Skip to main content

Automated Fabrication of Foldable Robots Using Thick Materials

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

Designing complex machines such as robots often requires multiple iterations of design and prototyping. Folding has recently emerged as a method to both simplify fabrication and accelerate assembly of such machines. However, the robots so far produced by folding have often been made of thin, flexible materials that limit their size and strength. We introduce a folding-based fabrication process that uses thick materials layered with flexible film to enable folding while maintaining high stiffness in the folded structure. We use this process to fabricate multiple solid bodies, as well as two hexapods, one of which can carry up to 2.50 kg payloads. Each folded structure took less than 3 h to construct. Our results indicate that folding using thick materials can be a viable method for rapidly fabricating and prototyping larger and sturdier robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. An, B., Rus, D.: Designing and programming self-folding sheets. Robot. Auton. Syst. 62(7), 976–1001 (2014)

    Article  Google Scholar 

  2. Beyer, D., Gurevich, S., Mueller, S., Chen, H.T., Baudisch, P.: Platener: low-fidelity fabrication of 3D objects by substituting 3D print with laser-cut plates. In: Proceedings of ACM Conference on Human Factors in Computing Systems (2015)

    Google Scholar 

  3. Chen, D., Sitthi-amorn, P., Lan, J.T., Matusik, W.: Computing and fabricating multiplanar models. Comput. Gr. Forum 32, 305–315 (2013)

    Article  Google Scholar 

  4. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM Trans. Gr. 32(4), 83 (2013)

    Article  MATH  Google Scholar 

  5. Edmondson, B.J., Lang, R.J., Magleby, S.P., Howell, L.L.: An offset panel technique for thick rigidily foldable origami. In: Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2014)

    Google Scholar 

  6. Fenner, P.: Laser-cut lattice living hinges. http://www.deferredprocrastination.co.uk/blog/2011/laser-cut-lattice-living-hinges/ (2011)

  7. Gao, W., Ramani, K., Cipra, R.J., Siegmund, T.: Kinetogami: a reconfigurable, combinatorial, and printable sheet folding. J. Mech. Design 135(11), 111009 (2013)

    Article  Google Scholar 

  8. Goldberg, S.A.: Designing continuous complex curved structures to be fabricated from standard flat sheets. In: Vision and Visualization: Proceedings of the 9th Iberoamerican Congress of Digital Graphics, pp. 114–119 (2005)

    Google Scholar 

  9. Hoover, A.M., Steltz, E., Fearing, R.S.: RoACH: An autonomous 2.4g crawling hexapod robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 26–33 (2008)

    Google Scholar 

  10. Ku, J., Demaine, E.: Folding flat crease patterns with thick materials. In: Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2015)

    Google Scholar 

  11. Lee, D., Kim, J., Kim, S., Koh, J., Cho, K.: The deformable wheel robot using magic-ball origami structure. In: Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. DETC2013–13016 (2013)

    Google Scholar 

  12. Ma, R.R., Belter, J.T., Dollar, A.M.: Hybrid deposition manufacturing: design strategies for multi-material mechanisms via three-dimensional printing and material deposition. J. Mech. Robot. 7, 021002 (2015)

    Article  Google Scholar 

  13. Mehta, A., DelPreto, J., Rus, D.: Integrated codesign of printable robots. J. Mech. Robot. 7, 021015 (2015)

    Article  Google Scholar 

  14. Mehta, A., Rus, D.: An end-to-end system for designing mechanical structures for print-and-fold robots. In: Proceedings of IEEE International Conference on Robotics and Automation (2014)

    Google Scholar 

  15. Mueller, S., Kruck, B., Baudisch, P.: LaserOrigami: laser-cutting 3D objects. In: Proceedings of ACM Conference on Human Factors in Computing Systems, pp. 2585–2592 (2013)

    Google Scholar 

  16. Niiyama, R., Rus, D., Kim, S.: Pouch motors: printable/inflatable soft actuators for robotics. In: Proceedings of IEEE International Conference on Robotics and Automation (2014)

    Google Scholar 

  17. Schulz, A., Sung, C., Spielberg, A., Zhao, W., Cheng, Y., Mehta, A., Grinspun, E., Rus, D., Matusik, W.: Interactive robogami: data-driven design for 3D print-and-fold robots with ground locomotion. In: ACM SIGGRAPH Talks (2015)

    Google Scholar 

  18. Soltero, D.E., Julian, B.J., Onal, C.D., Rus, D.: A lightweight modular 12-DOF print-and-fold hexapod. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1465–1471 (2013)

    Google Scholar 

  19. Sung, C., Rus, D.: Foldable joints for foldable robots. In: International Symposium on Experimental Robotics (2014)

    Google Scholar 

  20. Sung, C., Rus, D.: Foldable joints for foldable robots. J. Mech. Robot. 7(2), 021012 (2015)

    Article  Google Scholar 

  21. Tachi, T.: Rigid-foldable thick origami. Origami 5, 253–264 (2011)

    Article  Google Scholar 

  22. Tachi, T., Miura, K.: Rigid-foldable cylinders and cells. J. Int. Assoc. Shell Spat. Struct. (IASS) 53(4), 217–226 (2012)

    Google Scholar 

  23. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., Gross, M.: Computational design of linkage-based characters. ACM Trans. Gr. 33(4), 64 (2014)

    Article  Google Scholar 

  24. Tolley, M.T., Felton, S.M., Miyashita, S., Xu, L., Shin, B., Zhou, M., Rus, D., Wood, R.J.: Self-folding shape memory laminates for automated fabrication. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4931–4936 (2013)

    Google Scholar 

  25. Yasu, K.: MOR4R: Microwave oven recipes for resins. In: ACM SIGGRAPH Talks (2015)

    Google Scholar 

  26. Zirbel, S.A., Lang, R.J., Thomson, M.W., Sigel, D.A., Walkemeyer, P.E., Trease, B.P., Magleby, S.P., Howell, L.L.: Accommodating thickness in origami-based deployable arrays. J. Mech. Design 135(11), 111005 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Support for this project has been provided in part by NSF Grant Nos. 1240383 and 1138967, and by the DoD through the NDSEG Fellowship Program. We are grateful. We would also like to thank John Romanishin and Joseph DelPreto for helpful discussions, and Bianca Homberg for assistance in fabricating the silicone feet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Sung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sung, C., Rus, D. (2018). Automated Fabrication of Foldable Robots Using Thick Materials. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics