Skip to main content

Wearable Sensing of Left Ventricular Function

  • Chapter
  • First Online:
Mobile Health

Abstract

Cardiovascular diseases (CVDs) cause nearly one third of all deaths worldwide, and are projected to afflict 40% of all Americans by the year 2030. According to the World Health Organization, CVDs can be prevented by early detection and management of risk factors—and consequent changes in behavior such as reducing tobacco use, increasing physical activity, and improving diet. Many CVDs are fundamentally associated with a weakening or damaged left ventricle (LV). Recent advances in wearable hemodynamics and cardiac timing measurement technologies present an exciting opportunity to achieve early detection and continuous monitoring of changes in LV function, and to then potentially affect behavior to reduce CVD prevalence. This chapter will (1) provide a brief introduction to LV physiology, (2) a description of key parameters such as stroke volume, cardiac output, and arterial blood pressure that capture LV function, (3) an introduction to heart failure as a key example of LV pathophysiology, (4) a discussion of wearable technologies for continuous and ubiquitous sensing of LV parameters using mHealth approaches, and (5) future directions and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. B. Shrestha, “The Changing Demographic Profile of the United States,” Congrssional Research Service: The Library of Congress 2006.

    Google Scholar 

  2. K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among us adults, 1999–2008,” JAMA, vol. 303, pp. 235–241, 2010.

    Google Scholar 

  3. J. Levi, L. M. Segal, K. Thomas, R. S. Laurent, A. Lang, and J. Rayburn, “F as in Fat: How Obesity Threatens America’s Future,” Trust for America’s Health and Robert Wood Johnson Foundation 2013.

    Google Scholar 

  4. P. I. Buerhaus, D. O. Staiger, and D. I. Auerbach, “Implications of an aging registered nurse workforce,” JAMA, vol. 283, pp. 2948–2954, 2000.

    Google Scholar 

  5. G. Pare, M. Jaana, and C. Sicotte, “Systematic Review of Home Telemonitoring for Chronic Diseases: The Evidence Base,” JAMA, vol. 14, pp. 269–277, 2007.

    Google Scholar 

  6. A. L. Bui and G. C. Fonarow, “Home Monitoring for Heart Failure Management,” Journal of the American College of Cardiology, vol. 59, pp. 97–104, 2012.

    Google Scholar 

  7. P. A. Nutting, B. F. Crabtree, W. L. Miller, K. C. Stange, E. Stewart, and C. Jaen, “Transforming Physician Practices to Patient-Centered Medical Homes: Lessons from the National Demonstration Project,” Health Affairs, vol. 30, pp. 439–445, 2011.

    Google Scholar 

  8. Y. L. Zheng, X. R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X. L. Zhou, G. Z. Yang, N. Zhao, and Y. T. Zhang, “Unobtrusive Sensing and Wearable Devices for Health Informatics,” IEEE TBME, vol. 61, pp. 1538–1554, 2014.

    Google Scholar 

  9. S. Ha, C. Kim, Y. M. Chi, A. Akinin, C. Maier, A. Ueno, and G. Cauwenberghs, “Integrated Circuits and Electrode Interfaces for Noninvasive Physiological Monitoring,” IEEE TBME, vol. 61, pp. 1522–1537, 2014.

    Google Scholar 

  10. A. M. Katz, Physiology of the Heart, 5th ed. Philadelphia: Wolters Kluwer Health, 2011.

    Google Scholar 

  11. M. Etemadi, O. T. Inan, L. Giovangrandi, and G. T. A. Kovacs, “Rapid Assessment of Cardiac Contractility on a Home Bathroom Scale,” IEEE T-ITB, vol. 15, pp. 864–869, 2011.

    Google Scholar 

  12. R. P. Lewis, S. E. Rittogers, W. F. Froester, and H. Boudoulas, “A critical review of the systolic time intervals,” Circulation, vol. 56, pp. 146–58, 1977.

    Google Scholar 

  13. R. C. Talley, J. F. Meyer, and J. L. McNay, “Evaluation of the pre-ejection period as an estimate of myocardial contractility in dogs,” The American Journal of Cardiology, vol. 27, pp. 384–391, 1971.

    Google Scholar 

  14. A. M. Weissler, W. S. Harris, and C. D. Schoenfeld, “Systolic Time Intervals in Heart Failure in Man,” Circulation, vol. 37, pp. 149–159, 1968.

    Google Scholar 

  15. V. F. Froelicher and J. Myers, Exercise and the Heart, 5 ed.: Saunders, 2006.

    Google Scholar 

  16. L. H. Opie, Heart Physiology: From Cell to Circulation, 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2004.

    Google Scholar 

  17. D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. R. Das, S. de Ferranti, J.-P. Després, H. J. Fullerton, V. J. Howard, M. D. Huffman, C. R. Isasi, M. C. Jiménez, S. E. Judd, B. M. Kissela, J. H. Lichtman, L. D. Lisabeth, S. Liu, R. H. Mackey, D. J. Magid, D. K. McGuire, E. R. Mohler, C. S. Moy, P. Muntner, M. E. Mussolino, K. Nasir, R. W. Neumar, G. Nichol, L. Palaniappan, D. K. Pandey, M. J. Reeves, C. J. Rodriguez, W. Rosamond, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, D. Woo, R. W. Yeh, and M. B. Turner, “Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association,” Circulation, 2015.

    Google Scholar 

  18. V. L. Roger, S. A. Weston, M. M. Redfield, and et al., “Trends in heart failure incidence and survival in a community-based population,” JAMA, vol. 292, pp. 344–350, 2004.

    Google Scholar 

  19. P. S. Keenan, S.-L. T. Normand, Z. Lin, E. E. Drye, K. R. Bhat, J. S. Ross, J. D. Schuur, B. D. Stauffer, S. M. Bernheim, A. J. Epstein, Y. Wang, J. Herrin, J. Chen, J. J. Federer, J. A. Mattera, Y. Wang, and H. M. Krumholz, “An Administrative Claims Measure Suitable for Profiling Hospital Performance on the Basis of 30-Day All-Cause Readmission Rates Among Patients With Heart Failure,” Circulation: Cardiovascular Quality and Outcomes, vol. 1, pp. 29–37, 2008.

    Google Scholar 

  20. S. F. Jencks , M. V. Williams , and E. A. Coleman “Rehospitalizations among Patients in the Medicare Fee-for-Service Program,” New England Journal of Medicine, vol. 360, pp. 1418–1428, 2009.

    Google Scholar 

  21. H. M. Krumholz, E. M. Parent, N. Tu, and et al., “Readmission after hospitalization for congestive heart failure among medicare beneficiaries,” Archives of Internal Medicine, vol. 157, pp. 99–104, 1997.

    Google Scholar 

  22. A. Giordano, S. Scalvini, E. Zanelli, U. Corrà, L. G.L, V. A. Ricci, P. Baiardi, and F. Glisenti, “Multicenter randomised trial on home-based telemanagement to prevent hospital readmission of patients with chronic heart failure,” International Journal of Cardiology, vol. 131, pp. 192–199, 2009.

    Google Scholar 

  23. W. T. Abraham, P. B. Adamson, R. C. Bourge, M. F. Aaron, M. R. Costanzo, L. W. Stevenson, W. Strickland, S. Neelagaru, N. Raval, S. Krueger, S. Weiner, D. Shavelle, B. Jeffries, and J. S. Yadav, “Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial,” The Lancet, vol. 377, pp. 658–666, 2011.

    Google Scholar 

  24. Y. M. Chi, T. P. Jung, and G. Cauwenberghs, “Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review,” IEEE Reviews in Biomedical Engineering, vol. 3, pp. 106–119, 2010.

    Google Scholar 

  25. D. Dubin, Rapid Interpretation of EKG’s, 6th ed. Tampa, FL: Cover Publishing Company, 2000.

    Google Scholar 

  26. S. Grimnes and O. Martinsen, Bioimpedance and Bioelectricity Basics, 3rd ed.: Academic Press, 2014.

    Google Scholar 

  27. W. G. Kubicek, R. P. Patterson, and D. A. Witsoe, “Impedance Cardiography as a Noninvasive Method of Monitoring Cardiac Function and Other Parameters of the Cardiovascular System,” Annals of the New York Academy of Sciences, vol. 170, pp. 724–732, 1970.

    Google Scholar 

  28. L.-Y. Shyu, Y.-S. Lin, C.-P. Liu, and W.-C. Hu, “The detection of impedance cardiogram characteristic points using wavelet transform,” Computers in Biology and Medicine, vol. 34, pp. 165–175, 2004.

    Google Scholar 

  29. A. Sherwood, M. T. Allen, J. Fahrenberg, R. M. Kelsey, W. R. Lovallo, and L. J. P. v. Doomen, “Methodological Guidelines for Impedance Cardiography,” Psychophysiology, vol. 27, pp. 1–23, 1990.

    Google Scholar 

  30. S. M. M. Naidu, P. C. Pandey, and V. K. Pandey, “Automatic detection of characteristic points in impedance cardiogram,” in Computing in Cardiology, 2011, pp. 497–500.

    Google Scholar 

  31. R. Patterson, “Fundamentals of impedance cardiography,” Engineering in Medicine and Biology Magazine, IEEE, vol. 8, pp. 35–38, 1989.

    Google Scholar 

  32. P. E. Aust, G. G. Belz, G. Belz, and W. Koch, “Comparison of impedance cardiography and echocardiography for measurement of stroke volume,” European Journal of Clinical Pharmacology, vol. 23, pp. 475–477, 1982.

    Google Scholar 

  33. G. Cybulski, E. Michalak, E. Koźluk, A. Piątkowska, and W. Niewiadomski, “Stroke volume and systolic time intervals: Beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions,” Med. Biol. Eng. Comput., vol. 42, pp. 707–711, 2004.

    Google Scholar 

  34. G. L. Yung, P. F. Fedullo, K. Kinninger, W. Johnson, and R. N. Channick, “Comparison of Impedance Cardiography to Direct Fick and Thermodilution Cardiac Output Determination in Pulmonary Arterial Hypertension,” Congestive Heart Failure, vol. 10, pp. 7–10, 2004.

    Google Scholar 

  35. A. Scherhag, J. J. Kaden, E. Kentschke, T. Sueselbeck, and M. Borggrefe, “Comparison of Impedance Cardiography and Thermodilution-Derived Measurements of Stroke Volume and Cardiac Output at Rest and During Exercise Testing,” Cardiovascular Drugs and Therapy, vol. 19, pp. 141–147, 2005.

    Google Scholar 

  36. Y. Zhang, M. Qu, J. G. Webster, W. J. Tompkins, B. A. Ward, and D. R. Bassett, “Cardiac Output Monitoring by Impedance Cardiography During Treadmill Exercise,” IEEE TBME, vol. BME-33, pp. 1037–1042, 1986.

    Google Scholar 

  37. N. Tordi, L. Mourot, B. Matusheski, and R. L. Hughson, “Measurements of Cardiac Output During Constant Exercises: Comparison of Two Non-Invasive Techniques,” Int J Sports Med, vol. 25, pp. 145–149, 2004.

    Google Scholar 

  38. J.-L. Fellahi, V. Caille, C. Charron, P.-H. Deschamps-Berger, and A. Vieillard-Baron, “Noninvasive Assessment of Cardiac Index in Healthy Volunteers: A Comparison Between Thoracic Impedance Cardiography and Doppler Echocardiography,” Anesthesia & Analgesia, vol. 108, pp. 1553–1559, 2009.

    Google Scholar 

  39. B. J. M. Van Der Meer, J. P. P. M. D. Vries, W. O. Schreuder, E. R. Bulder, L. Eysman, and P. M. J. M. D. Vries, “Impedance cardiography in cardiac surgery patients: abnormal body weight gives unreliable cardiac output measurements,” Acta Anaesthesiologica Scandinavica, vol. 41, pp. 708–712, 1997.

    Google Scholar 

  40. M. Etemadi, O. T. Inan, J. A. Heller, S. Hersek, L. Klein, and S. Roy, “A Wearable Patch to Enable Long-Term Monitoring of Environmental, Activity and Hemodynamics Variables,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, pp. 280–288, 2016.

    Google Scholar 

  41. R. M. Rangayyan and R. J. Lehner, “Phonocardiogram signal analysis: a review,” Critical reviews in biomedical engineering, vol. 15, pp. 211–236, 1987.

    Google Scholar 

  42. D. S. Gerbarg, F. W. Holcomb, J. J. Hofler, C. E. Bading, G. L. Schultz, and R. E. Sears, “Analysis of phonocardiogram by a digital computer,” Circulation research, vol. 11, pp. 569–576, 1962.

    Google Scholar 

  43. G. Chen, S. A. Imtiaz, E. Aguilar–Pelaez, and E. Rodriguez–Villegas, “Algorithm for heart rate extraction in a novel wearable acoustic sensor,” Healthcare Technology Letters, vol. 2, pp. 28–33, 2015.

    Google Scholar 

  44. S. Karki, M. Kaariainen, and J. Lekkala, “Measurement of heart sounds with EMFi transducer,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 1683–1686.

    Google Scholar 

  45. S. Ari, K. Hembram, and G. Saha, “Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier,” Expert Systems with Applications, vol. 37, pp. 8019–8026, 2010.

    Google Scholar 

  46. D. B. Springer, T. Brennan, Z. L. J, x00Fc, hlke, H. Y. Abdelrahman, N. Ntusi, G. D. Clifford, B. M. Mayosi, and L. Tarassenko, “Signal quality classification of mobile phone-recorded phonocardiogram signals,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 1335–1339.

    Google Scholar 

  47. B. Wells, “The Assessment of Mitral Stenosis by Phonocardiography,” British Heart Journal, vol. 16, pp. 261–266, 1954.

    Google Scholar 

  48. J. M. Zanetti and D. M. Salerno, “Seismocardiography: a technique for recording precordial acceleration,” in Computer-Based Medical Systems, 1991. Proceedings of the Fourth Annual IEEE Symposium, 1991, pp. 4–9.

    Google Scholar 

  49. O. T. Inan, P. F. Migeotte, P. Kwang-Suk, M. Etemadi, K. Tavakolian, R. Casanella, J. Zanetti, J. Tank, I. Funtova, G. K. Prisk, and M. Di Rienzo, “Ballistocardiography and Seismocardiography: A Review of Recent Advances,” IEEE Journal of Biomedical and Health Informatics, vol. 19, pp. 1414–1427, 2015.

    Google Scholar 

  50. O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol Meas, vol. 30, p. 261, 2009.

    Google Scholar 

  51. H. Ashouri, L. Orlandic, and O. T. Inan, “Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate.” Sensors, vol. 16, 2016.

    Google Scholar 

  52. I. Starr, A. Rawson, H. Schroeder, and N. Joseph, “Studies on the estimation of cardiac ouptut in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” American Journal of Physiology—Legacy Content, vol. 127, pp. 1–28, 1939.

    Google Scholar 

  53. O. T. Inan, M. Etemadi, R. Wiard, L. Giovangrandi, and G. Kovacs, “Robust ballistocardiogram acquisition for home monitoring,” Physiological measurement, vol. 30, p. 169, 2009.

    Google Scholar 

  54. A. Lindqvist, K. Pihlajamäki, J. Jalonen, V. Laaksonen, and J. Alihanka, “Static-charge-sensitive bed ballistocardiography in cardiovascular monitoring,” Clinical Physiology, vol. 16, pp. 23–30, 1996.

    Google Scholar 

  55. T. Koivistoinen, S. Junnila, A. Varri, and T. Koobi, “A new method for measuring the ballistocardiogram using EMFi sensors in a normal chair,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2026-2029, 2004

    Google Scholar 

  56. D. D. He, E. S. Winokur, and C. G. Sodini, “An Ear-Worn Vital Signs Monitor,” IEEE TBME, vol. 62, pp. 2547–2552, 2015.

    Google Scholar 

  57. A. D. Wiens, M. Etemadi, S. Roy, L. Klein, and O. T. Inan, “Towards Continuous, Non-Invasive Assessment of Ventricular Function and Hemodynamics: Wearable Ballistocardiography,” IEEE Journal of Biomedical and Health Informatics, vol. 19, pp. 1435–1442, 2015.

    Google Scholar 

  58. A. D. Wiens and O. T. Inan, “A Novel System Identification Technique for Improved Wearable Hemodynamics Assessment,” IEEE TBME, vol. 62, pp. 1345–1354, 2015.

    Google Scholar 

  59. R. Mukkamala, J.-O. Hahn, O. T. Inan, L. K. Mestha, K. Chang-Sei, H. Toreyin, and S. Kyal, “Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice,” IEEE TBME, vol. 62, pp. 1879–1901, 2015.

    Google Scholar 

  60. L. Geddes, M. Voelz, C. Babbs, J. Bourland, and W. Tacker, “Pulse transit time as an indicator of arterial blood pressure,” Psychophysiology, vol. 18, pp. 71–74, 1981.

    Google Scholar 

  61. A. Steptoe, H. Smulyan, and B. Gribbin, “Pulse Wave Velocity and Blood Pressure Change: Calibration and Applications,” Psychophysiology, vol. 13, pp. 488–493, 1976.

    Google Scholar 

  62. G. Cybulski, Z. Miśkiewicz, J. Szulc, A. Torbicki, and T. Pasierski, “A comparison between the automatized impedance cardiography and pulsed-wave Doppler echocardiography methods for measurements of stroke volume (SV) and systolic time intervals (STI),” J Physiol Pharmacol, vol. 44, pp. 251–258, 1993.

    Google Scholar 

  63. P. Carvalho, R. P. Paiva, R. Couceiro, J. Henriques, M. Antunes, I. Quintal, J. Muehlsteff, and X. Aubert, “Comparison of systolic time interval measurement modalities for portable devices,” in Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 606–609, 2010

    Google Scholar 

  64. G. Cybulski, “Ambulatory Impedance Cardiography,” in Ambulatory Impedance Cardiography: The Systems and their Applications, ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 39–56.

    Google Scholar 

  65. A. Sherwood, J. McFetridge, and J. S. Hutcheson, “Ambulatory impedance cardiography: a feasibility study,” Journal of Applied Physiology, vol. 85, pp. 2365–2369, 1998.

    Google Scholar 

  66. P. A. Nakonezny, R. B. Kowalewski, J. M. Ernst, L. C. Hawkley, D. L. Lozano, D. A. Litvack, G. G. Bernston, J. J. Sollers, P. N. Kizakevich, J. T. Cacioppo, and W. R. Lovallo, “New ambulatory impedance cardiograph validated against the Minnesota Impedance Cardiograph,” Psychophysiology, vol. 38, pp. 465–473, 2001.

    Google Scholar 

  67. R. P. Paiva, P. Carvalho, R. Couceiro, J. Henriques, M. Antunes, I. Quintal, and J. Muehlsteff, “Beat-to-beat systolic time-interval measurement from heart sounds and ECG,” Physiological Measurement, vol. 33, p. 177, 2012.

    Google Scholar 

  68. K. Tavakolian, “Characterization and analysis of seismocardiogram for estimation of hemodynamic parameters,” Ph.D., Applied Sciences, Simon Fraser University, Burnaby, BC, Canada, 2010.

    Google Scholar 

  69. Y. Chuo, M. Marzencki, B. Hung, C. Jaggernauth, K. Tavakolian, P. Lin, and B. Kaminska, “Mechanically Flexible Wireless Multisensor Platform for Human Physical Activity and Vitals Monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 281–294, 2010.

    Google Scholar 

  70. P. Castiglioni, A. Faini, G. Parati, and M. Di Rienzo, “Wearable Seismocardiography,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3954-3957, 2007.

    Google Scholar 

  71. W. W. Nichols, M. F. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arteries. Theoretical, Experimental, and Clinical Principles. London: Hodder Arnold, 2011.

    Google Scholar 

  72. B. M. Learoyd and M. G. Taylor, “Alterations with Age in the Viscoelastic Properties of Human Arterial Walls,” Circulation Research, vol. 18, pp. 278–292, 1966.

    Google Scholar 

  73. G. Zhang, M. Gao, D. Xu, N. B. Olivier, and R. Mukkamala, “Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure,” Journal of Applied Physiology, vol. 111, pp. 1681–1686, 2011.

    Google Scholar 

  74. S. L.-O. Martin, A. M. Carek, C.-S. Kim, H. Ashouri, O. T. Inan, J.-O. Hahn, and R. Mukkamala, “Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time,” Scientific Reports, v. 6, 2016.

    Google Scholar 

  75. M.-M. Wong, C.-Y. Poon, and Y.-T. Zhang, “An Evaluation of the Cuffless Blood Pressure Estimation Based on Pulse Transit Time Technique: a Half Year Study on Normotensive Subjects,” Cardiovasc Eng, vol. 9, pp. 32–38, 2009.

    Google Scholar 

  76. H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, “Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method,” Eur J Appl Physiol, vol. 112, pp. 309–315, 2012.

    Google Scholar 

  77. M. Masè, W. Mattei, R. Cucino, L. Faes, and G. Nollo, “Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure,” Journal of Electrocardiology, vol. 44, pp. 201–207, 2011.

    Google Scholar 

  78. T. Wibmer, K. Doering, C. Kropf-Sanchen, S. Rudiger, I. Blanta, K. M. Stoiber, W. Rottbauer, and C. Schumann, “Pulse transit time and blood pressure during cardiopulmonary exercise tests,” Physiological Research, vol. 63, pp. 287–296, 2014.

    Google Scholar 

  79. C. Douniama, C. U. Sauter, and R. Couronne, “Blood pressure tracking capabilities of pulse transit times in different arterial segments: A clinical evaluation,” in Computers in Cardiology, 2009, pp. 201-204, 2009.

    Google Scholar 

  80. R. A. Payne, C. N. Symeonides, D. J. Webb, and S. R. J. Maxwell, “Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure,” Journal of Applied Physiology, vol. 100, pp. 136–141, 2005.

    Google Scholar 

  81. C. Young, J. Mark, W. White, A. DeBree, J. Vender, and A. Fleming, “Clinical evaluation of continuous noninvasive blood pressure monitoring: Accuracy and tracking capabilities,” J Clin Monitor Comput, vol. 11, pp. 245–252, 1995.

    Google Scholar 

  82. G. V. Marie, C. R. Lo, J. Van Jones, and D. W. Johnston, “The Relationship between Arterial Blood Pressure and Pulse Transit Time During Dynamic and Static Exercise,” Psychophysiology, vol. 21, pp. 521–527, 1984.

    Google Scholar 

  83. Chen, Y. Xiufeng, T. Ju Teng, and N. Soon Huat, “Noninvasive monitoring of blood pressure using optical Ballistocardiography and Photoplethysmograph approaches,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2425–2428, 2013.

    Google Scholar 

  84. J. Sola, M. Proenca, D. Ferrario, J. A. Porchet, A. Falhi, O. Grossenbacher, Y. Allemann, S. F. Rimoldi, and C. Sartori, “Noninvasive and Nonocclusive Blood Pressure Estimation Via a Chest Sensor,” IEEE TBME, vol. 60, pp. 3505–3513, 2013.

    Google Scholar 

  85. Y. Chen, C. Wen, G. Tao, M. Bi, and G. Li, “Continuous and Noninvasive Blood Pressure Measurement: A Novel Modeling Methodology of the Relationship Between Blood Pressure and Pulse Wave Velocity,” Ann Biomed Eng, vol. 37, pp. 2222–2233, 2009.

    Google Scholar 

  86. C.-S. Kim, A. M. Carek, R. Mukkamala, O. T. Inan, and J.-O. Hahn, “Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring,” IEEE TBME, vol. 62, pp. 2657–2664, 2015.

    Google Scholar 

  87. E. A. Hines Jr and G. E. Brown, “The cold pressor test for measuring the reactibility of the blood pressure: Data concerning 571 normal and hypertensive subjects,” American Heart Journal, vol. 11, pp. 1–9, 1936.

    Google Scholar 

  88. J. S. Petrofsky and A. R. Lind, “Aging, isometric strength and endurance, and cardiovascular responses to static effort,” Journal of Applied Physiology, vol. 38, pp. 91–95, 1975.

    Google Scholar 

  89. C. E. Martin, J. A. Shaver, D. F. Leon, M. E. Thompson, P. S. Reddy, and J. J. Leonard, “Autonomic Mechanisms in Hemodynamic Responses to Isometric Exercise,” Journal of Clinical Investigation, vol. 54, pp. 104–115, 1974.

    Google Scholar 

  90. M. Al’Absi, S. Bongard, T. Buchanan, G. A. Pincomb, J. Licinio, and W. R. Lovallo, “Cardiovascular and neuroendocrine adjustment to public speaking and mental arithmetic stressors,” Psychophysiology, vol. 34, pp. 266–275, 1997.

    Google Scholar 

  91. M. Ulbrich, J. Muhlsteff, A. Sipila, M. Kamppi, A. Koskela, M. Myry, T. Wan, S. Leonhardt, and M. Walter, “The IMPACT shirt: textile integrated and portable impedance cardiography,” Physiological Measurement, vol. 35, no. 6, pp. 1181–1196, 2014.

    Google Scholar 

  92. R. P. Patterson, W. G. Kubicek, D. A. Witsoe, and A. H. L. From, “Studies on the effect of controlled volume change on the thoracic electrical impedance,” Med. Biol. Eng. Comput., vol. 16, pp. 531–536, 1978.

    Google Scholar 

  93. A. Sherwood, M. T. Allen, J. Fahrenberg, R. M. Kelsey, W. R. Lovallo, and L. J. P. van Doornen, “Methodological Guidelines for Impedance Cardiography,” Psychophysiology, vol. 27, pp. 1–23, 1990.

    Google Scholar 

  94. L. A. H. Critchley, “Impedance cardiography The impact of new technology,” Anaesthesia, vol. 53, pp. 677–684, 1998.

    Google Scholar 

  95. L. B. Rowell, J. A. Murray, G. L. Brengelmann, and K. K. Kraning, “Human Cardiovascular Adjustments to Rapid Changes in Skin Temperature during Exercise,” Circulation Research, vol. 24, pp. 711–724, 1969.

    Google Scholar 

  96. M. N. Sawka, A. J. Young, W. A. Latzka, P. D. Neufer, M. D. Quigley, and K. B. Pandolf, “Human tolerance to heat strain during exercise: influence of hydration,” Journal of Applied Physiology, vol. 73, pp. 368–375, 1992.

    Google Scholar 

  97. M. N. Sawka, A. J. Young, R. P. Francesconi, S. R. Muza, and K. B. Pandolf, “Thermoregulatory and blood responses during exercise at graded hypohydration levels,” Journal of Applied Physiology, vol. 59, pp. 1394–1401, 1985.

    Google Scholar 

  98. R. Arena and K. E. Sietsema, “Cardiopulmonary Exercise Testing in the Clinical Evaluation of Patients With Heart and Lung Disease,” Circulation, vol. 123, pp. 668–680, 2011.

    Google Scholar 

  99. M. Qu, Y. Zhang, J. G. Webster, and W. J. Tompkins, “Motion Artifact from Spot and Band Electrodes During Impedance Cardiography,” IEEE TBME, vol. BME-33, pp. 1029–1036, 1986.

    Google Scholar 

  100. R. M. Kelsey and W. Guethlein, “An Evaluation of the Ensemble Averaged Impedance Cardiogram,” Psychophysiology, vol. 27, pp. 24–33, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer T. Inan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Inan, O.T. (2017). Wearable Sensing of Left Ventricular Function. In: Rehg, J., Murphy, S., Kumar, S. (eds) Mobile Health. Springer, Cham. https://doi.org/10.1007/978-3-319-51394-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51394-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51393-5

  • Online ISBN: 978-3-319-51394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics