
A Model-Driven Framework for
Hardware-Software Co-design of Dataflow

Applications

Waheed Ahmad, Bugra M. Yildiz, Arend Rensink, and Mariëlle Stoelinga

University of Twente, The Netherlands
{w.ahmad, b.m.yildiz, arend.rensink, m.i.a.stoelinga}@utwente.nl

Abstract. Hardware-software (HW-SW) co-design allows to meet system-
level objectives by exploiting the synergy of hardware and software. Cur-
rent tools and approaches for HW-SW co-design face difficulties coping
with the increasing complexity of modern-day application due to, e.g.,
concurrency and energy constraints. Therefore, an automated modeling
approach is needed which satisfies modularity, extensibility and inter-
operability requirements. Model-Driven Engineering (MDE) is a promi-
nent paradigm that, by treating models as first-class citizens, helps to
fulfill these requirements. This paper presents a state-of-the-art MDE-
based framework for HW-SW co-design of dataflow applications, based
on synchronous dataflow (SDF) graph formalism. In the framework, we
introduce a reusable set of three coherent metamodels for creating HW-
SW co-design models concerning SDF graphs, hardware platforms and
allocation of SDF tasks to hardware. The framework also contains model
transformations that cast these models into priced timed-automata mod-
els, the input language of the well-known model checker uppaal cora.
We demonstrate how our framework satisfies the requirements of modu-
larity, extensibility and interoperability in an industrial case study.

1 Introduction

Hardware-software (HW-SW) co-design is an engineering practice that allows to
meet system-level objectives by exploiting the synergy of hardware and software
through their simultaneous design. For instance, HW-SW co-design allows ex-
ploring design alternatives, and helps to improve the development cost and time-
to-market. However, current tools and approaches for HW-SW co-design have
difficulties coping with the concurrency and increasing complexity of modern-
day systems. As a result, the time and effort needed for modeling and validating
such designs are negatively affected. In fact, it has been widely recognized that
a HW-SW co-design approach must have the following features [4, 10, 12, 15] all
of which are not satisfied by the current HW-SW co-designing approaches:

– Modularity [4, 10]: The modeling approach should separate different aspects
— such as hardware, software and their mappings — to keep their various
concerns modular. This allows convenient exploration of design alternatives

2

concerning hardware and software. Modules targeting different concerns are
better maintainable and reusable.

– Extensibility [10]: The HW-SW co-designing approach should have convenient
extension mechanisms allowing rapid implementation of possible future re-
quirements. This reduces not only the development cost of new products, but
also their time-to-market.

– Interoperability [4,15]: HW-SW co-designing often involves tools serving differ-
ent purposes, such as model designing, simulating, integrating etc. The HW-
SW modeling approach should support interoperability between these tools,
enabling system designers to explore design alternatives rapidly.

Model-Driven Engineering (MDE) is an approach that helps to fulfill the
aforementioned requirements [24]. In MDE, the important concepts of the target
domain are formally captured in a so-called, metamodel. Separate metamodels
for the domains of interest help to keep the design modular. All models are
instances of a metamodel, or possibly an integrated set of metamodels. Moreover,
models can be transformed to the other via model transformations, defined at
the metamodel level.

In this paper, we model software applications as Synchronous Dataflow (SDF)
graphs [16] which are partitioned into tasks, with inter-task dependencies. SDF
graphs are well-known computational models for real-time streaming and dataflow
applications. This paper presents a novel HW-SW co-design framework based on
the principles of MDE. Our framework allows model-driven HW-SW co-designing
of SDF applications mapped on multiprocessor hardware platforms, and generate
energy-optimal schedules for these SDF applications. To generate energy-optimal
schedules, our framework transforms the co-designed SDF and hardware models
to priced timed-automata models. The problem of finding energy-optimal sched-
ules (while satisfying minimal throughput requirements) is encoded as an opti-
mization problem, defined as a reachability property over priced timed-automata
models. The property is then checked by the model checker uppaal cora [5]
that generates an energy-optimal schedule.

Our framework consists of three metamodels: (1) a metamodel for SDF
graphs; (2) a metamodel for Platform Application Models (PAMs), which de-
scribe the processor types and their power levels, and the cost of switching be-
tween the power levels; and (3) a metamodel for expressing potential allocations
of the tasks in an SDF graph to the processor types in a PAM. As mentioned
earlier, our framework considers the model checker uppaal cora for generating
energy-optimal schedules. Therefore, for supporting the generation of uppaal
cora models, we also use an existing uppaal metamodel developed at the Uni-
versity of Paderborn [1]. The models conforming to three metamodels explained
earlier, are transformed to uppaal cora models automatically via model trans-
formations in the framework. We have already described our method of using
priced timed-automata for the purpose of energy optimization in [2], and there-
fore out of scope of this paper. Rather the novelty of this paper is the design
prospects of using MDE. Later in Section 5, we demonstrate our framework as

3

an evidence to show the benefits of MDE namely, modularity, extensibility, and
interoperability. The main contributions of this paper are as follows:

– We introduce the insights of state-of-the-art model-driven engineering ap-
proach into the embedded systems community, in particular for the domain
of HW-SW co-design.

– We propose a reusable set of three coherent, extensible metamodels for HW-
SW co-design. 1

– We define and apply model transformations from the dataflow domain to
the model-checking domain, obtaining an automated tool to compute energy-
optimal schedules for dataflow applications.

– We demonstrate that our fully automated framework provides modularity,
extensibility and interoperability between tools, via an industrial case study.

The rest of the paper is structured as follows: Section 2 provides the related
work. Section 3 gives an overview of our framework and Section 4 describes the
framework components in detail. Section 5 evaluates our framework using an
industrial case study, and Section 6 concludes the paper.

The extended version of this paper can be found in the technical report [3].

2 Related Work

There exists a plethora of commercial and academic tools for HW-SW co-designing
[4, 6, 9, 10,12,15]. Here, we only present the closest studies.

The state-of-the-art toolsets in the realm of HW-SW co-design of dataflow
applications, are Octopus [4] and Ptolemy [15]. The Octopus toolset [4], in com-
parison to our approach, does not consider any metamodels. Furthermore, this
toolset uses Java libraries for model transformation. Rather than Java, which is
a general-purpose language, we use etl that is specifically designed as a domain-
specific language for model transformations. The lack of metamodels and model
transformation language cause challenges in extensibility and maintainability,
which are in fact stated as a future directions of the work in [4]. Ptolemy [15]
is another well-known toolset for supporting HW-SW co-design of dataflow ap-
plications. However, similar to Octopus, it is not based on MDE which poses
challenges in reusability and maintainability.

The closest works to ours are presented in [6] and [9]. Both of these pa-
pers utilize MDE techniques for HW-SW co-designing of embedded systems. In
contrast to our work, these papers consider generic software applications and
hardware models. We, on the other hand, analyze real-life software applications
and hardware models enabled with power management.

To the best of our knowledge, this paper presents the first model-driven HW-
SW co-design framework for dataflow applications that provides modularity,
interoperability, and extensibility.

1 All metamodels, model transformations, and case studies discussed in this paper can
be found at https://github.com/utwente-fmt/COMET. An instruction manual for
replicating the experiments is also given in this repository.

4

3 The Model-Driven Framework

3.1 Model-Driven Engineering

Models are powerful tools to express behavior, structure and other properties
in many domains such as mathematics, engineering, and other natural sciences.
Model-Driven Engineering (MDE) is a software engineering approach that con-
siders models not only as documentation, but also adopts them as the basic
abstraction to be used throughout all engineering disciplines and in any ap-
plication domain [7]. The models in MDE are closer to some particular domain
concepts rather than the computing concepts. These models are considered equal
to the code since they are formally defined and have execution semantics.

To define models, we need to specify their language as a model of these
models at a more abstract level that is so-called metamodels. In their common
use, metamodels capture the concepts of some domain or application; and define
the permitted structure and behaviour, to which models must adhere. Therefore,
metamodels describe the syntax of models [18].

MDE allows interoperability between different domains (and tools in these
domains) via model transformations. Models transformations satisfy interoper-
ability and furthermore save effort and reduce errors by automating the model
derivation and modification process.

3.2 Overview of Model-Driven Framework

Figure 1 shows the detailed overview of our framework. The HW-SW co-design
of the application consists of the first four steps:

– In step 1, an SDF model of the software application is created using the sdf3

tool [21] in an XML format specific to the tool.
– In step 2, the SDF model is transformed to an SDF model that conforms to

the metamodel we defined for SDF graphs.
– In step 3, the hardware platform model is created using PAM Visual Editor

that is a graphical editor for specifying Platform Application Models (PAMs).
This model conforms to the PAM metamodel we defined for PAMs.

– In step 4, an allocation model is created for specifying the mapping of the
tasks in the SDF model to the processor types in the PAM.

The analysis of the co-design for energy-optimal schedules is conducted using
the uppaal cora model checker. This is achieved in the last three steps:

– In step 5, the co-design is transformed to a priced timed-automata model that
conforms to the uppaal metamodel.

– In step 6, the priced-timed-automata model is transformed to the format ac-
cepted by the model checker.

– In step 7, we analyze the resulting model to compute the energy-optimal
schedule using the uppaal cora model checker.

5

<metamodel>
SDF

Priced Timed-
Automata Model

<XML>
Priced Timed-

Automata Model

SDF3

UPPAAL Cora

PAM Visual
Editor

SDF3-to-SDF

Transformation

SDF3-to-SDF
Transformation

extends extends

uses uses

conforms toconforms to

<metamodel>

Common

<metamodel>
PAM

PAM Model

<metamodel>
Allocation

SDF Model

Allocation Model

conforms to

creates

<XML>
SDF3 Model

creates

2

1

3

input

output

refers to refers to

4

Co-Design-to-

UPPAAL
Transformation

Co-Design-to-
UPPAAL

Transformation
5

input input
input

output

<metamodel>
UPPAAL

Model-to-Text

Transformation

Model-to-Text
Transformation

input

output

conforms to

Energy-Optimal
Schedule

7

computesinput

5

Model

Step

Artifact

Tool

Transformation

6

Fig. 1: Detailed overview of our framework. The elements with dark background
color represent the new contributions.

Although the steps in Figure 1 show a general guideline for a HW-SW co-
design of a system from scratch, a different strategy can be adopted according to
the requirements of the system design. For example, if a system designer needs
to analyze how a software application runs on various hardware platforms, s/he
can create an SDF model by follow steps 1 and 2 only once and then create
several PAM models by conducting step 3 multiple times.

Detailed explanation of the framework are given in Section 4.

3.3 Tooling Choices

To realize the model-driven approach, we have created metamodels using ECore
in Eclipse Modeling Framework (EMF) [19]. EMF provides a plethora of plugins

6

to support various functionalities, such as querying, validation, and transfor-
mation of EMF models. For instance, using the EuGENia plugin [14], we have
created PAM Visual Editor based on Graphical Editing Framework (GMF).

The model transformations have been implemented using Epsilon Trans-
formation Language (etl) [13], which is one of the domain-specific languages
provided by the Epsilon framework. etl supports many input-to-many output
model transformations; it also allows the users to inherit, import and reuse other
Epsilon modules in the transformations.

4 Details of the Model-Driven Framework

This section presents our concrete instantiation of the model-driven framework
by describing our modeling choices in some detail. We recall the formal (mathe-
matical) definitions of the domain concepts and discuss how we have chosen to
translate them to metamodel elements.

4.1 SDF Graphs

Typically, real-time streaming applications execute a set of periodic tasks, which
consume and produce a fixed amount of data. Such applications are naturally
modeled as SDF graphs.

Definition and Metamodel An SDF graph is a directed, connected graph
in which tasks are represented by actors. Actors communicate with each other
via streams of data elements, represented by channels (the streams) that carry
tokens (an abstraction of the data elements). Each channel (a, b, p, q) connects a
producer actor a to a consumer actor b, and specifies production and consumption
rates p and q, respectively, both given by integer values. The execution of an actor
a is known as the firing of a; as a result, q tokens are removed from any channel
(b, a, p, q) of which a is the consumer, and q tokens are added to any channel
(a, b, p, q) of which a is the producer. Formally:

Definition 1. An SDF graph is a tuple G = (A,D,Tok0) where A is a finite
set of actors, D ⊆ A2×N2 is a finite set of channels, and Tok0 : D → N denotes
the initial number of tokens on each channel.

Some notation: given an SDF graph G as above, the sets of input and output
channels of an actor a ∈ A are defined respectively as In(a) = {(b, a, p, q) ∈ D |
b ∈ A, p, q ∈ N} and Out(a) = {(a, b, p, q) ∈ D | b ∈ A, p, q ∈ N}.

Example 1. Figure 2 shows the SDF graph of the Viola-Jones face detector [23],
kindly provided by the company Recore Systems, that is used in their face recog-
nition system. The SDF graph contains seven actors (im read , dupl im, integral ,
haar det , haar scal , col obj and grp rect) representing the tasks performed in
face detection. For example, im read captures the scene containing one or more
faces, haar det detects the regularities in the human face called Haar features,
and grp rect groups the rectangles having similar Haar features.

7

im read

dupl im integral haar det

haar scal

col objgrp rect

1

1 1

1

1

1 1

1
1

1

2 2

2
2

2 26

1

1

2626

27

2727

27

27

1

26

26 26

1

11

1
1

1

1
1

1

1 1
1

1

1

1

1

1 1

1

1 1

1

1

1

1

11

1

1

Fig. 2: SDF graph of Viola-Jones face detector

Fig. 3: SDF Metamodel

The SDF Metamodel capturing the concepts of Definition 1 is shown in Figure
3. Recall that an SDF graph is a tuple G = (A,D,Tok0).

– SynchronousDataFlowRoot is the root of a model, in which everything else is
contained; it corresponds to G.

– Actor corresponds to the set A; the associations incomingChannels and out-
goingChannels represent the derived functions In and Out from A to sets of
channels.

– Channel corresponds to the set D. The 4-tuples (a, b, p, q) ∈ D are represented
in the metamodel by the source and target associations (for a and b), respec-
tively the sourceRate and targetRate attributes (for p and q). initialTokens
represents the function Tok0; thus, it has been modeled as an attribute of
Channel , rather than as a separate function.

With respect to the mathematical definition, there are two differences: (i) whereas
a channel (a, b, p, q) is completely determined by its constituent values, due to the
nature of metamodels a Channel has its own identity (and so conceivably there
could be two Channels with the same 4-tuple of values), which can not occur in
the mathematical set up in Definition 1; (ii) the function Tok0 has been com-
bined with Channel . This removes some of the modularity of the mathematical
model, at the benefit of simplicity.

8

Model Creation In our framework, SDF models are created in steps 1 and 2
of Figure 1. The starting point is an SDF graph created using the well-known
open-source sdf3 tool [21] (step 1). This tool produces output in the form of an
XML document, adhering to its own schema (fixed in an XSD). To bring such
documents into our framework, we have defined an sdf3-to-SDF Transformation
which produces models conforming to the SDF metamodel of Figure 3. The
transformation definition involves a systematic mapping of the sdf3 concepts to
our SDF metamodel concepts.

4.2 Platform Application Models

A Platform Application Model (PAM) models the multi-processor platform to
which the application, modeled as an SDF graph, is mapped. Our PAMs support
several features, including (1) heterogeneity, i.e., there can be multiple processors
with different types, (2) a partitioning of the processors in voltage/frequency
islands, (3) frequency levels each processor can run on, (4) power consumed by a
processor at a certain frequency, both when in use and when idle, and (5) power
overhead required to switch between frequency levels.

Definition and Metamodel

Definition 2. Given an SDF graph G = (A,D,Tok0) with a set of actors A, a
platform application model (PAM) is a tuple P = (Π, ζ, F,Pidle,Pocc,Ptr, τact)
consisting of

– a finite set of processors Π = {π1, . . . , πn}. We assume that Π is partitioned
into disjoint blocks of voltage/frequency islands (VFIs) such that

⋃
Πi = Π,

and Πi ∩Πj = ∅ for i 6= j,
– a function ζ : Π → 2A indicating which processors can handle which actors,
– a finite set F = {f1, . . . , fm} of discrete frequencies available to all processors,
– a function Pocc : Π × F → N denoting the power consumption (static plus

dynamic) of a processor operating at a certain frequency f ∈ F in the operating
state,

– a function Pidle : Π × F → N denoting the power consumption (static) of a
processor operating at a certain frequency f ∈ F in the idle state,

– a partial function Ptr : Π ×F 2 9 N denoting the transition overhead between
frequencies for each processor π ∈ Π, and

– a function τact : A × F → N≥1 denoting the actual execution time of each
actor (in A) mapped to a processor at a certain frequency level (in F).

Example 2. Exynos 4210 is a state-of-the-art processor used in high-end plat-
forms such as Samsung Galaxy Note, SII, etc. Table 1 shows three frequencies
(MHz) {f1, f2, f3} ∈ F [17] and corresponding experimental power consump-
tion. We assume that our PAM contains four Exynos 4210 processors, i.e., Π =
{π1, π2, π3, π4}. The processors are partitioned into 2 VFIs, i.e., Π1 = {π1, π2}
and Π2 = {π3, π4}. We assume that the power overhead (W) of all π ∈ Π is,
Ptr(π, f1, f2) = Ptr(π, f2, f3) = 0.2 and Ptr(π, f3, f2) = Ptr(π, f2, f1) = 0.1.

9

No. Frequency(MHz) Pidle(W) Pocc(W)

1 1400 0.4 4.6

2 1222 0.3 3.2

3 1033 0.1 1.8

Table 1: Example platform description

Fig. 4: PAM Metamodel

The PAM Metamodel capturing most of the concepts of Definition 2 is shown
in Figure 4. A brief explanation can be given as follows:

– PlatformApplicationModelRoot stands for the PAM as a whole.
– ProcessorType collects the characteristics of a set of processors. In the meta-

model, the power and frequency characteristics of a processor are associated
with its type, creating a reusable layer of indirection with respect to the math-
ematical model.

– Processor stands for the elements of Π. Each Processor has a type association
to the corresponding ProcessorType.

– VoltageFrequencyIsland stands for the clusters Πi in the VFI partitioning of
Π. The element-of relationship between a processor and its VFI is captured
by the (opposite) island and processors associations.

– ProcessorState associates the working/idle state of a processor (type) (the
boolean isWorking attribute), combined with a frequency level, to a power-
Consumption value. This encodes the Pocc and Pidle functions of the mathe-
matical definition.

– ProcessorStateChange encodes the Ptr function of the definition: each instance
associates a powerCost with a certain pair of source and target Processor-
States.

In a major change with respect to the mathematical definition, we have cho-
sen not to include the ζ and τact functions in the PAM, but to isolate them
in a separate allocation model. This enhances the modularity of the modeling

10

Fig. 5: Allocation Metamodel. Capability refers to Actor in the SDF metamodel
and ProcessorState in the PAM metamodel.

framework. Apart from this change, all elements of Definition 2 are clearly rec-
ognizable in the metamodel, though sometimes encoded in a different manner.
In particular, we have introduced the processor types as an intermediate level
to enhance modularity; Pocc and Pidle are combined in ProcessorState; and Ptr

is encoded as ProcessorStateChange.

Model Creation The creation of PAMs corresponds to step 3 in Figure 1. Al-
though EMF provides a default tree-based model editor, we have built PAM
Visual Editor, a domain-specific visual editor for PAMs, by benefiting from
state-of-the-art MDE techniques. To build PAM Visual Editor, we have used
EuGENia, which can automatically generate a visual editor from an annotated
ECore metamodel. We show an example PAM created using this visual editor
in Section 5.

4.3 Allocation Models

In a heterogeneous system, the freedom of assigning actors a ∈ A to processors
π ∈ Π is constrained by which processors can be utilized to execute a particu-
lar actor. Thus, in order to run an SDF model on a PAM, we need to know (1)
which SDF actors can be run on which processors of the PAM and (2) what their
execution times are at given frequencies. This information is encoded in an allo-
cation model, which relates both the SDF and PAM models. Allocation models
conform to Allocation Metamodel that we define to represent this concern.

The information related to allocation concern is a part of Definition 2, but
we have chosen to define it as a separate Allocation Metamodel for the sake of
modularity to make the PAM metamodel independent of the SDF metamodel.

Definition and Metamodel The information to be represented in the Al-
location metamodel consists of the ζ and τact functions of Definition 2. The
Allocation Metamodel is shown in Figure 5. It contains:

– AllocationRoot , which stands for the combined allocation functions ζ and τact
of Definition 2.

– Capability , following τact : A×F → N≥1 in Definition 2, refers to Actor in the
SDF metamodel, and ProcessorState (defining the frequency of the processor)

11

in the PAM metamodel, and yields the time needed to execute the actor at the
processor state. At the same time, ProcessorState also encodes which processor
type an actor can be executed on.

The metamodel is in fact more expressive than the mathematical definition: for
instance, the execution time of an actor is not constrained to be always the same
for a given frequency level; instead, it may also depend on the processor type.

Model Creation The creation of Allocation models corresponds to step 4 in
Figure 1. It is supported out-of-the-box via the default tree-based model editor
provided by EMF.

4.4 Common Metamodel

In addition to those discussed above, Figure 1 also shows an element called Com-
mon Metamodel. This demonstrates an MDE technique for reuse: this metamodel
defines the general concept of Identifiable, which has a string-valued identifier
attribute; Actors and ProcessorTypes are subtypes of Identifiable and thereby
inherit this feature. Whenever (during extension of the framework) additional
reusable concepts are introduced, these can be added to the common metamodel.

4.5 Priced Timed-Automata Models

As mentioned earlier, we use priced timed-automata for energy optimization.
Once the SDF, PAM and allocation models are available, one can generate the
priced timed-automata model using the Co-Design-to-uppaal Transformation
and successive model-to-text transformation. These correspond to steps 5 and 6
in Figure 1. In Step 7 in Figure 1, the energy-optimal schedule of an SDF graph
can be generated. The ideas in [2] related to how the entities in SDF, PAM and
allocation models can be mapped to priced timed-automata models and how the
energy-optimal schedule can be calculated are reused in steps 5 and 7.

5 Case Study and Evaluation

In this section, we show the effectiveness of our framework for HW-SW co-design
by applying it on a case study. We also demonstrate how our framework satisfies
the features stated in Section 1, namely: (1) modularity, (2) extensibility, and
(3) interoperability. We also evaluate the timing performance of our framework
with the help of some other case studies.

5.1 Case Study

As a case study, we consider the dataflow application of the Viola-Jones face
detector in Example 1 mapped to a platform with 4 processors of the type
Exynos 4210 in Example 2.

12

im_read dupl_im integral haar_det
haar_scal

x 11
haar_scal

haar_scal

haar_scal

haar_scal haar_scal

idle haar_scal

haar_scal haar_scal

idle haar_scal col_obj grp_rect

idleidle

idle

idle

haar_scal

haar_scal

haar_scal

haar_scal

haar_scal

haar_scal

idle

idleπ1

π2

π3

π4

time

Fig. 6: Energy-optimal schedule on four Exynos 4210 processors. The white, red,
and green blocks denote the frequencies f1, f2, and f3 respectively.

Following step 1 in Figure 1, we have created the SDF graph of the Viola-
Jones face detection using sdf3. This SDF graph was already given in Figure
2. In step 2, we apply sdf3-to-SDF transformation to generate the SDF model
conforming to our metamodel for the SDF graph.

In step 3, we create the PAM using the visual editor, as described in Section
4.2. The details of this PAM can be found in our technical report [3].

After we have the PAM and SDF models, we create the allocation model that
assigns the actors to the processor states with their execution times in step 4.

Once we have the SDF, PAM, and allocation models, we apply the Co-Design-
to-uppaal transformation in step 5 and the model-to-text transformation in
step 6 to generate the priced-timed-automata model that is compatible with
uppaal cora. In step 7, we follow the approach presented in [2] to compute
the energy-optimal schedule for some given throughput requirements. Figure 6
shows the energy-optimal schedule, for the time per graph iteration constraint
of 650 ms for our example. The schedule shows the execution order of the actors
at the specific frequency and processors.

5.2 Evaluation

No. Freq. Pidle Pocc

1 3006 0.4 55
2 2338 0.3 34
3 1776 0.1 22

Table 2: Platform de-
scription

a) Modularity: To show the modularity of our frame-
work with a concrete example, let us consider the fol-
lowing scenario: We want to analyze the energy con-
sumption of the face detection application on a different
hardware platform, viz., Intel Core2 Duo E6850.

Table 2 shows the frequencies and corresponding
power consumption of this new processor [17]. For this
scenario, we only change the processor type while keep-
ing the number of processors and VFI distributions the
same. Now, all we have to do is to develop a new PAM
corresponding to this new platform specification and
generate the corresponding priced timed-automata model. We reuse the exist-
ing SDF model of the application without making any modifications. Using the
framework, we derive the energy-optimal schedule shown in Figure 7 on the new
hardware platform, for time per graph iteration constraint of 650 ms.

13

Fig. 7: Energy-optimal schedule on four Intel Core 2 Duo E6850 processors

Fig. 8: Battery
Metamodel

b) Extensibility: One can extend the framework using the
following mechanisms: introducing new models with related
metamodels and new transformations; extending existing
transformations or metamodels.

As an example, suppose we want to extend our platform
models with the concept of “battery”. The current version
of the platform assumes energy source to be ideal such that
the system never runs out of energy. However, we want to
include batteries in our HW-SW co-design as resources. This
extension can be achieved through the following steps:

1. Adding a metamodel for batteries: An example battery
metamodel is shown in Figure 8. This metamodel defines the
number of batteries in the system with their initial capacities (Coulomb).

2. Extending the Co-Design-to-uppaal model transformation: In order to
include the battery model in the scheduling analysis, we have to transform the
concepts in the battery metamodel to the concepts in the priced timed-automata
domain. This is achieved through extending the Co-Design-to-uppaal model
transformation in step 5. The extension to the transformation will create the
dependency of the processors on the batteries, in such a way that the processors
consume charge from these batteries. The extension will further generate sepa-
rate templates for battery and battery scheduler. The template of the battery
keeps track of the current charge. When the battery gets empty, it informs the
battery scheduler via synchronization. In that case, the battery scheduler tem-
plate activates the next available battery. When all batteries are out-of-charge,
the processors cannot run anymore. We can extend the Co-Design-to-uppaal
model transformation without modifying it since etl allows to extend and reuse
transformation modules. Please note that the model-to-text transformation in
step 6 stay unaffected by this extension.

c) Interoperability: In our framework, we utilize sdf3 for creating SDF graphs
and uppaal cora for deriving energy-optimal schedule. To automatically gen-
erate uppaal cora models from sdf3 models, we have implemented model
transformations in our framework, thus providing interoperability.

5.3 Timing Performance

To determine the timing performance of our framework, we consider five real-
life case studies namely, a Viola-Jones face detector in Figure 2, a MPEG-4

14

Decoder [22], an Audio Echo Canceller [11], an MP3 Decoder [20], and an MP3
playback application [25]. We also used an artificial bipartite SDF graph [8]
with 4 actors. We assume that these case studies are mapped on Exynos 4210
processors having two frequencies.

We examine the timing performance of our framework in two parts: the first
part is the timing performance of our framework, i.e., cumulative computation
time of steps 2 (sdf3-to-SDF transformation), 5 and 6 (Co-Design-to-uppaal
and model-to-text transformations). The second part is the timing performance
of obtaining the optimal schedule via uppaal cora model checker, i.e., step 7.

The case studies show that the time step 2, 5 and 6 take in total increase
insignificantly as the number of available processor increases. This is due to the
slight increase in the model size with the addition of processors. For step 7, the
time required to complete increases exponentially as the number of processor
increases, which is because of the fact that the size of the state-space created by
the model checker increases exponentially with the size of the model itself.

The details of these case studies can be found in our technical report [3].

6 Conclusions and Future Work

In this paper, we have presented a model-driven framework for HW-SW co-
design of dataflow applications. In our framework, we have proposed a reusable
set of three coherent metamodels for HW-SW co-design domain. To provide
interoperability among domains, we have defined a reusable set of extensible
model transformations. We have demonstrated that our framework satisfies the
modularity, extensibility and interoperability requirements with a case study.

As future direction of our work, we plan to extend our framework with other
analysis techniques such as simulation and automated HW-SW partitioning. We
also plan to add code generation functionality to our framework.

Acknowledgements. This research is funded by the EU FP7 project SEN-
SATION (318490) and NWO project BEATS (612.001.303). The authors are
grateful to Kim Sunesen from Recore Systems B.V. for providing the case study.

References

1. Software Enginering Group, University of Paderborn. https://www.hni.

uni-paderborn.de/en/software-engineering/. Accessed: 2016-01-14.
2. W. Ahmad, P.K.F. Hölzenspies, M.I.A. Stoelinga, and J. van de Pol. Green com-

puting: Power optimisation of VFI-based real-time multiprocessor dataflow appli-
cations. In DSD’15, pages 271–275, Aug 2015.

3. W. Ahmad, B. M. Yildiz, A. Rensink, and M. Stoelinga. A model-driven framework
for hardware-software co-design of dataflow applications. Technical Report TR-
CTIT-16-09, University of Twente, 2016.

4. T. Basten, R. Hamberg, F. Reckers, and J. Verriet. Model-Based Design of Adaptive
Embedded Systems. Springer Publishing Company, 2013.

5. G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev., 32(4):34–40, Mar. 2005.

15

6. L. Bondé, C. Dumoulin, and J.-L. Dekeyser. Advances in Design and Specification
Languages for SoCs, chapter Metamodels and MDA Transformations for Embed-
ded Systems, pages 89–105. 2005.

7. A. R. da Silva. Model-driven engineering: A survey supported by the unified
conceptual model. Computer Languages, Systems & Structures, 43:139–155, 2015.

8. M. Geilen, T. Basten, and E. Stuijk. Minimising buffer requirements of synchronous
dataflow graphs with model checking. In DAC ’05, pages 819–824, 2005.

9. I. Gray, N. Matragkas, N. Audsley, L. Indrusiak, D. Kolovos, and R. Paige.
Model-based hardware generation and programming - the MADES approach. In
ISORCW’11, pages 88–96, March 2011.

10. K. Grüttner, P. A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Vil-
lar, C. Brandolese, W. Fornaciari, G. Palermo, C. Ykman-Couvreur, D. Quaglia,
F. Ferrero, and R. Valencia. The COMPLEX reference framework for HW/SW
co-design and power management supporting platform-based design-space explo-
ration. Microprocessors and Microsystems - Embedded Hardware Design, 37:966–
980, 2013.

11. J. P. Hausmans, S. J. Geuns, M. H. Wiggers, and M. J. Bekooij. Compositional
temporal analysis model for incremental hard real-time system design. In EMSOFT
’12, pages 185–194, 2012.

12. P. Herber and S. Glesner. A HW/SW co-verification framework for SystemC. ACM
TECS, 12(1s):61:1–61:23, Mar. 2013.

13. D. S. Kolovos, R. F. Paige, and F. A. Polack. The Epsilon transformation language.
In ICMT ’08, pages 46–60, 2008.

14. D. S. Kolovos, L. M. Rose, R. F. Paige, and F. A. C. Polack. Raising the level of
abstraction in the development of GMF-based graphical model editors. In MISE
’09, pages 13–19, 2009.

15. E. A. Lee. Embedded software. Advances in Computers, 56:56–97.
16. E. A. Lee and D. G. Messerschmitt. Synchronous data flow: Describing signal

processing algorithm for parallel computation. In COMPCON’87, pages 310–315,
1987.

17. S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. Accurate
modeling of the delay and energy overhead of dynamic voltage and frequency
scaling in modern microprocessors. TCAD, May 2013.

18. J. Sprinkle, B. Rumpe, H. Vangheluwe, and G. Karsai. Metamodelling. In Model-
Based Engineering of Embedded Real-Time Systems, pages 57–76. Springer, 2010.

19. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling
Framework. Pearson Education, 2008.

20. S. Stuijk. Predictable Mapping of Streaming Applications on Multiprocessors. PhD
thesis, 2007.

21. S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In ACSD’06, pages
276–278, June 2006.

22. B. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita, and
S. Stuijk. A scenario-aware data flow model for combined long-run average and
worst-case performance analysis. In MEMOCODE’06, pages 185–194, 2006.

23. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR’01, pages I–511–I–518 vol.1, 2001.

24. M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen. Model-driven software
development: technology, engineering, management. 2013.

25. M. H. Wiggers. Aperiodic multiprocessor scheduling for real-time stream processing
applications. PhD thesis, 2009.

