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Foreword

The confluence of advances in mobile computing, wireless sensors, and digitization
of healthcare has led to the emergence of mobile health (mHealth) during the past
decade. mHealth broadly refers to the use of mobile technologies for managing
health and wellness in the natural environment. Wearable fitness trackers and
smartwatches are increasingly popular mHealth accessories and have contributed
to enthusiastic interest on the part of the public in self-monitoring devices and
practices.

Concurrent with growing interest and activity from the technology industry, there
is growing interest in the computing research community in mHealth. mHealth
represents a promising research area in computing that can make important contribu-
tions to society by advancing scientific understanding, driving technology advances,
and improving health and wellness.

mHealth is unusually broad in its need for and relevance to computing research—
cutting across many subdisciplines within computing; they include sensor design,
mobile computing, networking, signal processing, data modeling, bioinformatics,
machine learning, visualization, privacy and security, and human–computer inter-
action. Numerous workshops and conferences have also emerged in the area of
mHealth, including National Institutes of Health (NIH) and National Science Foun-
dation (NSF) backed summer institutes that provide immersive multidisciplinary
training to faculty, postdoctoral fellows, and predoctoral candidates.

Both undergraduate and graduate level courses have also begun to address
mHealth as an important component or as the primary focus, but in both cases
there has not existed a high-quality reference book that provides a comprehensive
introduction to mHealth for the computing community, especially for those just
beginning to work in this area. This book fills this important gap by focusing
on the sensing and modeling aspects of mHealth, while showcasing compelling
and motivating applications, design and evaluation of sensors, markers derived
from mobile sensors, and interventions designed to be triggered by sensor-derived
markers.
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viii Foreword

I expect this book to become an indispensable resource for community members
as they address new research problems, prepare publications and grant applications,
plan courses, and act as consultants to other practitioners or researchers. The online
lectures to accompany each chapter will make it particularly valued by students,
faculty, and practitioners.

The authors of this book, led by the editors James Rehg, Susan Murphy, and
Santosh Kumar, represent many of the most respected and accomplished leaders in
this rapidly growing field. They together represent the diversity of disciplines that
make up mHealth.

Robert V. Tishman Founder’s Chair Deborah Estrin
Department of Computer Science
Cornell Tech, New York, NY, USA



Preface

The field of mobile health (mHealth) is focused on the use of mobile technologies
to improve health outcomes through sensing of behavioral and physiological states
and interaction with individuals to facilitate health-related behavior change. Its
promise is the ability to automatically identify and characterize the behaviors and
decisions of everyday life that play a critical role in an individual’s health and
well-being, and provide personalized assistance and interventions under real-life
field conditions to enable an individual to control their health, manage existing
health conditions, and prevent future health problems from emerging. Examples of
mHealth applications include physical activity tracking and encouragement, stress
management, and preventing relapse to addictive behaviors, among many others.

The mHealth field is currently experiencing rapid growth, driven by advances in
on-body sensor technology and its adoption by users, big data analytics, cloud com-
puting, and the increasingly large-scale use of data in medicine. As a consequence
of these diverse influences, the mHealth literature is scattered across a variety of
conference proceedings and journals, making it challenging for researchers to obtain
a holistic view of this emerging technology. This volume provides a solution in the
form of a comprehensive introduction to the current state of the art in mHealth
technology, with the agenda of advancing a systematic approach to mobile data
analysis and exploitation.

This book is designed to be accessible to technology-oriented researchers and
practitioners with backgrounds in computer science, engineering, statistics, and
applied mathematics. The chapters provide a comprehensive overview of the major
topics in sensing, analytics, and mobile computing which are critical to the design
and deployment of mHealth systems. As a result, the book enables researchers and
practitioners who are entering the mHealth field to obtain a complete introduction to
current research and practice. Our contributing authors include many of the leading
researchers and practitioners in the mHealth field.
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Introduction to the Book

Chronic health conditions are a major burden of disease in the United States and
the world, and they are increasing in prevalence due to improvements in critical
care, longer life, and changing lifestyles. Chronic diseases such as cardiovascular
disease, cancer, diabetes, obesity, hypertension, and asthma need to be managed
throughout the entire life of the patient with an appropriate medication regimen and
lifestyle modifications. Mobile health (mHealth) can help both in assisting with the
management of chronic diseases for those who have already become patients and in
helping to prevent their occurrence in at-risk individuals. Chronic conditions such
as smoking and other forms of dependence, along with developmental conditions
such as autism and mental health conditions such as depression, also persist over
time and can benefit from the use of mobile health technologies to support more
effective, individualized approaches to behavior change and management.

Chronic diseases are usually complex in their etiology as they are caused
by multiple risk factors that interact in complex patterns and include genetic,
behavioral, social, and environmental components. The modifiable risk factors
are the behavioral, social, and environmental components that can be monitored
with mHealth in the user’s natural environment. A key promise of mobile health
technology is to provide, for the first time, the ability to not only monitor risk factors
but also monitor the health states of individuals in their natural environment and
quantify the interactions between the risk factors, their temporal dynamics, and out-
comes, in order to gain a deeper insight into the factors that contribute to health and
disease risk. Such activities would yield new levels of biomedical understanding and
significantly improve clinicians’ ability to identify person-specific disease risk and
treatment response. For example, such ubiquitous monitoring with mHealth can help
discover early indicators, antecedents, and precipitants, which can then be used in
preventive interventions to reduce incidence rates of chronic diseases. Moreover, the
availability of mobile computing platforms (in the form of smartphones) provides
new opportunities to develop personalized prevention and treatment programs that
can complement existing clinical mechanisms of care. By measuring the changes
in health states, risk factors, daily behaviors, and medication adherence, mHealth
can also help in detecting trends and adapting treatment and interventions so as to
better manage the health and wellness of chronic disease patients, with a resulting
reduction in adverse health events that require hospital readmission.

Advances in sensing and analytic methods, along with the proliferation of mobile
platforms, have laid the groundwork for the collection of mobile sensor data, the
quantification of risk factors, the measurement of changes in health status, and
the delivery of treatment in the natural environment. However, substantial research
is needed in order to realize the potential of this technology to improve health
outcomes. The chapters in this volume provide a description of the challenges that
must be overcome, along with some promising solution approaches. The chapers
are organized into four parts: I. mHealth Applications and Tools; II. Sensors to
mHealth Markers; III. Markers to mHealth Predictors; and IV. Predictors to mHealth
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Interventions. This organization provides a useful conceptualization of the process
of going from on-body sensor data to mobile interventions.

The first part on “mHealth Applications and Tools” provides a series of examples
of health conditions and biomedical research questions that can be addressed using
mHealth technology and methods. A range of study designs are represented. One
category focuses on a particular mHealth technology and assesses its utility in
the context of a specific health concern or population. A second category focuses
on a specific health condition and prospectively explores the value of mHealth
technologies in characterizing and quantifying trajectories of risk. A third category
offers lessons learned in the design and implementation of mHealth studies or the
use of particular sensing technologies. The populations addressed in these papers
range from college students to older adults. A variety of intervention targets are
described, ranging from the maintenance of circadian rhythms to the reduction in
caloric consumption and the increase of physical activity. These papers collectively
provide a useful introduction to the breadth of mHealth technologies and the current
state of the art in their application.

While the increased availability of affordable sensors with improving battery
life has driven the commercial growth of the mHealth market, the process of
converting noisy on-body sensor data into valid and accurate measurements of
behavioral, physiological, and environmental risk factors remains challenging.
The chapters in Part II, “Sensors to mHealth Markers,” outline these challenges
in detail and describe a variety of solution approaches. The chapters in this
part cover a wide range of sensing technologies, including motion and activity
sensing, acoustic analysis, optical sensing, and radar-based imaging. The central
concern of this part is the development of computational models. Models must be
informed by the physiological mechanisms and behavioral theory that guide our
understanding of mobile health applications. At the same time, models must be
able to address the challenges of streaming sensor data, namely its high volume,
velocity, variety, variability, versatility, and the semantic gap between the data and
underlying mHealth constructs of interest. A variety of modeling tools are used by
the chapters in this part, including both probabilistic data models and classifier-
based approaches. The validation of markers derived from on-body sensors against
existing gold standard measures is another important topic. Validation can be done
under laboratory conditions by collecting reference data from gold standard clinical
instruments simultaneously with mHealth sensors. Validation in the field is much
more challenging and typically involves a combination of self-report and human
annotation to establish a reference. The techniques and approaches described in
these chapters will provide a valuable resource for researchers and practitioners
who are interested in developing novel mHealth markers or in using such markers
in applications.

Given the ability to convert raw on-body sensor streams into mHealth markers,
the next step in the processing pipeline is to convert multiple time series of marker
values into predictions of risk for future adverse outcomes. Predictions of future
risk are vital to the delivery of mobile interventions, as they can be used to pinpoint
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windows of opportunity in which to act, before an undesired outcome occurs. Part
III, “Markers to mHealth Predictors,” presents an introduction to the prediction
task. Prediction is challenging because it requires the ability to make statements
about future events for which no measurements are currently available. Moreover,
the targets for prediction tend to be complex constructs which necessarily draw
upon multiple streams of markers. The prediction of lapse in smoking cessation,
for example, might utilize information about stress, craving, negative affect, and
the presence or absence of social supports. The chapters in Part III cover a range
of topics, from visualization techniques for uncovering patterns in marker streams
to machine learning methods for capturing the temporal dynamics of multimodal
patterns of markers, and finally ending with a case study on stress prediction in
the context of a stress management intervention. While the prediction task has its
own unique challenges, it shares with the task of marker generation the need to
build effective computational models that capture the complex dynamics of noisy
signals. The inherent complexity of the mHealth domain, in which both sensor
signals and their derived markers exhibit tremendous variability in their properties
and dynamics over time, creates a number of exciting research opportunities in
machine learning and stochastic modeling. The chapters in this part provide an
introduction to this exciting research area and will hopefully serve as inspiration
for future research activities.

The final set of chapters addresses the use of predictions of future risk to develop
and deliver mobile interventions. While the widespread adoption of smartphones has
made it feasible to deploy mobile interventions on a large scale, many challenges
remain in bringing about effective behavior change and an improvement in health
outcomes. These challenges, along with a variety of solution approaches, are
presented in Part IV, “Predictors to mHealth Interventions.” A key challenge is
to optimize interventions so that they are tailored to the needs and context of
the participants, and optimize a cost or provide a benefit to the participants. One
approach is to use reinforcement learning algorithms to optimize both the content
of an intervention and the timing of its delivery. Another approach is to formulate
intervention design as a control systems problem, in which a dynamical model is
used to describe the evolution of a participant’s state over time and the intervention
takes the form of a feedback law which maintains the homeostasis of the closed
loop system. In addition to these diverse methodological approaches, Part IV also
provides examples of specific intervention designs for a gamut of behavioral health
applications, including smoking cessation, increased physical activity, and chronic
pain management.

Collectively, these four parts comprise a comprehensive and in-depth treatment
of mobile health technologies, methodologies, and applications. We believe these
chapters provide a useful characterization of the current state of mHealth research
and practice. It is clear that we are at the cusp of a dramatic increase in the
development and adoption of mHealth technologies. Substantial work remains to
be done, however, in order to realize the potential of this new field and bring about
meaningful improvements in health on a large scale. Achieving this goal will require
a transdisciplinary approach and a strong partnership between experts in sensor
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design, mobile systems, machine learning, pattern mining, big data computing,
health informatics, behavioral medicine, experiment design, clinical research, and
health research. This collective effort will be a critical factor in achieving the
broadly held societal goals of reducing healthcare costs and improving individual
and population health outcomes.

Atlanta, GA, USA James M. Rehg
Ann Arbor, MI, USA Susan A. Murphy
Memphis, TN, USA Santosh Kumar
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