Skip to main content

The Variational Principles of Action

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

This chapter provides a theoretical perspective on action and the control of movement from the point of view of the free-energy principle. This variational principle offers an explanation for neuronal activity and ensuing behavior that is formulated in terms of dynamical systems and attracting sets. We will see that the free-energy principle emerges when considering the ensemble dynamics of biological systems like ourselves. When we look closely what this principle implies for the behavior of systems like the brain, one finds a fairly straightforward explanation for many aspects of action and perception; in particular, their (approximately Bayesian) optimality. Within the Bayesian brain framework, the ensuing dynamics can be separated into those serving perceptual inference, learning and behavior. Variational principles play a key role in what follows; both in understanding the nature of self-organizing systems but also in explaining the adaptive nature of neuronal dynamics and plasticity in terms of optimization—and the process theories that mediate optimal inference and motor control. A special focus of this chapter is the pre-eminent role of heteroclinic cycles in providing deep and dynamic (generative) models of the sensorium; particularly the sensations that we generate ourselves through action. In what follows, we will briefly rehearse the basic theory and illustrate its implications using simulations of action (handwriting)—and its observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have used italics to distinguish action (integral of energy) from action (enacted by the agent).

References

  1. W.R. Ashby, Principles of the self-organizing dynamic system. J. Gen. Psychol. 37, 125–128 (1947)

    Article  Google Scholar 

  2. D.H. Ballard, D. Kit, C.A. Rothkopf, B. Sullivan, A hierarchical modular architecture for embodied cognition. Multisensory Res. 26, 177 (2013)

    Article  Google Scholar 

  3. F.P. Battaglia, G.R. Sutherland, B.L. McNaughton, Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J. Neurosci. 24(19), 4541–4550 (2004)

    Article  Google Scholar 

  4. C. Bernard, Lectures on the phenomena common to animals and plants. Trans Hoff HE, Guillemin R, Guillemin L, Springfield (IL): Charles C Thomas (1974). ISBN 978-0398028572

    Google Scholar 

  5. G. Buason, N. Bergfeldt, T. Ziemke, Brains, bodies, and beyond: competitive co-evolution of robot controllers, morphologies, and environments. Genet. Program. Evolvable Mach. 6(1), 25–51 (2005)

    Article  Google Scholar 

  6. N. Burgess, C. Barry, J. O’Keefe, An oscillatory interference model of grid cell firing. Hippocampus 17(9), 801–812 (2007)

    Article  Google Scholar 

  7. R.L. Carhart-Harris, K.J. Friston, The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133(Pt 4), 1265–1283 (2010)

    Article  Google Scholar 

  8. C.F. Camerer, Behavioural studies of strategic thinking in games. Trends Cogn. Sci. 7(5), 225–231 (2003)

    Article  Google Scholar 

  9. A. Clark, Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013)

    Article  Google Scholar 

  10. J.D. Cohen, S.M. McClure, A.J. Yu, Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R Soc. Lond. B Biol. Sci. 362(1481), 933–942 (2007)

    Article  Google Scholar 

  11. F. Colas, J. Diard, P. Bessiere, Common Bayesian models for common cognitive issues. Acta Biotheoretica 58, 191–216 (2010)

    Article  Google Scholar 

  12. N.D. Daw, K. Doya, The computational neurobiology of learning and reward. Current Opinion Neurobiol. 16(2), 199–204 (2006)

    Article  Google Scholar 

  13. P. Dayan, G.E. Hinton, R.M. Neal, The Helmholtz machine. Neural Comput. 7, 889–904 (1995)

    Article  Google Scholar 

  14. G. Di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, G. Rizzolatti, Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–80 (1992)

    Article  Google Scholar 

  15. G. Dragoi, G. Buzsáki, Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50(1), 145–157 (2006)

    Article  Google Scholar 

  16. D.J. Evans, A non-equilibrium free-energy theorem for deterministic systems. Mol. Phys. 101, 1551–1554 (2003)

    Article  Google Scholar 

  17. H. Feldman, K.J. Friston, Attention, uncertainty, and free-energy. Front Hum. Neurosci. 4, 215 (2010)

    Article  Google Scholar 

  18. M. Ferro, D. Ognibene, G. Pezzulo, V. Pirrelli, Reading as active sensing: a computational model of gaze planning during word recognition. Front. Neurorobotics 4, 1 (2010)

    Google Scholar 

  19. R.P. Feynman, Statistical Mechanics (Benjamin, Reading, 1972)

    Google Scholar 

  20. T.H. FitzGerald, P. Schwartenbeck, M. Moutoussis, R.J. Dolan, K. Friston, Active inference, evidence accumulation, and the urn task. Neural Comput. 27, 306–328 (2015)

    Article  Google Scholar 

  21. L. Fogassi, P.F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, G. Rizzolatti, Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005)

    Article  Google Scholar 

  22. K.J. Friston, A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 (2005)

    Article  Google Scholar 

  23. K. Friston, The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  24. K. Friston, Life as we know it. J. R. Soc. Interface 10, 20130475 (2013)

    Article  Google Scholar 

  25. K. Friston, J. Daunizeau, S. Kiebel, Active inference or reinforcement learning? PLoS One 4(7), e6421 (2009)

    Article  Google Scholar 

  26. K.J. Friston, J. Daunizeau, J. Kilner, S.J. Kiebel, Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010)

    Article  Google Scholar 

  27. K. Friston, K. Stephan, B. Li, J. Daunizeau, Generalised filtering. Math. Probl. Eng. 2010, 621670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Friston, R. Adams, R. Montague, What is value-accumulated reward or evidence? Front. Neurorobotics 6, 11 (2012)

    Article  Google Scholar 

  29. K. Friston, R.A. Adams, L. Perrinet, M. Breakspear, Perceptions as hypotheses: saccades as experiments. Front. Psychol. 3, 151 (2012)

    Google Scholar 

  30. K. Friston, P. Schwartenbeck, T. FitzGerald, M. Moutoussis, T. Behrens, J. Raymond, R.J. Dolan, The anatomy of choice: active inference and agency. Front. Hum. Neurosci. 7, 598 (2013)

    Article  Google Scholar 

  31. K. Friston, M. Levin, B. Sengupta, G. Pezzulo, Knowing one’s place: a free-energy approach to pattern regulation. J. R. Soc. Interface 12 (2015)

    Google Scholar 

  32. K. Friston, F. Rigoli, D. Ognibene, C. Mathys, T. Fitzgerald, G. Pezzulo, Active inference and epistemic value. Cogn. Neurosci. 1–28 (2015)

    Google Scholar 

  33. V. Gallese, A. Goldman, Mirror-neurons and the simulation theory of mind reading. Trends Cogn. Sci. 2, 493–501 (1998)

    Article  Google Scholar 

  34. R.L. Gregory, Perceptions as hypotheses. Phil. Trans. R. Soc. Lond. B 290, 181–197 (1980)

    Article  Google Scholar 

  35. M. Grist, Changing the Subject. RSA. www.thesocialbrain.wordpress.com, pp. 74–80 (2010)

  36. H. Haken, Synergetics: An Introduction. Non-Equilibrium Phase Transition and Self-Organization in Physics, Chemistry and Biology, 3rd edn. (Springer, Heidelberg, 1983)

    Book  MATH  Google Scholar 

  37. C.M. Harris, D.M. Wolpert, Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  Google Scholar 

  38. G.E. Hinton, D. van Cramp, Keeping neural networks simple by minimizing the description length of weights, in Proceedings of COLT-93 (1993), pp. 5–13

    Google Scholar 

  39. J. Hohwy, The Self-Evidencing Brain. Noûs (2014)

    Google Scholar 

  40. G. Huang, Is this a unified theory of the brain? New Sci. Mag. (2658) (2008)

    Google Scholar 

  41. S. Ishii, W. Yoshida, J. Yoshimoto, Control of exploitation-exploration meta-parameter in reinforcement learning. Neural Netw. 15(4–6), 665–687 (2002)

    Article  Google Scholar 

  42. S. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, Oxford, 1993)

    Google Scholar 

  43. D. Kersten, P. Mamassian, A. Yuille, Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004)

    Article  Google Scholar 

  44. S.J. Kiebel, K. von Kriegstein, J. Daunizeau, K.J. Friston, Recognizing sequences of sequences. PLoS Comput. Biol. 5, e1000464 (2009)

    Google Scholar 

  45. D. Kirsh, Adapting the environment instead of oneself. Adapt. Behavr. 4(3/4), 415–452 (1996)

    Article  Google Scholar 

  46. D.C. Knill, A. Pouget, The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27(12), 712–719 (2004)

    Article  Google Scholar 

  47. D. Kropotova, D. Vetrovb, General solutions for information-based and Bayesian approaches to model selection in linear regression and their equivalence. Pattern Recognit. Image Anal. 19(3), 447–455 (2009)

    Article  Google Scholar 

  48. O. Lebeltel, P. Bessière, Basic concepts of Bayesian programming, in Probabilistic Reasoning and Decision Making in Sensory-Motor Systems (Springer, 2008), pp. 19–48

    Google Scholar 

  49. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, London, 1981)

    Google Scholar 

  50. D.J.C. MacKay, Free-energy minimization algorithm for decoding and cryptoanalysis. Electron. Lett. 31, 445–447 (1995)

    Article  Google Scholar 

  51. M. Moutoussis, N.J. Trujillo-Barreto, W. El-Deredy, R.J. Dolan, K.J. Friston, A formal model of interpersonal inference. Front. Hum. Neurosci. 8, 160 (2014)

    Article  Google Scholar 

  52. D. Mumford, On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–51 (1992)

    Article  Google Scholar 

  53. R.M. Neal, G.E. Hinton, A view of the EM algorithm that justifies incremental, sparse, and other variants’, in Learning in Graphical Models, ed. by M.I. Jordan (Kluwer Academic Publishers, Dordrecht, 1998), pp. 355–368

    Chapter  Google Scholar 

  54. G. Nicolis, I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977)

    MATH  Google Scholar 

  55. D.W. North, A tutorial introduction to decision theory. IEEE Trans. Syst. Sci. Cybern. 4(3), 200–210 (1968)

    Article  Google Scholar 

  56. J. O’Keefe, Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9(4), 352–364 (1999)

    Article  Google Scholar 

  57. R.P. Rao, D.H. Ballard, Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat. Neurosci. 2, 79–87 (1998)

    Article  Google Scholar 

  58. R.A. Rescorla, A.R. Wagner, A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement, in Classical Conditioning II: Current Research and Theory, ed. by A.H. Black, W.F. Prokasy (Appleton Century Crofts, New York, 1972), pp. 64–99

    Google Scholar 

  59. M. Rabinovich, R. Huerta, G. Laurent, Neuroscience. Transient dynamics for neural processing. Science 321, 48–50 (2008)

    Article  Google Scholar 

  60. G. Rizzolatti, L. Craighero, The mirror-neuron system. Ann. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  61. P. Schwartenbeck, T.H. FitzGerald, C. Mathys, R. Dolan, K. Friston, The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cereb. Cortex 25, 3434–3445 (2015)

    Article  Google Scholar 

  62. P. Schwartenbeck, T.H. FitzGerald, C. Mathys, R. Dolan, M. Kronbichler, K. Friston, Evidence for surprise minimization over value maximization in choice behavior. Sci. Rep. 5, 16575 (2015)

    Article  Google Scholar 

  63. P. Schwartenbeck, T.H. FitzGerald, C. Mathys, R. Dolan, F. Wurst, M. Kronbichler, K. Friston, Optimal inference with suboptimal models: addiction and active Bayesian inference. Med. Hypotheses 84, 109–117 (2015)

    Article  Google Scholar 

  64. G. Sella, A.E. Hirsh, The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA 102(27), 9541–9546 (2005)

    Article  Google Scholar 

  65. A.K. Seth, Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013)

    Article  Google Scholar 

  66. W.E. Skaggs, B.L. McNaughton, M.A. Wilson, C.A. Barnes, Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

    Google Scholar 

  67. S.M. Sherman, R.W. Guillery, Exploring the Thalamus and its Role in Cortical Function (MIT Press, Cambridge, 2006)

    Google Scholar 

  68. R.S. Sutton, A.G. Barto, Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88(2), 135–170 (1981)

    Article  Google Scholar 

  69. C. Thornton, Some puzzles relating to the free-energy principle: comment on Friston. Trends Cogn. Sci. 14(2), 53–54 (2010); author reply 54–55

    Google Scholar 

  70. M. Tsodyks, Attractor neural network models of spatial maps in hippocampus. Hippocampus 9(4), 481–489 (1999)

    Article  Google Scholar 

  71. H. von Helmholtz, Concerning the perceptions in general, in Treatise on physiological optics, vol. III, 3rd edn. (1866) (translated by J.P.C. Southall, 1925 Opt. Soc. Am. Section 26, reprinted New York: Dover, 1962)

    Google Scholar 

  72. Y. Weiss, Correctness of local probability propagation in graphical models with loops. Neural Comput. 12, 1–41 (2000)

    Article  Google Scholar 

  73. R.H. Wurtz, K. McAlonan, J. Cavanaugh, R.A. Berman, Thalamic pathways for active vision. Trends Cogn. Sci. 5, 177–184 (2011)

    Article  Google Scholar 

  74. T. Ziemke, Introduction to the special issue on situated and embodied cognition. Cogn. Systs. Res. 3(3), 271–274 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The Wellcome trust funded this work. I would also like to thank Daniel Bennequin for invaluable help in formulating these ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Friston .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix provides a brief technical overview of how the free energy principle applies to neuronal dynamics. In this setting, the states of the brain (e.g., the activity of neurons and other systems that are crucial for its function, such as glial cells), are viewed as encoding the sufficient statistics of probability measures on hidden states of the external world. In this view, the main quantities are probabilities measures, denoted by \(p(\tilde{s},\psi \,|\,m)\), on the product \(S\times \Psi \) of possible values of (generalized) sensory states and hidden states, under a particular model m. Time plays a hidden but fundamental role in this formalism, in the sense that \((S,\Psi )\)  are path spaces, and \((\tilde{s},\psi )\) are points in manifolds that depend on time. Particular attention is required by this point in Bayesian modelling [11, 48]).

The underlying premise is that the sufficient statistics \(\tilde{\mu }\) and the induced probability \(q(\psi \,|\,\tilde{\mu })\) evolve to maximize the marginal likelihood or model evidence:

$$\begin{aligned} p(\tilde{s}\,|\,m)=\int {d\psi p(\tilde{s},\psi \,|\,m)} \end{aligned}$$
(A.1)

However, this marginalization is generally intractable. The main simplification rests on replacing the difficult marginalization in A.1, by the practically easier problem of minimizing free energy:

$$\begin{aligned} {\mathcal {F}}=E_q [{\mathcal {G}}(\tilde{s},\psi )]-H[q(\psi \,|\,\tilde{\mu })] \end{aligned}$$
(A.2)

where \(H[q(\psi \,|\,\tilde{\mu })]\) denotes the entropy of the probability law \(q(\psi \,|\,\tilde{\mu })\) on \(\Psi \), and the first term is the Gibbs internal energy \({\mathcal {G}}(\tilde{s},\psi )=-\ln p(\tilde{s},\psi \,|\,m)\) expected under \(q(\psi \,|\,\tilde{\mu })\). It is easy to show that the concavity of the logarithmic function on \(]0,\infty [\) implies:

$$\begin{aligned} {\mathcal {F}}(\tilde{s},\tilde{\mu })\ge -\ln p(\tilde{s}\,|\,m) \end{aligned}$$
(A.3)

Then, the minimization of free energy with respect to the sufficient statistics \(\tilde{\mu }\) affords a constraint on the good direction for the maximization of the marginal likelihood or model evidence. In general, the problem is further simplified, for instance by an Ansatz of mean-field approximation, or by reducing to a belief propagation algorithm; c.f., [72].

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Friston, K. (2017). The Variational Principles of Action. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics