	402
Fig. 7	Physionet classification performance	402

	٠	٠
XXX	1	1
	-	•

Fig. 8	Training time for different neural networks for	
	full/incremental training strategies	404

From Markers to Interventions: The Case of Just-in-Time Stress Intervention

Fig. 1	Three stages of sensor-triggered intervention delivery process.	
	First, sense using wearable sensor suite AutoSense [11]	
	and a smart phone. Second, develop a computational model	
	to analyze physiological data acquired from the first stage	
	and assess stress [19]. Third, obtain stress time series,	
	identify stress episodes, and act via triggering intervention at	
	appropriate moments. This third stage is the main topic of	
	this chapter	414
Fig. 2	Overview of the approach. First, we infer stress from ECG	
	and respiration data, and confounder physical activity	
	from accelerometer. Second, we remove physical activity	
	confounded stress assessments. Third, we develop our stress	
	episode identification model on lab study and apply the model	
	on smoking cessation field study. Finally, we discover stress	
	patterns from the smoking cessation field study	416
Fig. 3	Classification performances for different smoothing window	
	length applied on stress likelihood time series in the lab study.	
	We get the best performance with a kappa of 0.817 for a	
	window length of 3 min	420
Fig. 4	A conceptual stress likelihood time series. We observe an	
	increasing trend from 'a' to 'b' and a decreasing trend from	
	'b' to 'c'. An episode contains an increasing trend and	
	immediately followed by a decreasing trend, marked as from	
	'a' to 'c'. For intervention (at 'c') we compute the stress	
	density from 'a' to 'c' and if stress density is above a specific	
	cutoff we mark the episode as <i>stressed</i>	421
Fig. 5	Stress density of each session in the lab study. Discarding	
	episodes with stress density between two thresholds (0.29	
	and 0.44) ensures both precision and recall of stressed and	
	not-stressed class above 95% with episodes discarded due to	
	being <i>unsure</i> is minimum	424
Fig. 6	F1 score between self-report and sensor assessment range	
	from 0.36 to 1.00 with median 0.65	426
Fig. 7	Time series of stress likelihood of one participant on pre-quit	
-	day	428
Fig. 8	State transition probabilities between different stress episode	
	types, stressed (yes), unsure, not-stressed (no), and unknown	429

Control Systems Engineering for Optimizing Behavioral mHealth Interventions

Fig. 1	Receding horizon representation that is the basis for Model Predictive Control (MPC). A set of future dosages is computed but only the first one is implemented, prior to re-calculating the optimization problem with fresh	
Fig. 2	measurements	458
Fig. 3	K_f)) applied within Hybrid MPC Primary variables associated with naltrexone intervention of fibromyalgia as shown for a representative participant from the pilot study. When LDN is introduced, a significant decrease in FM symptoms and substantial increase in sleep quality over time can be observed. This effect is not observed with placebo	460 462
Fig. 4	Estimated model output (<i>darker line</i>) vs. actual (FM sym; <i>lighter line</i>) using the ARX [2 2 1] structure for a participant from the pilot study. Model 1 uses drug, Model 2 uses drug and placebo, and Model 5 uses drug, placebo, anxiety, mood and stress as inputs. The value in parenthesis describes the percent variance accounted by each model. (a) Model 1	
Fig. 5	(46.57%). (b) Model 2 (59.26%). (c) Model 5 (73.99%) Closed-loop responses of MPC for an unmeasured stochastic anxiety disturbance. Controller tuning corresponds to $f_a = 1$ (<i>dashed</i>) and $f_a = 0.1$ (<i>solid</i>). The fixed dosage case is set at 1.92 mg (<i>dash-dotted</i>). (a) FM response and drug strength. (b) Cumulative sum of drug strength	463 466
Fig. 6	Block diagram depicting the architecture for a smoking cessation intervention using HMPC. Cigarettes per day (<i>CPD</i>) and craving are to be kept at reference setpoints, in spite of the disturbance introduced by quitting. Dosages of counseling (u_c) , buproprion (u_b) , and lozenges (u_l) are adjusted over time for this purpose	467
Fig. 7	Block diagram depicting smoking behavior change during a cessation attempt as a self-regulatory process	469
Fig. 8	Response of <i>CPD</i> and <i>Craving</i> to initiation of a quit attempt by the hypothetical simulated intervention participant in the absence of treatment	471
Fig. 9	Unit step responses of <i>CPD</i> and <i>Craving</i> to treatment dosages on day 0. The u_c (counseling) response is <i>dashed</i> , u_b (buproprion) is <i>dash-dot</i> , and u_l (lozenges) is <i>dotted</i>	
	$(-r_{\rm F})$ - $r_{\rm F}$ - r	

Fig. 10	Case 1: Nominal Performance. Predicted <i>CPD</i> and <i>Craving</i> responses in the intervention-free (<i>dashed line</i>) and adaptive intervention (<i>solid line</i>) scenarios for $Q_{cpd} = 10$ and $Q_{crav} = 1$. Treatment dosages are depicted in the lower three	
	plots	474
Fig. 11	Case 2: Nominal performance with dosage tuning. Predicted	
	CPD and Craving responses in the intervention-free (dashed	
	line) and adaptive intervention (solid line) scenarios for	
	$Q_{cpd} = Q_{crav} = 10$ and $Q_{U_T} = 1$	476
Fig. 12	Fluid analogy for a simplified version of the SCT model.	
	Inputs are represented as inflows and outputs as inventory levels	479
Fig. 13	Conceptual diagram for the proposed open-loop/closed-loop	
	intervention based on the simplified SCT model. Input/output	
	profiles consider symbols ξ_i/η_i for modeling and simulation,	
	and u_i/y_i for experimental formulation	482
Fig. 14	Input/output data for the informative experiment	485
Fig. 15	Simulation results for the HMPC based adaptive intervention	
	for a participant with low physical activity	489
T 1	- H 141. D	
	s Health Recommendation Systems: An Approach for ng Automated Personalized Health Feedback from Mobile Data	
Fig. 1	Visualization of a user's movements over a week. (a)	
11g. 1	Heatmap showing the locations where the user is stationary	
	everyday. (b) Location traces of frequent walks for the user.	
	(c) Location traces of frequent walks for another user	521
Fig. 2	Three separate dietary behaviors. (a) Pizza eating behavior	521
1 1g. 2	for a user. (b) Banana eating behavior for the same user. $(c-e)$	
	SMS communication pattern for 3 users. White nodes denote	
	the users and the black nodes denote the SMS receivers. The	
	edge weights represents the percentages of the user's total	
	SMSs directed to a receiver	521
Fig. 3	(a) Operations of a canonical reinforcement learning agent.	521
1 15. 5	(b) Operations of MyBehavior using a MAB	525
Fig. 4	(a) Two paths assigned to the same cluster by the Fréchet	525
115. 1	distance clustering; (b) Two paths not assigned to the same	
	cluster by the Fréchet distance clustering. (c) A real-world	
	walking cluster constructed by Fréchet distance clustering	527
Fig. 5	MyBehavior app screenshots. (a) A set of activity suggestions	521
1 15. 5	for a user. (b) A set of suggestions at a different time for the	
	same user. (c) A set of activity suggestions for a different user	530
Fig. 6	Keeping human in the loop. (a) Dismissing a suggestion	550
1 15. 0	by removal. (b) Moving a suggestion above. (c) Moving a	
	suggestions below	531
		551

Fig. 7 Three separate dietary behaviors. (a) Pizza eating behavior for a user. (b) Banana eating behavior for the same user. (c)
Bagel eating behavior for the another user. (d) Food suggestions ... 534

List of Tables

StudentLife: Using Smartphones to Assess Mental Health and Academic Performance of College Students

Table 1	Mental well-being and personality surveys	11
Table 2	PHQ-9 depression scale interpretation and pre-post class	
	outcomes	19
Table 3	Statistics of mental well-being surveys	20
Table 4	Correlations between automatic sensor data and PHQ-9	
	depression scale	21
Table 5	Correlations between automatic sensor data and flourishing scale.	22
Table 6	Correlations between automatic sensor data and perceived stress scale (PSS)	22
Table 7	Correlations between EMA data and mental well-being	
	outcomes	23
Table 8	Correlations between automatic sensor data and loneliness scale	23
Table 9	Lasso selected GPA predictors and weights	27
Circadian	Computing: Sensing, Modeling, and Maintaining	
Biological	Rhythms	
Table 1	Methods for assessing circadian rhythms and disruptions	41
Design Le	ssons from a Micro-Randomized Pilot Study in Mobile Health	
Table 1	Descriptive statistics for HeartSteps participants ($N = 44$)	65
	Mobile Health Technologies for Self-Monitoring: Counter as a Case Study	

Table 1	Error ranges of clinical tools for measuring energy intake of	
	free-living people (meta-studies)	105
Table 2	Error in kilocalorie estimation using various tools over	
	various intake periods	106

mDebugge Mobile Se	er: Assessing and Diagnosing the Fidelity and Yield of nsor Data	
Table 1	Mobile sensor data yield and data loss statistics computed from both field studies using the mHealth Debugger proposed in Fig. 1	136
	proposed in Fig. 1	150
Challenge	s and Opportunities in Automated Detection of Eating Activity	
Table 1	The distribution of the 19 different classes in the dataset	157
Table 2	Person-dependent, tenfold cross-validation results for each	
	classified we evaluated	162
Table 3	To evaluate the system, we conducted laboratory and	
T-1.1. 4	in-the-wild studies that resulted in three datasets	165
Table 4	This table is showing the average duration of each activity in the laboratory user study across all participants (dominant	
	wrist-mounted sensing)	166
Table 5	Confusion matrix showing the percentage of actual vs.	100
	predicted activities by the Random Forest model	167
	Eating and Smoking Behaviors Using Smartwatches	1 = 0
Table 1	State of the art approaches in gesture spotting	179
Table 2	Feature signals computed from the accelerometer signals (a_1, a_2, a_3)	181
Table 3	$\langle a_x, a_y, a_z \rangle$ The set of features proposed in the literature for gesture	101
Tuble 5	classification using inertial sensors	191
	-	
	Motion Sensing Devices and Algorithms for Precise	
	e Diagnostics and Guidance	
Table 1	Location categories narrow the possible set of activities	210
Table 2	used the classification algorithm Algorithm estimated arm length and deviation from the	210
	Kinect sensor for subjects S1 through S6	211
Table 3	List of metrics reported by the SIRRACT clinical trial	214
Paralingui	istic Analysis of Children's Speech in Natural Environments	
Table 1	Classification criteria using crying in the Strange Situation	
	Procedure for the three different attachment categories as	
T-1-1-2	described by Waters, 1978	223
Table 2	Risk factor of ASD for the subjects in the IBIS study at 9 and 15 months of age	223
Table 3	Labels used for the segments using the annotation tool	223
10010 5	developed at Georgia Institute of Technology	
	for the IBIS dataset	224

Table 4	Number of training and testing examples of MMDB,	
	Strange Situation, and IBIS datasets for speech, laughter,	
	and fussing/crying along with the mean and standard	
	deviation of duration of the samples	225
Table 5	Statistical measures evaluated for syllable-level intensity	
	features	227
Table 6	Spectral and prosodic acoustic features extracted using	
14010 0	openSMILE	227
Table 7	Statistical measures evaluated for openSMILE features	
Table 8	Accuracy and recall of ten-fold cross-validation with	220
	training on MMDB corpus using the top 50 syllable-level	
	features using a cost-sensitive linear kernel SVM classifier	229
Table 9	Accuracy and recall of ten-fold cross-validation with	229
Table 9	training on MMDB corpus using the top 100 baseline and	
	• • • •	
	syllable-level features using a cost-sensitive linear kernel	220
TT 1 1 10	SVM classifier	229
Table 10	Accuracy and recall of training on MMDB corpus and	
	testing on IBIS corpus using the top 100 baseline and	
	syllable-level features using a cost-sensitive linear kernel	220
	SVM classifier	229
Table 11	Accuracy and recall of training on MMDB corpus and	
	testing on Strange Situation corpus using the top 100	
	baseline and syllable-level features using a cost-sensitive	
	linear kernel SVM classifier	229
Table 12	Acoustic and visual features selected using feature selection	
	based on combination of filter and wrapper-based methods	
	using the MMDB dataset	234
Table 13	Accuracy and Recall of the ten-fold cross validation results	
	using SVM for the audio, video, and audio-video modalities	236
Table 14	Accuracy and recall of the ten-fold cross validation results	
	using RBMs and SVM classifier for the audio, video, and	
	audio-video modalities	236
D 1		
	y Monitoring Using Smartphones	
Table 1	Summary of methods for monitoring pulmonary ailments	2.42
	via mobile phones	242
Wearable	Sensing of Left Ventricular Function	
Table 1	Table of acronyms/symbols used in the text and their	
	associated definitions	267
A NG P	institut for Disconsing DE Constant for Maritania	
	irection for Biosensing: RF Sensors for Monitoring	
	ulmonary Function	
Table 1	HRV energy in different frequency bands for EasySense	202
	and ECG	302

Wearable Optical Sensors

Table 1	Overview table of wearable optical sensors indexed	
	by application	317

Learning Continuous-Time Hidden Markov Models for Event Data

Time complexity comparison of all methods in evaluating	
all required expectations under Soft/Hard EM	379
The average 2-norm relative error from five random runs	
on a 5-state complete digraph under varying measurement	
noise levels	380
	8

Time Series Feature Learning with Applications to Health Care

Table 1	AUROC for classification	403
Table 2	AUROC for incremental training	405
Table 3	Classification results	406
Table 4	Top features and corresponding importance scores	406

From Markers to Interventions: The Case of Just-in-Time Stress Intervention

Table 1	Computation of <i>stress</i> episodes classification performance	
	metric—precision and recall from Fig. 5	424
Table 2	Confusion matrix of stress episode identification for	
	thresholds 0.29 and 0.44, ensuring 95% precision and recall,	
	where we excluded 13 unsure episodes and 24 unknown	
	episodes	424
Table 3	Stress episodes classification statistics for ensuring different	
	precision and recall (95%, 90%, and 85%)	425

Control Systems Engineering for Optimizing Behavioral mHealth Interventions

Table 1	Summary of classification of variables from the FM clinical	160
	study [55, 56]	462
Table 2	Model estimate summary for the drug-FM model for the	
	pilot study participant	464
Table 3	Model parameter tabulation for various inputs-FM	
	continuous models as well as the drug-overall sleep	
	(Drug-Overall Sleep) model for pilot study participant	465
Table 4	Comparison of the performance of the intervention from	
	the control system ($f_a = 1, 0.1$) with a fixed dosage of	
	naltrexone (1.92 mg) under stochastic disturbances	466
Table 5	Parameter values for the dose-response models according	
	to (16) describing the simulated participant	471
Table 6	Values of design constraints for the open-loop informative	
	experiment	485