Skip to main content

A Global Strategy for Tailsitter Hover Control

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

We present a nonlinear hover controller for a small flying wing tailsitter vehicle, which enables recovering to hover from a large set of initial conditions. The proposed attitude control law is obtained by solving an optimal control problem, with the objective of correcting large attitude errors by turning primarily around the vehicle’s strongly actuated axis. Solutions for a set of initial attitudes are precomputed and stored in a lookup table. For each controller update, the optimal inputs are read from this table, and applied to the system in an MPC-like manner. Simulation results indicate that this control method is able to perform recoveries to hover from any initial attitude, given that the initial velocity of the vehicle is below a certain limit. Further, the performance of the control strategy is demonstrated on a small tailsitter vehicle in the ETH Zurich Flying Machine Arena.

This research was supported by the Hans-Eggenberger Stiftung and the Swiss National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer hybrid vehicles to vehicles that provide both hover-capabilities and wings for aerodynamic lift production.

  2. 2.

    http://www.bbc.com/news/technology-28964260/.

  3. 3.

    http://blogs.wsj.com/digits/2015/03/17/google-working-on-new-drone-after-wing-design-failed/.

  4. 4.

    Computations are executed with Matlab [28], using the function ‘bvp4c’.

References

  1. Filippone, A.: Flight Performance of Fixed and Rotary Wing Aircraft. Elsevier, Oxford (2006)

    Google Scholar 

  2. Deckert, W.H., Franklin, J.A.: Powered-lift aircraft technology. Technical report, NASA (1989)

    Google Scholar 

  3. Campbell, J.P.: Research on VTOL and STOL aircraft in the United States. In: Proceedings of the First International Congress in the Aeronautical Sciences, Advances in Aeronautical Sciences, Madrid, 8–13 September, 1958, vol. 2. Pergamon Press (1959)

    Google Scholar 

  4. Woods, R.J.: Convertiplanes and Other VTOL Aircraft. Technical report, SAE Technical paper (1957)

    Google Scholar 

  5. Wernicke, K.G.: Tilt Prop-rotor Composite Research Aircraft. Technical report, DTIC Document (1968)

    Google Scholar 

  6. Lichten, R.L.: Some Aspects of Convertible Aircraft Design. J. Aeronaut. Sci. (Inst. Aeronaut. Sci.), 16(10) (2012)

    Google Scholar 

  7. Stuart, J.: TiltWing Propelloplane Potentialities. J. Am. Helicopter Soc., 4(1) (1959)

    Google Scholar 

  8. Tosti, L.P.: Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft. Technical report, NASA (1959)

    Google Scholar 

  9. Sinha, P., Esden-Tempski, P., Forrette, C.A., Gibboney, J.K., Horn, G.M.: Versatile, modular, extensible VTOL aerial platform with autonomous flight mode transitions. In: IEEE Aerospace Conference. IEEE (2012)

    Google Scholar 

  10. Powers, C., Mellinger, D., Kumar, V.: Quadrotor kinematics and dynamics. In: Handbook of Unmanned Aerial Vehicles. Springer, Heidelberg (2014)

    Google Scholar 

  11. Sujit, P., Saripalli, S., Sousa, J.B.: Unmanned aerial vehicle path following: a survey and analysis of algorithms for fixed-wing unmanned aerial vehicles. IEEE Control Syst., 34(1) (2014)

    Google Scholar 

  12. Knoebel, N.B., McLain, T.W.: Adaptive quaternion control of a miniature tailsitter UAV. In: American Control Conference (ACC). IEEE (2008)

    Google Scholar 

  13. Johnson, E N., Wu, A., Neidhoefer, J.C., Kannan, S.K., Turbe, M.A.: Flight-test results of autonomous airplane transitions between steady-level and hovering flight. J. Guidance Control Dyn., 31(2) (2008)

    Google Scholar 

  14. Kita, K., Konno, A., Uchiyama, M.: Transition between level flight and hovering of a tail-sitter vertical takeoff and landing aerial robot. Adv. Robot., 24(5–6) (2010)

    Google Scholar 

  15. Matsumoto, T., Kita, K., Suzuki, R., Oosedo, A., Go, Hoshino, K.Y., Konno, A., Uchiyama, M.: A hovering control strategy for a tail-sitter VTOL UAV that increases stability against large disturbance. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE (2010)

    Google Scholar 

  16. Beach, J.M., Argyle, M.E., McLain, T.W., Beard, R.W., Morris, S.: Tailsitter attitude control using resolved tilt-twist. In: International Conference on Unmanned Aircraft Systems (ICUAS). IEEE (2014)

    Google Scholar 

  17. Jung, Y., Cho, S., Shim, D.H.: A comprehensive flight control design and experiment of a Tail-Sitter UAV. In: AIAA Guidance, Navigation, and Control Conference (GNC) (2013)

    Google Scholar 

  18. Camacho, E.F., Alba, C.B.: Model predictive control. Springer Science & Business Media, Heidelberg (2013)

    Google Scholar 

  19. Anderson, P., Stone, H.: Predictive guidance and control for a tail-sitting unmanned aerial vehicle. In: Information, Decision and Control (IDC). IEEE (2007)

    Google Scholar 

  20. Stone, R.H.: Aerodynamic modeling of the wing-propeller interaction for a tail-sitter unmanned air vehicle. J. Aircr., 45(1) (2008)

    Google Scholar 

  21. Erickson, G.E.: High angle-of-attack aerodynamics. Annu. Rev. Fluid Mech., 27(1) (1995)

    Google Scholar 

  22. Knoebel, N.B., Osborne, S.R., Snyder, D.O., McLain, T.W., Beard, R.W., Eldredge, A.M.: Preliminary modeling, control, and trajectory design for miniature autonomous tailsitters. In: AIAA Guidance, Navigation, and Control Conference (GNC) (2006)

    Google Scholar 

  23. J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors, Stanford University, Tech. Rep., 2006

    Google Scholar 

  24. W. Johnson, Helicopter theory. Courier Corporation, 2012

    Google Scholar 

  25. P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics (AIAA Education). American Institute of Aeronautics & Astronautics, 2003

    Google Scholar 

  26. S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. D’Andrea, A platform for aerial robotics research and demonstration: The Flying Machine Arena, Mechatronics, 24(1), pp. 41–54, 2014

    Google Scholar 

  27. H. P. Geering, Optimal Control with Engineering Applications. Springer, 2007

    Google Scholar 

  28. The MathWorks Inc., Matlab R2012a (7.14.0.739), 2012

    Google Scholar 

  29. PX4 FMU. http://www.pixhawk.ethz.ch/px4/modules/px4fmu (2017). Accessed 27 Jan 2017

  30. SimonK - Open Source Firmware for ATmega-based Brushless ESCs. https://github.com/sim-/tgy(2015) accessed 27 April 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Ritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ritz, R., D’Andrea, R. (2018). A Global Strategy for Tailsitter Hover Control. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics