

Vrije Universiteit Brussel

Creating Story-Based Serious Games Using a Controlled Natural Language Domain Specific
Modeling Language
De Troyer, Olga; Van Broeckhoven, Frederik; Vlieghe, Joachim

Published in:
Serious Games and Edutainment Applications

DOI:
10.1007/978-3-319-51645-5_25

Publication date:
2017

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
De Troyer, O., Van Broeckhoven, F., & Vlieghe, J. (2017). Creating Story-Based Serious Games Using a
Controlled Natural Language Domain Specific Modeling Language. In M. Ma, & A. Oikonomou (Eds.), Serious
Games and Edutainment Applications: Volume II (pp. 567-603). Springer International Publishing.
https://doi.org/10.1007/978-3-319-51645-5_25

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 27. Apr. 2024

https://doi.org/10.1007/978-3-319-51645-5_25
https://cris.vub.be/en/publications/creating-storybased-serious-games-using-a-controlled-natural-language-domain-specific-modeling-language(89d5ab1a-2de6-4068-8589-16d5a67bc0cc).html
https://doi.org/10.1007/978-3-319-51645-5_25

Creating Story-Based Serious Games Using a
Controlled Natural Language Domain Specific
Modeling Language

Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Abstract Creating serious games calls for a multidisciplinary design team, includ-
ing game developers, subject-matter experts, pedagogical experts, and narrative de-
signers. However, such multidisciplinary teams often experience communication
and collaboration problems due to differences in terminology, background and the
concerns of the people involved. As one step towards solving this problem, we de-
veloped a modeling language for authors of serious games to specify both the story
and the pedagogical aspects of a narrative-based (i.e., story-based) serious game.
The models created with the help of this language can then be processed in order
to automatically generate (parts of) the game. The language is specifically designed
to support the involvement of experts with a non-technical background. To achieve
this, we employ a domain specific modeling language, i.e., a language specific for
the domain of serious games and customizable to the terminology of the domain the
serious game is dealing with. Furthermore, the language makes use of a Controlled
Natural Language syntax and graphical notations. The combination of a domain
specific vocabulary, a natural language syntax, and an easy to understand graphical
notation allows different experts to be actively involved in the specification of the
serious game, as such increasing consensus and enhancing quality. Furthermore, the
model-based approach allows for a shortening of the development time of serious
games (and therefore also their cost). As such, the approach tackles one of the major
barriers for the development and widespread use of serious games. In this chapter,

Olga De Troyer
Vrije Universiteit Brussel, DINF - WISE, Pleinlaan 2, 1050 Brussel e-mail:
olga.detroyer@vub.ac.be

Frederik Van Broeckhoven
Vrije Universiteit Brussel, DINF - WISE, Pleinlaan 2, 1050 Brussel e-mail: fred-
erik.van.broeckhoven@vub.ac.be

Joachim Vlieghe
Vrije Universiteit Brussel, DINF - WISE, Pleinlaan 2, 1050 Brussel e-mail:
joachim.vlieghe@vub.ac.be

1

2 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

we present a complete overview of the domain specific modeling language and the
associated tools developed to support the model-based approach.

1 Introduction

Serious games are widely recognized for aiding the acquisition of knowledge and
skills, or to induce behavior changes. Compared to learning or training in a class-
room environment, serious games support knowledge, skills or performance devel-
opment in a controlled and responsive environment without the barriers of time and
space, while using game mechanics to make learning more fun.

However, the popularity of serious games has raised the need for dedicated de-
velopment methodologies and tools that can help to reduce the development time
and costs (Bellotti et al. 2010). In addition, serious games should be based on sound
learning theories and instructional design principles to ensure efficient and success-
ful training and learning. This calls for a multidisciplinary design approach and a
team of experts that includes game developers, subject-matter experts, pedagogical
experts, and narrative designers (Rooney et al. 2009). Unfortunately, such multidis-
ciplinary teams often experience communication and collaboration problems due to
the different terminologies, backgrounds and concerns of the people involved (De
Troyer & Janssens 2014) as well as the lack of suitable design tools that allow the
experts with a non-technical background to be actively involved in the design pro-
cess. As stated by Djaouti et al. (2010) “people without professional game design
skills, such as teachers, corporate trainers, therapists and advertising professionals,
request tools that could allow them to create or modify such games”.

ATTAC-L is a tool that assists multidisciplinary teams in the creation of story-
based serious games. This tool and its underlying methodology are specifically de-
signed to enable experts with a non-technical background to participate actively in
the design and modeling process of story-based serious games. To achieve this, we
employ a domain specific modeling language (DSML). In this case, a language that
is specific for the domain of serious games and that is customizable to the termi-
nology of the topic (i.e., domain) of the game. Furthermore, the DMSL is using a
Controlled Natural Language syntax in combination with a graphical representation.
The use of a Controlled Natural Language (CNL) provides an easy human-readable,
yet extensible and expressive way to formulate stories and specify story elements.
The combination of a domain-specific vocabulary, a controlled natural language,
and easy to understand graphical notation allows different experts to be actively in-
volved in the specification of the stories and related pedagogical issues. As such,
the DSML supports collaboration during the design process and has the potential to
increase consensus among the experts. In addition, it provides a means for improved
monitoring of the serious game’s quality by the different experts.

A story-based serious game should include a compelling narrative, but should
also be based on empirically validated pedagogical methods. To accomodate for
this, the modeling language provides the means to specify the story as well as the

Creating Story-Based SGs using a Controlled Natural Language DSML 3

links between the story models and the instructional design used in the serious game.
In order to allow this, we introduced an annotation mechanism. Pedagogical aspects
are specified as formal annotations on top of the story model. On the one hand, this
allows and even gently urges designers to integrate proper pedagogical principles
into the stories. On the other hand, this also helps to prevent that the specification of
the learning and gaming aspects become too entangled inside the models. In other
words, this way of working allows for the integration of pedagogical aspects into
the story model while maintaining a clear distinction between the aspects and the
narrative elements within the model. As such, different experts can concentrate on
issues related to their own concerns (e.g., on the story, on how pedagogical objec-
tives should be realized, etc.) without losing an integrated view.

The tool for designing story models with ATTAC-L is combined with others to
form a model-driven authoring framework that facilitates the production of serious
games at lower cost and with the active involvement of (non-IT schooled) domain
experts (Van Hoecke et al. 2016). A model-driven authoring approach implies that
the authors of the serious game create models, i.e., high-level conceptual specifica-
tions, which are then taken as input by tools to generate the actual game. To allow
for early validation and testing of the story models, the authoring framework also
provides a simulator. This is a kind of interpreter that executes the models directly,
i.e., without code generation. The execution is performed, however, in a simple and
predefined 3D environment with predefined Non-Player-Characters (NPCs) and pre-
defined behaviors adapted to the topic of the serious game. In this way, the simulator
can also be used as a fast prototyping tool. As such, the approach offered by the au-
thoring framework has the potential of lowering some of the barriers that hinder
the production of serious games, i.e., increasing the active involvement of experts
without a technical background in IT and reducing costs.

The methodology and supporting tools for the authoring framework were de-
veloped within the Friendly ATTAC project (Friendly ATTAC 2012). This project
aimed to develop a serious game for youngsters to help them deal with various cyber
bullying issues. Cyber bullying, i.e., bullying via electronic communication tools, is
a relatively recent phenomenon that occurs especially among early adolescents (12
to 15 year olds). Of course, the framework can also be used to develop serious
games for numerous other purposes. Nonetheless, we will use fragments from the
serious game developed in the context of the Friendly ATTAC project to illustrate
the functionality and benefits of the DSML, i.e., ATTAC-L and the Simulator. By
using the ATTAC-L tool the subject-matter experts in the Friendly ATTAC project
(team members without a technical background) were able to be actively involved
in the design of the serious game. It also allowed the team to make the development
process much more iterative and at the same time shorten the overall development
time.

The chapter is structured as follows. Section 2 provides an overview of related
work. Section 3 explains the main principles of the ATTAC-L language. Section
4 discusses the different modeling concepts available in the language. In section
5, the controlled natural language syntax of ATTAC-L is provided and explained,
and in section 6, we show how the syntax is mapped onto a graphical notation to

4 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

turn the language into a graphical modeling language. Section 7 demonstrates the
use of the DSML for an example serious game. In section 8, we explain how the
designed pedagogy can be explicitly linked with the narrative. Section 9 elaborates
on the different tools developed to support the ATTAC-L language. In section 10, we
present our experiences in using the ATTAC-L tool in the context of the development
of a serious game against cyber bullying. Finally, section 11 presents conclusions
and future work.

2 Related Work

In this section, we discuss related work that deals with the modeling and authoring of
story-based serious games and compare these with our own work. Various authoring
tools have been created for designing story-based serious games, such as interactive
digital storytelling tools, e.g., StoryTech (Göbel et al. 2009), <e-Adventure> (Tor-
rente et al. 2008), EDoS (Tran et al. 2010), and StoryBricks (StoryBricks 2014). In
addition, several DSMLs have been developed and used for the same purpose, e.g.,
WEEV (Marchiori et al. 2003), Inform (Nelson 2006) and GLiSMo (Hirdes et al.
2012).

The 80Days project aims to establish a generic theoretical basis for immersive
storytelling merged with cognitive, motivational and emotional aspects of learning
processes. The StoryTec authoring tools (Göbel et al. 2009) were extended in the
context of the 80Days project to enable the specification of adaptation and personal-
ization aspects for targeted digital educational games. Nonetheless, the Story Editor
tool is still using the same visual language that consists of story units (i.e., scene
and complex scene visualized as rectangles) and transition between the different
connected units that are visualized as arrows. There is also the possibility to create
scenes that are not connected to each other. Such scenes will be selected during the
runtime based on the adaptation mechanism. The author can define the expected
time that the learner will stay in a scene. Furthermore, the author could identify
the skill, tasks and goals to be achieved in the scene. StoryTec does allow to create
relationships between different parts of the story and the associated learning objec-
tives and goals, however direct links between high-level pedagogical strategies and
low-level game mechanics cannot be established as we do in our approach. Also,
in contrast to our DSML, support for code-generation out of story models is not
provided.

<e-Adventure> (Moreno-Ger et al. 2008) is a platform for designing adventure
games of the point-and-click style that are mostly used for educational purposes.
The goals of the platform it is to enable people to create games without the neces-
sity of possessing programming skills. For this purpose, <e-Adventure> provides
an authoring tool (Torrente et al. 2008) which includes a mechanism for creating
characters by importing photos of individual characters taken from various angles.
Furthermore, the tool also includes mechanisms for creating items, conversations
and cut scenes, as well as a mechanism for importing pictures that will represent the

Creating Story-Based SGs using a Controlled Natural Language DSML 5

scenes of the game. As such, the story of the game is basically represented as a se-
quence of scenes with the characters of the game positioned in them. The player of
the game will interact with each scene by clicking on specific active parts defined by
the designer to trigger actions. The relationships between the scenes are defined as
connections represented by lines in the authoring tool. The story of the game is then
narrated to the player through pieces of text or audio fragments. In contrast to our
approach, <e-Adventure> is a user-oriented toolset for creating educational games,
rather than a DSML. This makes the <e-Adventure> tool more dependent on its
targeted game environment and limits the end-user to the creation of games of the
point-and-click genre. This type of games only offers limited support for the kind
of behavior change that we targeted in the Friendly-ATTAC project. Our language
can be used with a broader range of game types and platforms for educational game
platforms.

EDoS or Environment for the Design of Serious Games (Tran et al. 2010) is
an interactive authoring environment for serious games that also aim to integrate
educational strategies into the narrative by explicitly linking pedagogical design
principles to particular elements of the narrative. Its purpose is similar to ours: to
help an interdisciplinary team in designing a serious game by offering a number
of standardized steps, starting with the formulation of pedagogical objectives and
continuing all the way up to the point of elaborating a scenario and modeling user
interactions. The outcome of following these standardized steps is “a structured sce-
nario that will be automatically executed by an engine” (Tran et al. 2010, p. 393).
EDoS focuses on the reusability of available components of different granularity and
the creation of serious games for teaching engineering skills. The design process of
EDoS builds on 3 models. The first one is a model of the targeted pedagogical ob-
jectives, e.g., professional competences for an engineer. The second model relates
pedagogical objectives and pedagogical activities in order to construct pedagogical
scenarios for serious games. These scenarios are created using an adapted version
of the Instructional Management Systems – Learning Design language (IMS-LD)
(Koper & Olivier 2004) which only describes the pedagogical content of the seri-
ous game. The third model helps to include the entertaining elements, i.e., the task
model that describes the screens with which the users will interact. In contrast to
our approach, EDoS relies on a specific learning design, namely IMS-LD and thus
provides limited flexibility in this respect.

The StoryBricks framework is an interactive story design system that was discon-
tinued in 2014 (StoryBricks 2014). It provides a visual language based on the vi-
sual programming language Scratch (Resnick et al. 2009) designed by the MIT lab.
Without the need for programming skills. The designers do not need programming
skills to edit the characters in the game and the artificial intelligence of the game
that drives the characters. The designers can set up characters’ inventory, needs and
emotions by using so-called story bricks. The bricks can also be used to specify
what is to be done at certain points in the game. This way, an interactive scenario is
modeled in an implicit way by defining a set of rules expressing which events should
be evoked under what conditions. This enables interaction between the characters in
the game without being programmed explicitly. The StoryBricks approach allows a

6 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

great deal of flexibility in defining the rules for the game logic, but a story cannot
be modeled explicitly. A user experiment performed in the ATTAC-L project (see
section 3) showed that an event-based approach like this would be less suitable for
our target group (experts without programming knowledge). Our work has adopted
the brick concept as basic building block for our language, but we require the de-
signers to model the flow of the story explicitly. Moreover, we provide a mechanism
to model the pedagogical aspects of games.

WEEV or Writing Environment for Educational Video Games (Marchiori et al.
2011) also proposes a DSML to model the narrative content of educational games.
As a proof of concept, this DSML is added on top of <e-Adventure> . In WEEV,
story modeling is based on an explicit representation of the interactions between
the player and the virtual world by means of a state-transition diagram. To reduce
the overall complexity WEEV has language constructs that help to organize the
structure. Whereas WEEV uses a state-transition approach, we use a flow-based
approach. As already mentioned, this decision was informed by the results of a user
experiment that we performed. Moreover, we impose a strict separation between the
specification of the narrative and the pedagogical aspects, while both aspects are
interwoven in WEEV.

The GLiSMo language or Serious Game Logic and Structure Modeling Lan-
guage (Hirdes et al. 2012) is specifically designed to model teaching methods di-
rectly into the game logic of an educational game. For this, it uses the concept of a
serious game brick, i.e., a block representing a single atomic step that can be exe-
cuted in the context of an educational game-environment. This can be related either
to a logical or a pedagogical functionality of the game. The bricks have input- and
output ports. The overall game logic is modeled by linking several bricks through
these ports. This interlinking defines a temporal relationship and data flow between
the bricks, giving the model a data flow -based structure. An abstraction mechanism
is provided in the form of a serious game composite which is used in the same way
as a brick but encapsulates one or more interlinked bricks. As a consequence, the
composite provides a way to organize more complex models. Our research, devel-
oped in parallel, uses similar principles. We have opted, however, for an explicit
flow-based structure that only requires designers to define temporal relationship be-
tween game moves. Pedagogical aspects are expressed using annotations, which
allows for a better separation of concerns (SoC) (Hürsch & Lopes 1995).

Inform (Nelson 2006) is a toolset targeted toward professional narrators. It allows
them to create interactive fiction (e.g., adventure games). Since version 7, Inform in-
cludes a DSML to define all aspects of an interactive fiction, including setting (i.e.,
scene), character setup, and story flow. The DSML uses a CNL. In contrast to In-
form, we opted for a graphical language as most DSMLs do. Also, our DSML does
not allow designers to define aspects such as environment settings and low-level
implementation aspects. Instead, it focuses on the specification of the narrative and
the educational aspects, thereby reducing the complexity and increasing the under-
standability. In our approach, complementary tools specify these kinds of aspects.

Creating Story-Based SGs using a Controlled Natural Language DSML 7

3 Principles of the Language

3.1 Domain-Specific Modeling Language

ATTAC-L is a Domain-Specific Modeling Language (DSML). A domain-specific
language is usually a small language, dedicated and restricted to a particular do-
main (Deursen et al. 2000). It provides abstractions that make it easier and less time
consuming to specify solutions for a particular class of problems in the domain. The
final system is then generated from these high-level specifications (i.e., models)
(Kelly & Tolvanen 2007).

By using suitable abstractions and building on the vocabulary of the problem
domain, a domain-specific language enables domain experts to understand, validate
and often even develop specifications autonomously. Luoma et al. (2004) showed
that DSMLs require less modeling work and that this modeling work could often
be carried out by persons with limited programming experience. They found a clear
productivity increase.

3.2 Controlled Natural Language

Various authors have presented arguments in favor of using a DSML for model-
ing (serious) games (e.g., Dobbe (2007), Furtado & Santos (2006), Guerreiro et al.
(2010), Marchiori et al. (2011)). However, for most DSMLs, the gap between the
user’s mental model and the syntax of the DSML is still big. For instance, Mar-
chiori et al. (2011) is using state transition diagram principles. The DSMLs pro-
posed by Dobbe (2007), Guerreiro et al. (2010) and Furtado & Santos (2006) are
still more oriented towards game developers than towards experts with a non-IT
background. Contrary to these approaches, our DSML uses a Controlled Natural
Language (CNL) (Wyner et al. 2010), which is a strict and controlled subset of
natural language. Using a CNL syntax for our DMSL provides an easy and human-
readable, flexible and expressive way to specify the story of the game. This makes
it significantly easier for people without programming knowledge to understand as
well as to create models. In this way, collaboration within multidisciplinary teams
can be better supported. Compared to the use of natural language, a CNL approach
offers the advantage that it still allows for fully automatic processing of the specified
models needed for our model-driven approach.

3.3 Flow-Oriented Modeling

ATTAC-L’s CNL provides the necessary means to model the narrative of a serious
game. The story is specified as a number of interactive scenarios. A scenario is

8 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

a flow-oriented specification of the different possible actions (called game moves)
and choices in the narrative. The result is called a story model.

We have opted for a flow-oriented specification based on a small user experiment
focused on determining which modeling approach was most convenient for people
without a programming background. In this study, we compared three approaches:
a state-based, a flow-based, and an event-based approach. The participants (7 males
and 13 females between the age of 25 and 36, all without programming knowledge)
were presented with scenarios using the three approaches. Inquiries were made
about the ease of use, convenience, comprehensibility and the general preferences
of the participants. The flow-based representation was clearly the most convenient
one, followed by the rule-based approach, and the state chart, which was almost
unanimously marked as the least favourite one.

3.4 Graphical Language

A DSML is often graphical in nature, i.e., using visual notations. Well-designed
visual notations are known to be more accessible for people without a technical
background as they allow them to grasp large amounts of information more quickly
than large listings of textual specifications (Moody 2009).

With this in mind, ATTAC-L also uses graphical notations. This means that the
natural language sentences used to describe the narrative of a serious game (and
expressed in the CNL syntax of ATTAC-L) are expressed using visual notations
instead of plain text. The main graphical construct is the ‘brick’ concept, adopted
from Storybricks. Bricks are used for a wide range of things, from modeling the
stories by expressing narrative events or specifying the control of the interactivity,
to specifying the overall story flow or even the pedagogical aspects of the serious
game.

3.5 Open Narrative

The CNL syntax used for ATTAC-L provides a mechanism for creating open narra-
tives. This means that the CNL syntax does not required every involved game entity
to be directly identified while the actions are specified. Instead, the syntax allows
for the specification of interactions between highly generic described game enti-
ties, based on type, property, state or a combination of these. During gameplay, a
specific instance of a narrative conforming to this general description is generated,
resulting in a slightly different progression of the game narrative on each run. The
advantage of this is that the game can be played several times without becoming too
predictable.

Creating Story-Based SGs using a Controlled Natural Language DSML 9

4 Modeling Concepts

This section discusses the different modeling concepts available in the language for
modeling a story-based serious game. We first describe the modeling constructs for
specifying the game narrative. Next, we outline the mechanism for specifying and
integrating other game aspects such as pedagogical aspects into the story model.

4.1 Modeling Concepts for the Game Narrative

4.1.1 Game Moves

To model a narrative, we use the concept of a game move. Lindley (2005) defines
a game move as a single step or turn taken by any player at any time during the
execution of a game. However, in the context of ATTAC-L, a game move represents
one individual step in the game narrative, performed either by the player or a non-
playable character (NPC).

Modeling a narrative entails defining game moves and linking them to each other
to denote their relative order in the flow of the story. Game moves are specified using
the CNL syntax (see section 5 for its definition).

4.1.2 Bricks

Because we are using a CNL syntax, game moves are expressed as natural language
sentences. But as ATTAC-L is a graphical modeling language, the game move sen-
tences are composed in a graphical way by connecting bricks (Van Broeckhoven and
De Troyer 2013) (see Fig. 1). In the context of a game move, a brick corresponds
to a meaningful unit in the story: an act to be performed, a tangible object that can
perform or undergo the act, a state, or a value. A brick is graphically represented as
rectangle containing a word or word-group (see Fig. 2a). Bricks must be intercon-
nected according to the rules of our controlled natural language (see section 5) (Van
Broeckhoven et al. 2015b). The result is a construct that reads as a simple sentence
and denotes a game play activity (see Fig. 1). The bricks used to construct the game
moves are so-called game-move-bricks.

For composing game moves into a narrative, i.e., expressing their relative order,
we provide the following common control structures: sequence, choice, and concur-
rency. Sequences are used to signify that game moves follow each other, thus result-
ing into storylines. Choice is used to express alternative storylines, i.e., branching.
Concurrency is used to indicate that storylines should be performed in parallel. In
addition, ATTAC-L provides an extra control structure to increase the language’s
expressiveness, called ‘order independence’. This control structure allows modelers
to specify that different storylines must all be performed regardless of the order. To
avoid any link with programming constructs, the control structures are also visu-

10 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Fig. 1: A graphical representation of a game move. This representation reads as
follows: “Player replies-with a message ‘Everybody has their own taste’ on the last
message” and is composed of 5 bricks.

ally represented by bricks, called control-bricks. Figs. 2c, 2d, 2e and 2f show the
graphical representations of the control bricks. Fig. 3 illustrates their use.

(a)
Game-move

(b)
Value

(c)
Sequence

(d)
Choice

(e)
Order ind.

(f)
Concurrence

Fig. 2: Several types of bricks

A sequence of game moves and/or control bricks is called a story-flow. Note the
difference between a storyline and a story-flow: the former only involves sequences
of game moves, and thus literally represents a single linear ‘line’ of progression
of the narrative, while the latter may also include control structures, i.e., choice,
concurrency and/or order independence, and thus can express different alternatives
of how a story could evolve during a performance.

Next to the regular game-move-bricks and control-bricks, there are also two other
types of bricks: scenario-bricks and annotation-bricks associated respectively with
the modeling concepts scenarios and annotations. These are explained in the next
sections.

(a) Two game moves in sequence (b) A choice between two game moves

Fig. 3: Connecting bricks to form storylines and story-flows

Creating Story-Based SGs using a Controlled Natural Language DSML 11

4.1.3 Scenarios

It is not uncommon that stories result in vast models with rich and complicated
story-flows. To provide a structuring mechanism for such story-flows, the concept
of scenarios was introduced. It allows for the decomposition of a story model into
smaller logical units. The principle of using scenarios is analogous to the structuring
of theater and film scripts whereby the story is divided into separate scenes. In con-
trast to scenes in theater and films scripts, scenarios in ATTAC-L can be reused in
various places throughout the story model. To accommodate reusability, scenarios
are separately defined and given a name that acts as a placeholder for the content
of a scenario in the story-flow. The scenarios are used in a story-flow by means of
a scenario reference-brick or shortly scenario-brick. Upon encountering a scenario-
reference-brick during interpretation of a story model, the content of the referenced
scenario is inserted as if it was an integral part of the story-flow. Note that scenarios
can also be nested inside other scenarios.

An example of a simple story model is given in Fig. 4. The example depicts a
scenario from the Friendly ATTAC serious game named ‘Direct minor male Ugly
and Stupid’. In this scenario, the player is expected to react adequately on a cyber
bullying situation. The scenario is composed of two nested sub-scenarios: one in
which the actual bullying situation occurs (‘Ugly and Stupid’ defined in the middle
of the figure) and another in which the possible reactions of the player are listed
(‘Player chooses Ugly and Stupid’ defined at the bottom of the figure). The actual
scenario is defined by ‘chaining’ the two sub-scenarios. This is done by connecting
the corresponding scenario-bricks with a sequence-brick (top of the figure). The two
sub-scenarios are discussed in more detail in the section 7.

4.2 Non-Narrative Modeling Concepts: Annotations

The concept of annotations enables the modelers to specify additional information
to related parts of the story model, e.g., pedagogical relevant information and inter-
ventions, important gameplay aspects, or noteworthy visual and behavioral aspects
of the environment (Van Broeckhoven et al. 2015a). The annotations add this in-
formation on top of the story model. This prevents that the information becomes
too entangled with other aspects of the serious game. Pedagogical annotations, for
example, enable the modelers to relate the pedagogical aspects of the serious game
to the story-flow while maintaining a clear separation from the narrative content.

Annotations are represented graphically by means of small, square-like bricks
called annotation-bricks. Annotation-bricks are “attached” to game moves or sce-
narios (depending on their type). The content of an annotation will pop up in the
ATTAC-L tool when an annotation brick is clicked (described in more detail in the
section Tool Support) (see Fig. 5 for an example).

Each annotation-brick contains an icon that indicates its type. The type of the an-
notation determines the structure of the content of an annotation. Currently, we dis-

12 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Fig. 4: Example storyline model divided into scenarios.

tinguish between two main types of annotations. The first type are the pedagogical
annotations (PA) which are used for specifying pedagogical aspects of the serious
game. The second type are the gameplay annotations which are used for specifying
aspects related to gameplay, such as the game environment (e.g., for indicating a
change of the scene) and NPCs (e.g., emotions that should be expressed or behavior
that should be displayed). Note that this annotation system is extensible in the sense
that other types of annotations can be defined and used when needed. For instance,
the language can be extended with annotations to indicate specifications related to
the mode(s) of interaction. An overview of the current annotation classification sys-
tem is given in Fig. 6.

For the purpose of this chapter, we concentrate on the PAs because of their spe-
cific relation to the domain of serious games. PAs are divided into action PA, objec-
tive PA, pedagogical theory PA, and method PA:

• Action PAs are used to specify pedagogic actions that should be performed at
particular moments in the story, for instance: providing additional information,
giving assistance or feedback. In other words, action PAs are concrete pedagog-
ical interventions. Action PAs are associated with a particular game move and

Creating Story-Based SGs using a Controlled Natural Language DSML 13

Fig. 5: Annotated storyline model from figure 4.

indicate that these interventions should be performed simultaneously with the
game move. See Fig. 7a for an example of an assist PA.

• Objective PAs are used to explicitly relate pedagogical objectives, such as learn-
ing goals or behavioral change objectives, to scenarios or parts of the story-flow.
An example of such an objective would be ‘to know the multiplication tables
of 1 to 10’ or ‘to understand the impact of cyber bullying’. They can only be
associated with scenarios. See Fig. 7b for an example of an objective PA.

• Pedagogical theory PAs are used to specify the underlying pedagogical theory
that is applied in order to achieve the pedagogical objectives (e.g., behaviorism,
constructivism, . . .). These PAs are attached to a complete story model or a sce-
nario. See Fig. 7c for an example of a theory PA.

14 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Fig. 6: The annotation classification.

• Method PAs are used to specify the particular pedagogical methods used to
reach particular pedagogical objectives in the story or the scenarios. Examples of
such methods are drill & practice, problem-based learning, or learning-by-doing.
Since many different methods are possible - each with different characteristics -
this annotation type is an abstract one (cf. abstract class in UML), i.e., we can-
not define all of its properties. Concrete subtypes can be defined for different
methods. For instance, the role-modeling PA has been defined for the ‘modeling’
or ‘observational learning’ principle used in the Social Cognitive Theory (SCT)
(Bandura 1991). Similar to Objective and Pedagogical PAs, Method PAs are also
attached to scenarios.

Creating Story-Based SGs using a Controlled Natural Language DSML 15

(a) Pedagogical Action Annotation

(b) Pedagogical Objective Annotation (c) Pedagogical Theory
Annotation

Fig. 7: Several types of annotations (close-ups taken from Fig. 18)

5 ACE-Based Syntax

As motivated in the introduction, we use a CNL for the syntax of the game moves.
The CNL used is a subset of Attempto Controlled English (ACE) (Fuchs et al.
1999). We opted for ACE because its expressiveness is well suited for our pur-
pose and because it has a solid foundation, namely: first order logic. ACE expres-
sions are formulated like plain English sentences written in the third person singular
simple tense. They describe logical terms, predicates, formulas and quantification
statements. Furthermore, ACE defines two word classes: function words (determin-
ers, quantifiers, negation words, . . .) and content words (nouns, verbs, adverbs and
prepositions).

The use of ACE for the syntax of game moves implies that game moves are
expressed in 3rd person simple tense. This implies that narratives are modeled as if
they were told from a narrator’s point of view. Similar to ACE, the ATTAC-L syntax
distinguishes between function words and content words. Our set of content words
consists of nouns, verbs, and adjectives. These correspond respectively to entities,
acts, and states in the story-flow. Our set of function words consists of determiners,
negation words, pronouns, and the copula ‘to be’. Unless otherwise specified, words
are always written in lower case letters. Also in accordance with ACE, sentences are
always composed of two main parts: a subject followed by a predicate. The former

16 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

describes the entity that invokes the action and is called a noun phrase, while the
latter describes the action itself and is expressed as a verb phrase.

The overall syntax for game moves in Extended Backus Naur Form (EBNF) (ISO
1996) is as follows:

game−move : s u b j e c t p r e d i c a t e ;
s u b j e c t : noun−p h r a s e ;
p r e d i c a t e : verb−p h r a s e ;

In the following sections we describe the formal syntax for the different types of
phrases. In the EBNF excerpts, the formal definitions of some general expressions
have been omitted for simplicity. This includes rewrite-rules for the most basic el-
ements that are part of a game move expressions, such as those for noun, pronoun,
verb, value etc. They amount to regular expressions for words, numbers, quoted
strings, and more. The following listing summarizes those elementary parts and de-
scribes how they should be interpreted:

• noun: a lowercase word. Semantically, this can be any singular common noun as
determined by the set of content words.

• nouns: a lowercase word. Semantically, this can be any plural common noun as
determined by the set of content words.

• proper: a lower or uppercase word, but always starting with an uppercase charac-
ter. It may contain dashes (‘-’). Semantically, this may refer to predefined proper
nouns contained in the set of content words.

• adjective: a lowercase word. Semantically, this can be any adjective contained
in the set of content words.

• verb: a lowercase word. Semantically, this can be any 3rd person singular verb
as determined by the set of content words.

• passive-verb: a lowercase word. Semantically, this can be any past participle
form of a verb as determined by the set of content words.

• value: any of:

– quoted string
– number
– sequence of values separated by comma (‘,’), enclosed by brackets (‘[]’)
– sequence of key-value assignments separated by comma (‘,’), enclosed by

braces (‘{}’)

• determiner: the set of all supported determiners as defined by the set of function
words (‘a’, ‘an’, ‘one’, ‘1’, . . .)

• quantifier: the set of all supported quantifiers as defined by the set of function
words (‘some’, ‘all’, ‘two’, ‘2’, . . .)

• copula: ‘is’ or ‘are’
• preposition: the set of all supported quantifiers as defined by the set of function

words (‘in’, ‘to’, ‘out’, ‘until’, . . .)

Creating Story-Based SGs using a Controlled Natural Language DSML 17

5.1 Noun Phrases

The simplest form of a noun phrase is a proper noun that refers to an entity by means
of a name. Nouns always start with an upper case letter and may contain upper and
lower case letters or digits (e.g., ‘X1’, ‘John’). Spaces are not allowed, but hyphens
can be used to form word-groups (e.g., ‘Mr-Smith’). The proper noun ‘Player’ is
reserved to refer to the player or the character that the player is controlling.

A noun phrase can also refer to a game entity in an indirect way by means of a
countable common noun. In this case, a common noun is preceded by a determiner
or a quantifier, for instance ‘a door’, ‘2 doors’, ‘some persons’, ‘all keys’. This type
of noun phrase can be used to refer to a single entity (e.g., ‘the house’, ‘a door’,
‘some person’, ‘one key’) or to multiple entities (e.g., ‘2 doors’, ‘some persons’,
‘all keys’). This type of noun phrase is used to refer to one or more entities in a
generic way. This means that on different ‘runs’ of the story-flow, different entities
conforming to this noun phrase could be selected. This allows narrative designers to
create less predictable stories.

Variables are a way to assign a proper name to a countable common noun phrase,
for instance ‘a person Mr-X’. In this case, the proper name can be used to refer
to the same entity in subsequent game moves. This corresponds to an inline and
implicit declaration of a variable in programming languages. For people without
programming knowledge, this approach is more natural and likely easier to grasp
than the use of explicit variable declarations.

Adjectives can be used to make a countable common noun phrase more specific.
As such, the set of entities out of which a specific noun (i.e., game entity) is se-
lected at run-time can be narrowed down. Adjectives can be positive, superlative or
conjoined (e.g., ‘the last person’, ‘two highest trees’, ‘a sad and angry person’).

Genitives are used to refer to nouns that have a possessive association with an-
other noun. Genitives are constructed by appending the noun phrase of the posses-
sor to the noun phrase of the possession using the preposition ‘of ’, for example ‘the
back-pack of Jack’ or ‘two items of a person’. Note that in Standard English, the
use of the preposition ‘of’ might sound odd in some cases (e.g., ‘two apples of a
tree’ as opposed to ‘two apples from a tree’). Nonetheless, we have refrained from
introducing extra prepositions in order to keep the syntax of ATTAC-L as simple as
possible.

Values (text, numbers, lists and parameter-value tuples) can be used as noun
phrases when their noun can be deduced from the context of the game move. For ex-
ample, when the game move expresses a speech action, the action can only involve
a text-value. The type of a value can be specified directly by prepending a common
noun (e.g., ‘a message “Hello!” ’).

The formal syntax for the noun phrases is as follows:

noun−p h r a s e : p r o p e r
| va lue−noun−p h r a s e
| common−noun−p h r a s e
| common−noun−phra se , ’ of ’ ,

18 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

s ing−common−noun−p h r a s e ;
va lue−noun−p h r a s e : v a l u e

| d e t e r m i n e r noun v a l u e ;
common−noun−p h r a s e : s ing−common−noun−p h r a s e

| mult−common−noun−p h r a s e ;
s ing−common−noun−p h r a s e

: d e t e r m i n e r , [a d j e c t i v e] , noun ,
[p r o p e r] ;

mult−common−noun−p h r a s e
: q u a n t i f i e r , [a d j e c t i v e] , nouns ,

[p r o p e r] ;

5.2 Verb Phrases

A verb phrase corresponds to the predicate of a sentence and describes the actual
activity performed in a game move. Generally, a verb phrase starts with the conju-
gated verb. Depending on the type of verb used, direct and indirect passive objects
can be included in the verb phrase. While an intransitive verb stands on its own
(e.g., ‘to wait’), a transitive verb involves only one direct passive object (e.g., ‘to
see something ’), whereas a di-transitive verb involves both a direct and indirect
passive object (e.g., ‘to give something to somebody ’). Some verbs can also be
associated with a preposition. In this case, the combination verb-preposition is con-
sidered as a whole and is written as a hyphenated combination (e.g., ‘X walks-to Y’
or ‘X looks-at Y’).

The formal syntax for the verb phrases is as follows:

verb−p h r a s e : ve rb
| verb , noun−phra se ,

[p r e p o s i t i o n , noun−p h r a s e] ;

5.3 Adjective Phrases

It is possible to use an adjective phrase as part of a verb phrase. Similar to verbs, an
adjective phrase can be intransitive (e.g., ‘happy’, ‘sad’) or transitive (e.g., ‘angry
with somebody’ or ‘afraid of something’). In the latter case, the adjective is always
associated with a preposition and must be written as hyphenated combination (e.g.,
‘angry-with X’).

The copular verb ‘to be’ serves a special purpose. Copular verbs establish a link
between the meaning of a predicate of the sentence and its subject. This means that
they can be used to set a state for the subject. In order to do so, the copular verb is
suffixed by an adjective phrase, for example ’X is happy’ or ‘X is angry-with Y’.

Creating Story-Based SGs using a Controlled Natural Language DSML 19

The formal syntax for the adjective phrases is as follows:

a d j e c t i v e −p r a s e : a d j e c t i v e , [noun−p h r a s e] ;

The formal syntax for the verb phrases, also taking adjective phrases into account
is as follows:

verb−p h r a s e : ve rb
| verb , noun−phra se ,

[p r e p o s i t i o n , noun−p h r a s e]
| copu la , [’ not ’] , a d j e c t i v e −p r a s e ;

5.4 Special Sentence Structures

Some special structures are added to provide the modeler with extra flexibility or
expressive power. The phrases ‘there is’ and ‘there are’ are introduced to allow
the modeler to explicitly declare variables. These phrases are followed by a noun
phrase with a variable (e.g., ‘there is a person Mr-X’ or ‘there are two persons The-
Johnson-Brothers’). The modeler can express any sentence containing a transitive
or di-transitive verb phrase in a passive voice. A passive voice sentence uses the
copular verb ‘to be’ in combination with the past participle tense of the verb. The
subject and the direct passive object are then swapped (e.g., ‘X steals an item of
Player’ becomes ‘an item of Player is stolen by X’). This option increases flexibility
by allowing the modeler to create sentences where the character that performs the
action is unknown, i.e., when no subject would be present in the active equivalent
of the sentence, for instance ‘an item of Player is stolen’. The formal syntax for the
special sentences is as follows:

p a s s i v e−verb−p h r a s e : copu la , p a s s i v e−verb ,
[’ by ’ , noun−p h r a s e]

| c o p u l a p a s s i v e−ve rb noun−phra se ,
[’ by ’ , noun−p h r a s e] ;

d e f i n i t i o n : ’ t h e r e ’ , ’ i s ’ , d e t e r m i n e r , noun , va lue ,
p r o p e r

| ’ t h e r e ’ , ’ a re ’ , q u a n t i f i e r , nouns , va lue ,
p r o p e r ;

20 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

6 Mapping the Syntax to Bricks

The CNL-based game moves are expressed by means of our graphical language
constructs, i.e., bricks. The game-move-bricks contain words or word-groups and
are connected to each other in accordance with the syntax rules of the language.

A game-move-brick containing a noun phrase is called a noun-brick and refers
to a tangible entity, i.e., an object, an NPC or a player (see Fig. 8a for examples).

Adjectives used for noun-phrases are contained in the noun-brick because they
are part of the noun-phrase (see Fig. 8b for an example). Adjectives used as adjective
phrases are placed in an adjective-brick followed by a noun-brick in case it is a
transitive adjective phrase (see Fig. 8c).

To introduce a variable, an extra noun brick containing the proper name of the
variable is joined at the end of the noun-brick (see Fig. 8d). This allows the variable
to be used independently in subsequent game moves.

Values are represented by value-bricks (see Fig. 8e) and can only be connected
to the end of a game move. Visually, they are delineated by a dotted line, whereas
regular game-move-bricks have a solid border. As values can be text and numbers,
but also lists and parameter-value tuples, value-bricks should support the specifica-
tion of complex data. Therefore, value bricks can contain multiple lines or key-value
combination (see second example in Fig. 8e).

A game-move-brick containing a verb is called a verb-brick. It connects to noun-
bricks and/or adjective-bricks. In the case of a di-transitive verb, the associated
preposition serves as an extra connecting point for the indirect passive object (see
Fig. 9 for illustrations of the most common cases).

As explained, game moves containing a transitive or a di-transitive can also be
expressed in a passive form (Fig. 9f represents the passive equivalent of Fig. 9e).
In passive sentences, the placements of the indirect passive object and the direct
passive object (i.e., the original subject) can be interchanged (Fig. 9f and 9g can
be used interchangeably to represent the same game move). In some cases, the ‘by’
part of the sentence can be omitted (see Fig. 9h). The subject of the game move is
then assumed to be any NPC.

7 Overall Example

To illustrate the use of the language for a more elaborated narrative, we provide
fragments from the serious game developed in the context of the Friendly ATTAC
project. The overall story of the game is composed out of several sub-stories, which
are all modeled as separate scenarios. Annotations are used to associate several per-
formance metrics to the scenarios that are tracked as the player progresses through
the game. Based on the player’s progression, the overall game narrative is adapted
by the runtime environment to the player’s performance.

The first example is a scenario in which the player is expected to react adequately
on a cyber bullying situation (introduced earlier in section 4.1.3 see Fig. 4). The

Creating Story-Based SGs using a Controlled Natural Language DSML 21

(a) (b) (c)

(d) (e)

Fig. 8: Noun and adjective phrases

(a) (b) (c)

(d) (e)

(f) (g)

(h)

Fig. 9: Verbs connecting noun and adjective phrases, forming game moves

scenario is composed of two nested scenarios: one in which the actual bullying
situation occurs (‘Ugly and Stupid’), and another in which the possible reactions of
the player are enlisted (‘Player chooses Ugly and Stupid’). Both sub-scenarios are
‘chained’ by connecting the corresponding scenario-bricks with a sequence-brick
(at the top of Fig. 4).

The ‘Ugly and Stupid’ scenario starts with a bully (referred as ‘Target’) posting
an insulting message on the in-game social profile page of some NPC, referred as ‘a
victim Y’. The noun ‘a victim’ indicates that any in-game character that fits the role
of a victim could be selected (at runtime) to fulfill the role of the targeted NPC. The
pronoun ‘Y’ is used to name this selection. This allows the modelers to refer to the
selected character further on in the scenario simply by means of ‘Y’. The use of this
construct (‘a victim Y’) allows the game to select different NPCs in each run. This
will reduce predictability and increase the replay value of the game.

22 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Next, two other characters (defenders) express their disapproval of the message
that has been posted. The noun ‘a defender’ has a similar purpose as the victim
noun, but in this case, at runtime the game will select NPCs that are inclined to react
against bullying situations. The adjective ‘last’ in ‘the last message’ allows the mod-
elers to refer to the last specified entity indicated by the noun, here: the message that
was posted by Target. Both game moves are combined with an order-independence
structure, indicating that both should occur, but the order is unspecified because it
is irrelevant.

The ‘Player chooses Ugly and Stupid’ scenario specifies the choices that will
be presented to the player. The use of ‘Player’ as subject indicates that for this
game move, interaction by the player is required. In this case, the player has the
choice between 4 options: insulting the bully, ignoring the situation, or two ways of
comforting the victim.

8 Linking Narrative and Pedagogy

During the design of a serious game, designers are not only faced with the challenge
of creating a compelling narrative, but also with the additional challenge of incor-
porating suitable learning theories and pedagogical methods into their narratives in
order to ensure that the game can achieve the defined objectives. To create the link
between the story model and the pedagogical methods developed for the serious
game, we have introduced the concept of annotations, in particular: a collection of
PAs (for the overview of the PA types, see section 4.2).

It is not possible to provide a single recipe for integrating an instructional design
strategy into a serious game as each learning theory and pedagogical method has
its own unique principles. In (Van Broeckhoven et al. 2016), a general description
of the process of linking a game’s narrative with pedagogical theories and method-
ological design strategies has been elaborated and illustrated with two specific cases,
namely: Social Cognitive Theory (SCT) (Bandura 1991) and the Intervention Map-
ping Protocol (IMP) (Eldredge et al. 2011).

In this chapter, we illustrate how narrative and pedagogical aspects have been
linked in the serious game developed for the Friendly ATTAC project. To come to a
well-grounded and effective game, the Friendly ATTAC team used the Intervention
Mapping Protocol (IMP). IMP has been developed to aid in the systematic planning
and design of behavioral change programs focused on health issues. IMP investi-
gates the behaviors that can help to reduce the targeted problem. These behaviors
are set forth as performance objectives. Furthermore, change objectives must be
established. These express what needs to be changed in order to achieve the perfor-
mance objectives. The change objectives present the basis for the development of
the actual pedagogical interventions in the serious game.

An example of a performance objective for the cyber bullying program developed
in the Friendly ATTAC project is: ‘always comfort the victim’. For this performance

Creating Story-Based SGs using a Controlled Natural Language DSML 23

Fig. 10: A scenario with a performance objective ‘always comfort the victim’ and
two sub-scenarios (both detailed in Fig. 16 and Fig. 17).

objective, the following change objective was defined: ‘Recognize that by comfort-
ing the victim, you are making the victim feel better’.

To illustrate how the linking is achieved, we use the story model given in Fig. 10.
The scenario that we use here focuses on the performance objective ‘always comfort
the victim’.

To specify which part of a story model is dealing with a particular performance
objective, we use a special objective PA called a performance objective PA. This
type of annotation is associated to a scenario and has a parameter to state the per-
formance objective. Fig. 10 shows an example of a performance objective PA. The
performance objective is ‘always comfort the victim’. In this example, the scenario
is divided into two sub-scenarios, each dealing with one or more change objectives.

To indicate with which change objectives the sub-scenarios are dealing, the sce-
narios are annotated with another kind of objective PA called change objective PA.
This type of annotation has parameters to refer to the related change objective, to
its encompassing performance objective, and to the determinants it is expected to
change. The parameters also include a description (for documentation purposes).
The sub-scenarios of the scenario ‘Learning about comforting’ used in Fig. 10 are
‘Introduction to comforting’ (elaborated in Fig. 16, fully annotated in Fig. 18) and
‘Experimenting with comforting’ (elaborated in Fig. 17, fully annotated in Fig. 19).
The first one is annotated with change objectives related to the determinant ‘knowl-
edge’. This implies that the scenario should contain intervention methods specif-
ically tailored to help increase the player’s knowledge about comforting a victim.
The second sub-scenario focuses on the determinants ‘outcome expectations’ and
‘perceived social norms’ and has two change objectives. This sub-scenario should
thus include intervention methods that affect these determinants with the aim of
achieving the change objectives.

Intervention methods identified with the help of IMP can be embedded in a story-
flow in two ways: (1) as game mechanics that are complementary to the story-flow,

24 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

or (2) as events expressed directly in the story. In order to express that an interven-
tion method is operationalized through game mechanics, action PAs are used. To
express the link with the change or performance objective, an action PA includes
an argument that denotes the targeted objective. In Fig. 19, a score PA (special kind
of action PA) is used to express that a scoring mechanism is used as an interven-
tion method for achieving the change objective ‘Sn1: Recognize that your friends
expect you to comfort or provide advice to the victim’. Similarly, the same figure
uses an assist PA (special kind of action PA) to help achieve the change objective
‘Oe1: Expect that by comforting the victim, he/she will feel better’. This annotation
expresses that at this point in the story-flow some assistance must be provided when
the player takes too long to make a choice. As illustrated by the example, this can
be done in the form of an NPC that makes the player aware that a victim will feel
better when he comforts him, thus ‘directing’ the player to making the right choice.

9 Tool Support

Tool-support is provided for the creation of educational game scenarios using the
ATTAC-L language. The developed toolset was used in the context of the Friendly
ATTAC-project. The toolset consists of three major parts: a web-based graphical
modeling tool for specifying educational game narratives, an export module for
translating the model to executable code for the targeted game environment and
a simulator for direct interpreting and fast-prototyping of the ATTAC-L models.

9.1 ATTAC-L Editor

The ATTAC-L editor (see Fig. 11) allows modelers to specify a story model by
means of a drag-and-drop functionality. Extra assistance is provided by means of
automatic layout management and an auto-complete suggestion mechanism for the
construction of game moves. Given the fact that the use of colors can help to increase
the legibility of graphical models, the possibility for colorization of the graphical
models is included as well. Note that a fixed color scheme for bricks is not imposed
by the ATTAC-L language specification. Instead, the modelers can define their own
color scheme or choose from a set of predefined ones.

The editor is implemented as a web-based tool, which inherently allows it to
operate on a broad range of platforms while avoiding the requirement for installation
on a local machine. Currently, the tool runs in major browsers like Google’s Chrome,
Mozilla’s Firefox, Microsoft’s Internet Explorer and derivatives. Modelers have the
option to store and load their created models online to and from ‘the cloud’, or to
export them from or import them to local storage facilities. The tool generates a
JSON-based, machine interpretable data-structure representing the modeled story

Creating Story-Based SGs using a Controlled Natural Language DSML 25

(a) The editor pane. (b) Export to JSON.

Fig. 11: The ATTAC-L editor

that serves as input for the tool’s export module explained in the next section (see
Fig. 11b).

9.2 Export Module

The export module generates executable code or scripts from a story model for a
specific targeted game environment. The basis for this translation is the interpretable
JSON data-structure that is exported by the ATTAC-L editor.

As part of this module, an Event Script Generator (ESG) has been developed,
which translates a (JSON encoded) model into Event Scripts. These scripts are files
in XML-format and are specific for the target game environment. They contain a
high-level description of the event driven specifications of the narrative. Currently,
the scripts are specific for the game environment used for the ATTAC-L project.
However, other game environments can be supported by developing new specific
event script generators for these environments.

9.3 Simulator

The simulator is a separate module that interprets an ATTAC-L model directly and
executes the story in a simple and predefined 3D environment with predefined NPCs
and behaviors. As such, the simulator provides a fast way to verify and test the
modeled stories (Fig. 12a shows a screenshot from the simulation of the example
from Fig. 15).

26 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

(a) The simulator in action. (b) Detail of the scenario log.

Fig. 12: Simulating the scenario from Fig. 15.

(a) Talking with an NPC. (b) The player is presented with a choice.

Fig. 13: Interactions within the simulator.

In light of the Friendly-ATTAC project, the current simulator targets stories re-
lated to cyber bulling. The stories can be executed in three different but predefined
environments: a park, a house, and an office. Each environment has a number of
predefined locations. For instance, the park has a playground, a fountain, a football
field and a sitting area; whereas the house has different rooms. A couple of options
are available to further customize the environment, e.g., day/night and weather con-
ditions. There are also nine predefined NPCs, a fixed set of items and an inventory
for the player. As the domain is cyber bulling, there is explicit support for social
media such as an e-mail application interface, a Twitter interface, a Facebook-like

Creating Story-Based SGs using a Controlled Natural Language DSML 27

(a) Text-messaging (b) E-mail

(c) Twitter (d) Half-life, a Facebook-like social network.

Fig. 14: The social media interfaces.

interface, and a text-messaging interface for mobile phones (for examples, see Fig.
14). Those interfaces are shown as an overlay when a related action is performed
in the story. However, the user can always inspect the social media interface using
function keys.

To be able to execute the game moves defined with ATTAC-L, the verbs used
in the game moves are associated with specific behaviors for the NPCs. Some gen-
eral behaviors have been predefined for verbs, such as ‘walks-to’, ‘goes-to’, ‘says-
to’, ‘gives-to’, ‘picks-up’, and ‘grabs’. In addition, behaviors have been defined
for the common verbs used in cyber bullying, for example for ‘chats-to’, ‘tweets’,
‘re-tweets’, ‘follows-on’, ‘emails-to’, ‘posts-on’, ‘comments-on’, and ‘likes’. Con-
versations among NPCs and between NPCs and the player, which are specified in
ATTAC-L with the verb ‘says-to’, are simulated using pop-up dialog boxes (see Fig.
13a). The NPC that is talking is shown at the left side of the dialog box.

The simulator keeps track of the steps followed and displays them in a scenario
log (see Fig. 12b, a detail of the scenario log of Fig. 12a)). The last performed
step is shown at the top of the list and is marked in green. When the player has to

28 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

make a choice, the possible options are showed on the screen. Once the user of the
simulator selects an option, the story will continue in accordance with that choice
(see Fig. 13b). This allows to try out different paths in the simulated game.

The simulation can be done in two modes. In the ‘step-by-step’ mode, the sim-
ulator performs the game moves one by one. The mode requires the user of the
simulator to explicitly instruct the Simulator to continue after each step. In the ‘con-
tinuous’ mode, the Simulator will stop only on occasions when the player needs to
make a choice or when the user presses the ‘pause’ button.

The simulator takes the JSON data structure of a story model as input and is
implemented using Unity1. Unity’s built-in path finding system (Nav Mesh)2 is used
to simulate the movement of the characters. JSONObject3 is used for parsing the
JSON data structure. All scripts are written in C#.

The current simulator is tailored towards the cyber bullying domain but by pro-
viding other predefined NPCs and behaviors, the simulator can be adapted for use
in other domains (see also future work).

10 Evaluation

The DSML and its toolset were used in the interdisciplinary Friendly ATTAC project
(Friendly ATTAC 2012) for developing a serious game against cyber-bullying. The
team was composed of game developers, narrative designers, and people from com-
puter, social and healthcare science. The team applied IMP (Eldredge et al. 2011) to
identify intervention methods that could be incorporated in the serious game. The
social scientists in the team developed the story models using the ATTAC-L editor
with some support by the developers of ATTAC-L. In total, 7 story models were
developed consisting of 91 separate situations: 40 ‘neutral’ situations, 26 minor and
25 severe bullying-situations. Using the pedagogical annotations of ATTAC-L, the
selected pedagogical strategies were documented and the intervention methods were
integrated into the story models. The story models were translated into game-engine
specific event scripts by the Event Script Generator. Development of the game envi-
ronment and scenes was also done in a model-based manner by means of a Sandbox
Editor (Van Hoecke et al. 2016). The sandbox exports this environment model in the
form of XML files.

In parallel with the social scientists, the game developers worked on the imple-
mentation. This included the translation of the domain vocabulary into implementa-
tion concepts, i.e., the domain actions and behaviors. For the cyber bullying domain,
for instance, they implemented behaviors such as ‘send-to’ and ‘post-on’. Further-
more, they created those parts of the game that would not be generated, like the user
interface, levels and gameplay code. Finally, the developed code was used in com-

1 https://unity3d.com/
2 https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/navmeshes
3 https://msdn.microsoft.com/en-us/library/system.json.jsonobject(v=vs.95).aspx

Creating Story-Based SGs using a Controlled Natural Language DSML 29

bination with an interpreter to create a running game from the event scripts and the
environment model (Janssens et al. 2014).

In addition to the use of ATTAC-L in the Friendly-ATTAC project, we also con-
ducted a first small-scale evaluation to test whether our modeling language and
toolset satisfies our objective. In other words, we investigated whether the language
and the toolset suit the needs of people without programming knowledge and skills.
Four people participated in the evaluation, each with a background in game narra-
tive design but without formal schooling in programming. None of the participants
had prior experience in modeling stories with a DSML.

The evaluation took place as follows. First, the participants received a small in-
troduction on the purpose of ATTAC-L and how to use it. They also received an ex-
ample story model and a written outline of the syntax rules. They were then asked to
model a small, prescribed story provided in textual form. For this purpose, we used
a scenario about a player who has to escape from a locked house and having three
possible ways of doing so. The participants were then asked to sketch the story-flow
on paper. Next, they were invited to model the story with the help of our modeling
tool. The participants were provided with a comprehensive list of actions and enti-
ties (nouns, pronouns, verbs, adjectives). They could ask for assistance at any given
time. After completing the exercise, the participants were prompted to reflect on
their experience and the difficulties they encountered. The results of this evaluation
were generally positive. The participants reported that they understood the exam-
ple, as well as the modeling assignment and were fully able to model the scenario.
Furthermore, the participants reported that they found the syntax rules very intuitive
and natural and thus had no difficulties in complying with them. It is worth nothing
that early during the exercise, some participants were inclined to model story-flows
that were too complex (e.g., by introducing more game moves than actually needed)
or to create highly specific solutions (e.g., using specific pronouns instead of the
more general common nouns). When they were made aware of this, the participants
quickly adapted their solution accordingly.

Together with our experiences in the Friendly ATTAC project, this small-scale
evaluation provides an indication that our graphical CNL DSML will be able to
meet its goal. People who used ATTAC-L agreed that the models specified in this
language were easy to understand, even without a programming background. Fur-
thermore, in both instances, we saw indications that people without a background
in programming are able to actively model narratives and pedagogical interventions
using ATTAC-L. As such, ATTAC-L enables narrative designers to specify their
stories in a formal format that can be processed directly, and enables pedagogical
designers to add the pedagogical interventions. This way of working has two main
advantages. Firstly, it helps to save time that is otherwise spend on elaborating the
narratives and pedagogical interventions on paper and transferring it to the tech-
nically staff of the development team. Secondly, it supports better communication
practices as it helps to eliminate ambiguities and prevent misunderstandings.

30 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

11 Conclusions and Future Work

In this chapter, we have presented the domain-specific modeling language ATTAC-L
developed to enable a multidisciplinary approach for the development of narrative-
based serious games. It provides the necessary means to designers with and without
a background in IT to model the narrative and pedagogical methods for the seri-
ous game in a clear and structured manner. A designer can be anybody involved
in the design process: a subject-matter expert, a pedagogical expert, a storywriter,
a game developer, even an end-user. An important characteristic that allows all of
these designers to work with and communicate through ATTAC-L is the absence of
programming concepts, as well as technical and implementation aspects. Further-
more, the associated tools are carefully designed to be intuitive and easy to use by
people without a background in IT. The narrative is expressed using a strict form
of natural language and organized in a schematic representation to provide the flow
of the story. An unobtrusive, yet versatile annotation system is provided to integrate
the pedagogical aspects and layer them on top of this story-flow.

We have also discussed how to explicitly link the narrative with the pedagogical
intervention methods. This linking approach has two main advantages. First, it al-
lows modelers to incorporate the designed pedagogical methods into the narrative
in a rigorous way and without both becoming entangled and inseparable from one
another. The clear separation between the narrative and pedagogical aspects of the
serious game enables modelers to concentrate on particular aspects of the game in
accordance with their own expertise, while maintaining an overview of the relation-
ships to all others aspects of the game. As such, ATTAC-L stimulates and enhances
multidisciplinary collaboration. Secondly, the annotations provide detailed docu-
mentation of the relationship between the story and the corresponding pedagogical
principles allowing for verification of whether or not the serious game conforms to
these principles.

We have shown that in the context of the Friendly-ATTAC project (Friendly-
ATTAC, 2012) social and health scientist were able to actively contribute to the
development of a serious game against cyber-bullying by creating narrative mod-
els. These models were then used to generate parts of the implementation of the
serious game. This helped to speed up the development process and facilitated an
iterative development approach. We can thus conclude that the work presented in
this chapter represents an important step towards (1) allowing people with expertise
in various domains other than computer programming or game development to be-
come actively involved in the creation of serious games. Furthermore, the work also
provides a means for (2) enhancing serious game development because it helps to
reduce the development time of serious games and therefore also their costs. After
all, time and money are two of the major barriers that hinder development of serious
games and inhibit their widespread use.

In future work we aim to extend the current toolset to allow for the easy cus-
tomization of the modeling language and the tools towards different serious game
topics. We will do this by using an explicit and replaceable topic vocabulary. We
also plan to extend the annotation system to allow for the specification of gameplay

Creating Story-Based SGs using a Controlled Natural Language DSML 31

related aspects. In addition, we will provide a means for automatic code generation
for these gameplay aspects. Finally, we plan to investigate how we can formally
assess whether the serious game conforms to its intended pedagogical design.

Acknowledgements This research was funded by IWT (Institute for Science and Technology)
under the Friendly ATTAC project. We also like to thank our colleagues of the Friendly ATTAC
project for the fruitful cooperation resulting in a lot of improvements for ATTAC-L.

References

Bandura, A. (1991), ‘Social cognitive theory of self-regulation’, Organizational be-
havior and human decision processes 50(2), 248–287.

Bellotti, F., Berta, R. & De Gloria, A. (2010), ‘Designing Effective Serious Games:
Opportunities and Challenges for Research’, International Journal of Emerging
Technologies in Learning (iJET) 5(SI3), 22–35.

De Troyer, O. & Janssens, E. (2014), ‘Supporting the requirement analysis phase for
the development of serious games for children’, International Journal of Child-
Computer Interaction 2(2), 76–84.

Deursen, A. V., Klint, P. & Visser, J. (2000), ‘Domain-specific languages: an anno-
tated bibliography’, ACM Sigplan Notices 35(6), 26–36.

Djaouti, D., Alvarez, J. & Jessel, J. (2010), Can Gaming 2.0 help design Serious
Games?: a comparative study, in ‘5th SIGGRAPH Symposium on Video Games’,
pp. 11–18.

Dobbe, J. (2007), ‘A domain-specific language for computer games’, Delft Univer-
sity of Technology, Delft, the Netherlands .

Eldredge, L. K. B., Parcel, G. S., Kok, G. & Gottlieb, N. H. (2011), Planning health
promotion programs: an intervention mapping approach, John Wiley & Sons.

Friendly ATTAC (2012), ‘http://www.friendlyattac.be/en/’. Accessed: 2016-04-18.
Fuchs, N., Schwertel, U. & Schwitter, R. (1999), ‘Attempto Controlled English Not

Just Another Logic Specification Language’, Logic-based program synthesis and
transformation 1559, 1–20.

Furtado, A. W. B. & Santos, A. L. M. (2006), ‘Using domain-specific modeling
towards computer games development industrialization’, 6th OOPSLA Workshop
on DomainSpecific Modeling DSM’06 p. 1.

Göbel, S., Mehm, F., Radke, S. & Steinmetz, R. (2009), 80Days: Adaptive digi-
tal storytelling for digital educational games, in ‘CEUR Workshop Proceedings’,
Vol. 498.

Guerreiro, R., Rosa, A., Sousa, V., Amaral, V. & Correia, N. (2010), UbiLang: To-
wards a Domain Specific Modeling Language for Specification of Ubiquitous
Games, in ‘INForum’, pp. 449–460.

Hirdes, E. M., Thillainathan, N. & Leimeister, J. M. (2012), Towards modeling ed-
ucational objectives in serious games, in ‘CEUR Workshop Proceedings’, Vol.
898, pp. 11–14.

32 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Hürsch, W. L. & Lopes, C. V. (1995), ‘Separation of concerns’.
ISO (1996), Information technology—Syntactic metalanguage—Extended BNF,

ISO 14977:1996(E), International Organization for Standardization, Geneva,
Switzerland.

Janssens, O., Samyny, K., Van de Walle, R. & Van Hoecke, S. (2014), Educational
virtual game scenario generation for serious games, in ‘Serious Games and Appli-
cations for Health (SeGAH), 2014 IEEE 3rd International Conference on’, IEEE,
pp. 1–8.

Kelly, S. & Tolvanen, J. P. (2007), Domain-Specific Modeling: Enabling Full Code
Generation, John Wiley & Sons, Inc.

Koper, R. & Olivier, B. (2004), ‘Representing the learning design of units of learn-
ing’.

Lindley, C. a. (2005), ‘Story and narrative structures in computer games’, Bushoff,
Brunhild. ed (January), 1–27.

Luoma, J., Kelly, S. & Tolvanen, J.-P. (2004), ‘Defining domain-specific modeling
languages: Collected experiences’, 4th Workshop on Domain-Specific Modeling
(June 2015), 198–209.

Marchiori, E. J., del Blanco, n., Torrente, J., Martinez-Ortiz, I. & Fernández-
Manjón, B. (2011), ‘A visual language for the creation of narrative educational
games’, Journal of Visual Languages and Computing 22(6), 443–452.

Marchiori, E. J., Torrente, J., Del Blanco, Á., Moreno-Ger, P. & Fernández-Manjón,
B. (2003), ‘A Visual Domain Specific Language for the Creation of Educational
Video Games’, IEEE Learning Technology Newsletter 30(1), 11–11.

Moody, D. (2009), ‘The physics of notations: Toward a scientific basis for construct-
ing visual notations in software engineering’, IEEE Transactions on Software En-
gineering 35(6), 756–779.

Moreno-Ger, P., Martı́nez-Ortiz, I., Sierra, J. L. & Fernández-Manjón, B. (2008), ‘A
content-centric development process model’, Computer 41(3), 24–30.

Nelson, G. (2006), ‘Natural language, semantic analysis, and interactive fiction’, IF
Theory Reader 141.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J. a. Y., Silverman, B. & Kafai, Y. (2009),
‘Scratch: Programming for All.’, Communications of the ACM 52, 60–67.

Rooney, P., O’Rourke, K. C., Burke, G., Mac Namee, B. & Igbrude, C. (2009),
Cross-disciplinary approaches for developing serious games in Higher Education:
Frameworks for Food Safety and Environmental Health Education, in ‘Proceed-
ings of the 2009 Conference in Games and Virtual Worlds for Serious Applica-
tions, VS-GAMES 2009’, pp. 161–165.

StoryBricks (2014), ‘http://www.storybricks.com’. Accessed: 2016-04-18.
Torrente, J., Moreno-Ger, P., Fern??ndez-Manj??n, B. & Sierra, J. L. (2008),

Instructor-oriented authoring tools for educational videogames, in ‘Proceedings
- The 8th IEEE International Conference on Advanced Learning Technologies,
ICALT 2008’, pp. 516–518.

Creating Story-Based SGs using a Controlled Natural Language DSML 33

Tran, C. D., George, S. & Marfisi-Schottman, I. (2010), EDoS: An authoring en-
vironment for serious games design based on three models, in ‘4th European
Conference on Games Based Learning 2010, ECGBL 2010’, pp. 393–402.

Van Broeckhoven, F., Vlieghe, J. & De Troyer, O. (2015a), ‘Mapping between Ped-
agogical Design Strategies and Serious Game Narratives’, Proceedings of the 7th
International Conference on Games and Virtual Worlds for Serious Applications
(VS-Games) pp. 1–8.

Van Broeckhoven, F., Vlieghe, J. & De Troyer, O. (2015b), ‘Using a Controlled
Natural Language for Specifying the Narratives of Serious Games’, Interactive
Storytelling: ICIDS 2015, Lecture Notes in Computer Science 9445 pp. 1–12.

Van Broeckhoven, F., Vlieghe, J. & De Troyer, O. (2016), ‘Linking serious game
narratives with pedagogical theories and pedagogical design strategies’. Submit-
ted.

Van Hoecke, S., Samyn, K., Deglorie, G., Janssens, O., Lambert, P. & Van de Walle,
R. (2016), Enabling control of 3d visuals, scenarios and non-linear gameplay in
serious game development through model-driven authoring, in ‘Serious Games,
Interaction, and Simulation’, Springer, pp. 103–110.

Wyner, A., Angelov, K., Barzdins, G., Damljanovic, D., Davis, B., Fuchs, N.,
Hoefler, S., Jones, K., Kaljurand, K., Kuhn, T., Luts, M., Pool, J., Rosner, M.,
Schwitter, R. & Sowa, J. (2010), On controlled natural languages: Properties and
prospects, in ‘Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)’, Vol. 5972
LNAI, pp. 281–289.

34 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Fig. 15: An example scenario ‘Helping Carl’, running in the simulator in Fig. 12a.

Creating Story-Based SGs using a Controlled Natural Language DSML 35

Fig. 16: Example scenario ‘Introduction to Comforting’.

36 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Fig. 17: Example scenario ‘Experimenting with comforting’.

Creating Story-Based SGs using a Controlled Natural Language DSML 37

Fig. 18: A scenario (Fig. 16) annotated with change objective PAs for determinant
‘knowledge’, a method PA for ‘role-modeling’ and a theory PA for SCT.

38 Olga De Troyer, Frederik Van Broeckhoven and Joachim Vlieghe

Fig. 19: A scenario with change objective PAs for determinants ‘outcome expec-
tations’ and ‘perceived social norms’ and action PAs for ‘scoring’, ‘assistance’,
‘thought’, and ‘role-model’.

