Skip to main content

Towards Cooperative Multi-robot Belief Space Planning in Unknown Environments

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

We investigate the problem of cooperative multi-robot planning in unknown environments, which is important in numerous applications in robotics. The research community has been actively developing belief space planning approaches that account for the different sources of uncertainty within planning, recently also considering uncertainty in the environment observed by planning time. We further advance the state of the art by reasoning about future observations of environments that are unknown at planning time. The key idea is to incorporate within the belief indirect multi-robot constraints that correspond to these future observations. Such a formulation facilitates a framework for active collaborative state estimation while operating in unknown environments. In particular, it can be used to identify best robot actions or trajectories among given candidates generated by existing motion planning approaches, or to refine nominal trajectories into locally optimal trajectories using direct trajectory optimization techniques. We demonstrate our approach in a multi-robot autonomous navigation scenario and show that modeling future multi-robot interaction within the belief allows to determine robot trajectories that yield significantly improved estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 723–730 (2011)

    Google Scholar 

  2. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated Multi-robot Exploration. IEEE Trans. Robot. (2005)

    Google Scholar 

  3. Carlone, L., Kaouk Ng, M., Du, J., Bona, B., Indri, M.: Rao-Blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 243–249 (2010)

    Google Scholar 

  4. Chaves, S.M., Kim, A., Eustice, R.M.: Opportunistic sampling-based planning for active visual slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3073–3080. IEEE, New York (2014)

    Google Scholar 

  5. He, R., Prentice, S., Roy, N.: Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1814–1820 (2008)

    Google Scholar 

  6. Hollinger, G.A., Sukhatme, G.S.: Sampling-based robotic information gathering algorithms. Int. J. Robot. Res. 1271–1287 (2014)

    Google Scholar 

  7. Indelman, V.: Towards multi-robot active collaborative state estimation via belief space planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015)

    Google Scholar 

  8. Indelman, V., Carlone, L., Dellaert, F.: Towards planning in generalized belief space. In: The 16th International Symposium on Robotics Research. Singapore (2013)

    Google Scholar 

  9. Indelman, V., Carlone, L., Dellaert, F.: Planning in the continuous domain: a generalized belief space approach for autonomous navigation in unknown environments. Int. J. Robot. Res. 34(7), 849–882 (2015)

    Article  Google Scholar 

  10. Indelman, V., Gurfil, P., Rivlin, E., Rotstein, H.: Distributed vision-aided cooperative localization and navigation based on three-view geometry. Robot. Auton. Syst. 60(6), 822–840 (2012)

    Article  Google Scholar 

  11. Indelman, V., Nelson, E., Michael, N., Dellaert, F.: Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  12. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  13. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  14. Kurniawati, H., Hsu, D., Lee, W.S.: Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems (RSS), vol. 2008 (2008)

    Google Scholar 

  15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Intl. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  16. Levine, D., Luders, B., How, J.P.: Information-theoretic motion planning for constrained sensor networks. J. Aerosp. Inf. Syst. 10(10), 476–496 (2013)

    Google Scholar 

  17. Papadimitriou, C., Tsitsiklis, J.: The complexity of markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., Abbeel, P.: Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In: International Workshop on the Algorithmic Foundations of Robotics (2014)

    Google Scholar 

  19. Pineau, J., Gordon, G.J., Thrun, S.: Anytime point-based approximations for large pomdps. J. Artif. Intell. Res. 27, 335–380 (2006)

    MATH  Google Scholar 

  20. Platt, R., Tedrake, R., Kaelbling, L.P., Lozano-Pérez, T.: Belief space planning assuming maximum likelihood observations. In: Robotics: Science and Systems (RSS), pp. 587–593 (2010)

    Google Scholar 

  21. Prentice, S., Roy, N.: The belief roadmap: efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. (2009)

    Google Scholar 

  22. Roumeliotis, S.I., Bekey, G.A.: Distributed multi-robot localization. IEEE Trans. Robot. Autom. (2002)

    Google Scholar 

  23. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters. In: Robotics: Science and Systems (RSS), pp. 65–72 (2005)

    Google Scholar 

  24. Valencia, R., Morta, M., Andrade-Cetto, J., Porta, J.M.: Planning reliable paths with pose SLAM. IEEE Trans. Robot. (2013)

    Google Scholar 

  25. Van Den Berg, J., Patil, S., Alterovitz, R.: Motion planning under uncertainty using iterative local optimization in belief space. Int. J. Robot. Res. 31(11), 1263–1278 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Technion Autonomous Systems Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Indelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Indelman, V. (2018). Towards Cooperative Multi-robot Belief Space Planning in Unknown Environments. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics