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Tight Approximation Bounds for the Seminar

Assignment Problem ⋆
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Abstract. The seminar assignment problem is a variant of the general-
ized assignment problem in which items have unit size and the amount of
space allowed in each bin is restricted to an arbitrary set of values. The
problem has been shown to be NP-complete and to not admit a PTAS.
However, the only constant factor approximation algorithm known to
date is randomized and it is not guaranteed to always produce a feasible
solution.
In this paper we show that a natural greedy algorithm outputs a solu-
tion with value within a factor of (1 − e−1) of the optimal, and that
unless NP ⊆ DTIME(nlog log n), this is the best approximation guaran-
tee achievable by any polynomial time algorithm.

Keywords: general assignment · budgeted maximum coverage · seminar
assignment problem

1 Introduction

In the Seminar Assignment problem (SAP) introduced in [8] one is
given a set of seminars (or bins) B, a set of students (or items) I , and for
each seminar b a set of integers Kb specifying the allowable number of
students that can be assigned to the seminar. Unless otherwise specified,
we assume that 0 ∈ Kb for any b ∈ B. For each student i and seminar
b ∈ B let p(i, b) ∈ R represent the profit generated from assigning student
i to seminar b. A seminar assignment is a function A : J → B where
J ⊆ I and we say that the assignment is feasible if |A−1(b)|∈ Kb for all
b ∈ B, where A−1 is the pre-image of A. The goal is to find a feasible
seminar assignment A that maximizes the total profit:

p(A) =
∑

i∈J

p(i,A(i)).

The problem has been introduced in [8] in a slightly less general version.
In the original version, for each b ∈ B the setKb equals to {0}∪{lb, ..., ub}
for some lower and upper bounds lb, ub ∈ N. The more general setting
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considered in this paper can be useful for example when a seminar doesn’t
just require a minimum number of students and has a fixed capacity,
but in addition requires students to work in pairs and therefore would
allow only an even number of students to be registered. In addition, this
generalization also simplifies notation.
SAP is a variant of the classic General Assignment problem (GAP)
in which one is given m bins with capacity B1, ..., Bm and n items. Each
item i has size s(i, b) in bin b and yields profit p(i, b). The goal is to find
a packing of the items into the bins that maximizes total profit, subject
to the constraint that no bin is overfilled. A GAP instance with a single
bin is equivalent to the knapsack problem, and a GAP instance with
unit profit can be interpreted as a decision version of the bin packing
problem: can all items be packed in the m bins?
SAP is also related to the Maximum Coverage problem (MC). In the
classic version of the MC problem one is given a collection of sets S =
{S1, ..., Sm} and a budget B. The goal is to select a subcollection S ′ ⊆ S
with cardinality less than or equal to B such that |∪S∈S′S| is maximized.
The algorithms with the best approximation ratio for both MC and GAP
are greedy algorithms and the approximation bounds have been proved
with similar techniques. In this paper we show how to extend these anal-
ysis techniques to SAP.

Related Work. In [8] the authors show that SAP is NP-complete
even when Kb = {0, 3} for all b ∈ B and p(i, b) ∈ {0, 1} for any i ∈ I .
Moreover, they show that SAP does not admit a PTAS by providing
a gap-preserving reduction from the 3-bounded 3-dimensional matching
problem. In [1] the authors investigate the approximability of the prob-
lem and provide a randomized algorithm which they claim outputs a
solution that in expectation has value at least 1/3.93 of the optimal.
In [2] this result is revised and the authors show that for any c ≥ 2,
their randomized algorithm outputs a feasible solution with probability

at least 1−min{ 1
c
, ec−1

cc
} and has an approximation ratio of e−1

(2c−1)·e
.

The GAP is well studied in the literature, with [3] and [9] surveying the
existing algorithms and heuristics for multiple variations of the problem.
In [11] the authors provide a 2-approximation algorithm for the prob-
lem and in [4] it is shown that any α-approximation algorithm to the
knapsack problem can be transformed into a (1 + α)-approximation al-
gorithm for GAP. In [6] tight bounds for the GAP are given showing
that no polynomial time algorithm can guarantee a solution within a
factor better than (1−e−1), unless P = NP , and providing an LP-based
approximation which for any ǫ > 0 outputs a solution with profit within
a (1− e−1 − ǫ) factor of the optimal solution value.
The GAP with minimum quantities, in which a bin cannot be used if
it is not packed at least above a certain threshold, is introduced in [8].
Because items have arbitrary size, it is easy to see that when a single bin
is given and the lower bound threshold equals the bin capacity, finding
a feasible solution with profit greater than zero is equivalent to solving
Subset Sum. Therefore, in its most general case the problem cannot be
approximated in polynomial time, unless P = NP .



In [10] and [5] the authors study the problem of maximizing a non-
decreasing submodular function f satisfying f(∅) = 0 under a cardinal-
ity constraint. They show that a simple greedy algorithm achieves an
approximation factor of (1− e−1) which is the best possible under stan-
dard assumptions. Vohra and Hall note that the classic version of the
maximum coverage problem belongs to this class of problems [13]. When
each set Si in the MC problem is associated with a cost c(Si) the Bud-

geted Maximum Coverage problem asks to find a collection of sets S ′

covering the maximum number of elements under the (knapsack) con-
straint that

∑

Si∈S′ c(Si) ≤ B for some budget B ∈ R. In [7] the authors
show that the greedy algorithm combined with a partial enumeration of
all solutions with small cardinality also achieves a (1− e−1) approxima-
tion guarantee, and provide matching lower bounds which hold even in
the setting of the classic MC problem (when all sets have unit cost). In
[12] Sviridenko generalizes the algorithm and proof technique to show
that maximizing any monotone submodular function under a knapsack
constraint can be approximated within (1− e−1) as well.

Contributions. In Section 2, by a reduction from the Maximum Cov-

erage problem, we show that there exists no polynomial time algorithm
that guarantees an approximation factor larger than (1 − e−1), unless
NP ⊆ DTIME(nlog log n). In Section 4 we present a greedy algorithm
that outputs a solution that has profit at least 1

2
· (1− e−1) of the opti-

mal solution. The algorithm is based on the observation that when the
required number of students in each seminar is fixed, the problem is solv-
able in polynomial time. Finally, in Section 5 we show how this algorithm
can be improved to guarantee an approximation bound of (1− e−1).

2 Hardness of Approximation

In this section we show that the problem is hard to approximate within
a factor of (1−e−1+ǫ), ∀ǫ > 0, even for the case when for each b ∈ B the
set Kb equals {0, n} for some integer n, and the profit for assigning any
student to any seminar is either 0 or 1. We prove this result by showing
that such restricted instances of SAP are as hard to approximate as the
Maximum Coverage problem defined below.

Definition 1. Given a collection of sets S = {S1, ..., Sm} and an integer
k, the Maximum Coverage (MC) problem is to find a collection of sets
S ′ ⊆ S such that |S ′|≤ k and the union of the sets in S ′ is maximized.

In [7] it is shown that the MC problem is hard to approximate within
a factor of (1 − e−1 + ǫ), unless NP ⊆ DTIME(nlog log n). We use this
result to prove the following:

Theorem 1. For any ǫ > 0 the SAP is hard to approximate within a
factor of (1− e−1 + ǫ) unless NP ⊆ DTIME(nlog log n).



Proof. To prove the theorem we create a SAP instance for any given MC
instance and show that from any solution of the SAP instance we can
create a solution for the MC instance with at least equal value, and that
the optimal solution of the SAP instance has value at least equal to the
optimal solution of the MC instance. Therefore, an α-approximation al-
gorithm for SAP can be transformed into an α-approximation algorithm
for MC.
Given a MC instance, let U = ∪S∈SS and n = |U |. For each set S ∈ S let
bS be a seminar with the allowable number of students Kb = {0, n}, and
for each element e ∈ U let ie be a student in I . The profit of a student ie
assigned to a seminar bS is 1 if the element e belongs to the set S and 0
otherwise. In addition, let d1, ..., dn∗(k−1) be dummy students that have
profit 0 for any seminar.
We first show that any feasible assignment A corresponds to a valid
solution to the given MC instance. Since every seminar requires exactly
n students and there are exactly k · n students available, clearly at most
k seminars can be assigned students in any feasible assignment. Let S ′ =
{S ∈ S : A(bS) > 0}. It is easy to see that the number of elements in
∪S∈S′S is at least equal to the profit p(A) since a student ie has profit
1 for a seminar bS only if the set S covers element e.
It remains to show that for any solution to the MC instance there exists
a solution to the corresponding SAP instance with the same value. Fix
a collection of sets S ′ ⊆ S with |S ′|≤ k. For every e ∈ ∪S∈S′S let Se be
a set in S ′ that contains e and let A(ie) = bSe . Then, assign additional
dummy students to any seminar with at least one student to reach the
required n students per seminar. Clearly, the profit of the assignment A
is equal to the number of elements covered by the collection S ′, which
proves the theorem.

3 Seminars of Fixed Size

In this section we show that when the allowable number of students that
can be assigned to any seminar b is a set K = {0, kb} for some integer
kb, SAP can be approximated within a factor of (1− e−1) in polynomial
time. This introduces some of the techniques used in the general case in
a simpler setting.
For an instance of the SAP, a seminar selection is a function S : B → N

with the property that S(b) ∈ Kb for any b ∈ B. We say that S is feasible
if
∑

b∈B
S(b) ≤ |I |. In other words, a seminar selection is a function

that maps each seminar to the number of students to be assigned to
it. A seminar selection S corresponds to an assignment A if for any
seminar b the number of students assigned by A to b is S(b). We slightly
abuse notations and denote by p(S) the maximum profit over all seminar
assignments corresponding to the seminar selection S; we call p(S) the
profit of S. In the remainder of this paper for a graph G = (V,E) we
denote the subgraph induced by the vertices of X ⊆ V by G[X].

Definition 2. Given a SAP instance let Vb = {vb,1, ..., vb,kb
} for every

b ∈ B and let V = ∪b∈BVb. The bipartite representation of the in-
stance is the complete bipartite graph G = (V ∪ I, E) with edge weights



ω(vb, i) = p(i, b) for every vb ∈ Vb. The bipartite representation of a
seminar selection S is the graph G[VS ∪ I ] where VS = ∪b∈BVS,b and
VS,b = {vb,1, ..., vb,S(b)} for every b ∈ B.

Lemma 1. For any SAP instance and any feasible seminar selection
S, p(S) is equal to the value of the maximum weight matching in the
bipartite representation of S.

Proof. Let GS = (VS ∪ I, E) be the bipartite representation of S. First
observe that any matching M of GS that matches all the vertices of
VS can be interpreted as an assignment AM of equal value by setting
AM (i) = b whenever vertex i ∈ I is matched by M to a vertex in VS,b.
Since GS is complete and has non-negative edge weights, there exists a
maximum weight matching that matches all the vertices of VS .
Similarly, any feasible assignment for the SAP instance can be inter-
preted as a matching MA of equal value, which proves the lemma.

Definition 3. For a given finite set A, a set function f : 2A → R is
submodular if for any X,Y ⊆ A it holds that:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

Sviridenko shows that certain submodular functions can be maximized
under knapsack constraints, which will be useful in proving Theorem 3:

Theorem 2 ([12]). Given a finite set A, a submodular, non-decreasing,
non-negative, polynomially computable function f : 2A → R, a budget
L ≥ 0, and costs ca ≥ 0, ∀a ∈ A, the following optimization problem is
approximable within a factor of (1− e−1) in polynomial time:

max
X⊆A

{

f(X) :
∑

x∈X

cx ≤ L

}

We relate now the value of a maximum weight matching in a bipartite
graph to the notion of submodularity.

Definition 4. For an edge weighted bipartite graph G = (A∪B,E), the
partial maximum weight matching function f : 2A → R maps any set
S ⊆ A to the value of the maximum weight matching in G[S ∪B].

Lemma 2. Let f be the partial maximum weight matching function for
a bipartite graph G = (A ∪ B,E) with non negative edge weights. Then
f is submodular.

Proof. Fix two sets X, Y ⊆ A and let M∩ and M∪ be two matchings for
the graphs G[(X ∩ Y ) ∪ B] and G[(X ∪ Y ) ∪ B] respectively. To prove
the lemma it is enough to show that it is possible to partition the edges
in M∩ and M∪ into two disjoint matchings MX and MY for the graphs
G[X ∪B] and G[Y ∪B] respectively.
The edges of M∩ and M∪ form a collection of alternating paths and
cycles. Let C denote this collection and observe that no cycle of C contains



vertices from X \ Y or Y \ X. This holds because M∩ does not match
those vertices.

Let PX be the set of paths in C with at least one vertex in X \ Y and
let PY be the set of paths in C with at least one vertex in Y \X. Two
such paths are depicted in Fig. 1.

Claim 1. PX ∩ PY = ∅.
Proof of claim: Assume by contradiction that there exists a path P ∈
PX ∩ PY . Let x be a vertex in X \ Y on path P and similarly let y be
a vertex in Y \X on path P . Observe that since neither x nor y belong
to X ∩ Y they do not belong to the matching M∩ by definition, and
therefore they are the endpoints of the path P . Moreover, since both x
and y are in A, the path P has even length and since it is an alternating
path, either the first or last edge belongs to M∩. Therefore M∩ matches
either x or y contradicting its definition.

X Y

PYPX

Fig. 1: MX∪Y matches each vertex in X ∪ Y to the vertex directly
above it. MX∩Y is depicted with contiguous segments, MX with
dotted segments and MY with dashed segments. Two alternating
paths of P are shown in light gray.

For a set of paths P we let E(P) = {e ∈ P : P ∈ P}. Moreover, let

MX = (E(PX) ∩M∪) ∪ (E(C \ PX) ∩M∩)

and

MY = (E(PX) ∩M∩) ∪ (E(C \ PX) ∩M∪).

It is clear that MX ∪ MY = M∩ ∪ M∪ and MX ∩ MY = M∩ ∩ M∪.
To prove the theorem it remains to show that MX and MY are valid
matchings for G[X ∪B] and G[Y ∪B] respectively. To see that MX is a
valid matchings for G[X ∪B] observe first that that no vertex of Y \X is
matched by MX since PX does not intersect Y \X by Claim 1, and M∩

does not intersect Y \X by definition. Therefore, MX only uses vertices
of X ∪B. Second observe that every vertex x ∈ X is matched by at most
one edge of MX since otherwise x belongs to either two edges of M∪ or
two edges of M∩, contradicting the definition. This proves that MX is a
valid matching for G[X ∪ B]; showing that MY is a valid matchings for
G[Y ∪ B] is similar.



Theorem 3. Any instance of SAP in which |Kb|≤ 2 for all b ∈ B can
be approximated in polynomial time to a factor of (1− e−1).

Proof. Fix a SAP instance and for any X ⊆ B let SX be the seminar
selection which allocates kb students to any seminar in S and 0 students
to any seminar in B \S. Moreover, let G be the bipartite representation
of the SAP instance and f be the partial maximum weight matching
function for graph G. Denote by G[VX ∪ I ] the bipartite representation
of SX and let g(X) = f(VX). Since f is submodular by Lemma 2, it is
easy to see that g is submodular as well. Assume by contradiction that
there exist sets X,Y ⊆ B such that the submodularity condition for g
doesn’t hold:

g(X) + g(Y ) < g(X ∪ Y ) + g(X ∩ Y ). (1)

Therefore, by definition of g we have

f(VX) + f(VY ) < f(VX ∪ VY ) + g(VX ∩ VY ),

contradicting the submodularity of f proven in Lemma 2.
Clearly g is also monotone, non-negative and polynomially computable.
Let cb = kb, ∀b ∈ B, let L = |I |, and observe that SX is feasible if
and only if

∑

x∈X
cx ≤ L. Moreover, by Lemma 1 and the definition

of g, g(X) = p(SX) whenever the seminar selection SX is feasible and
therefore the proof follows from Theorem 2.

4 A Constant Factor Greedy Algorithm

The algorithm presented in this section sequentially increments the num-
ber of students allocated to each seminar in a greedy fashion. It is similar
in nature to the greedy algorithm of [7] and [12] but the details of the
approximation guarantee proof are different. In the rest of this section
we denote by AS an optimal assignment for the seminar selection S. Re-
member that Lemma 1 shows that given feasible seminar selection S, an
optimal seminar assignment AS can be found in polynomial time.
We say that a seminar selection T is greater than a selection S (denoted
by T ≻ S) if T (b) ≥ S(b), ∀b ∈ B, and there exists b ∈ B s.t. T (b) >
S(b). The cost of a seminar selection S is denoted by c(S) and equals
∑

b∈B
S(b). When T ≻ S we define the marginal cost of T relative to S

as the difference between the cost of T and the cost of S:

cS(T ) = c(T )− c(S)

Similarly, we define pS(T ) = p(T )−p(S), the marginal profit of T relative
to S. We say that T is an incrementing selection for a seminar selection
S if T ≻ S and there exists a single seminar for which the selection T
allocates more students than selection S; more precisely, the cardinality
of the set {b ∈ B : T (b) > S(b)} is 1. For a selection S we denote the set
of incrementing seminar selections that are feasible by inc(S).
We are now ready to present our algorithm:



Greedy

1. S0 = initial seminar selection;
2. i = 0;

3. While inc(Si) 6= ∅:

(a) Si+1 ← argmaxS′∈inc(Si)(p(S
′)− p(Si))/(c(S

′)− c(Si));

(b) i← i+ 1

4. A1 ← ASi
;

5. A2 ← maximum assignment to any single seminar b for which
S0(b) = 0;

6. Return maxA1,A2;

In this section we analyze the algorithm starting from an empty initial
seminar selection. In the following section we show that by running the
algorithm repeatedly with different initial seminar selections, the approx-
imation guarantee can be improved.
Observe that the cardinality of inc(S) is never greater than |B|·|I | and is
therefore polynomial in the size of the input. Thus, using the maximum
weight matching reduction from the proof of Lemma 1, step 3(a) of the
algorithm can be performed efficiently.

Definition 5. For a seminar selection S and a tuple (b, kb) with b ∈ B
and kb ∈ N, let S ⊕ (b, kb) denote the seminar selection S′ with S′(b) =
max{kb, S(b)} and S′(b′) = S(b′) for any b′ ∈ B, b′ 6= b.

Lemma 3. For any feasible seminar selections S and T , if for every
seminar b ∈ B the seminar selection S ⊕ (b, T (b)) is feasible, then it
holds that:

∑

b∈B

[p(S ⊕ (b, T (b)))− p(S)] ≥ p(T )− p(S).

Proof. For a fixed SAP instance let G be its bipartite representation and
let G[VS ∪ I ] and G[VT ∪ I ] be the bipartite representations of S and T
respectively. Moreover, let MS and MT be two maximum weight match-
ings in G[VS ∪ I ] and G[VT ∪ I ] respectively. Remember that according
to Lemma 1 it holds that p(S) = ω(MS) and p(T ) = ω(MT ). To prove
the lemma we create matchings M = {Mb}b∈B for the bipartite repre-
sentations of assignments p(S ⊕ (b, T (b)), such that each edge of MT is
used in exactly one of the matchings inM and each edge of MS is used
in exactly |B|−1 of the matchings inM.
Let C be the collection of isolated components formed by the union of
the edges of MS and MT . Since both MS and MT are matchings in G,
each element of C is a path or cycle in G. For every b ∈ B let Pb = {P ∈
C : V (P )∩Vb∩ (V (MT )\V (MS)) 6= ∅}, where V (P ) denotes the vertices
of component P (Fig. 2).
Claim 2. For any a 6= b ∈ B, Pa ∩ Pb = ∅.
Proof of claim: To prove the claim, assume that there exist P ∈ Pa ∩Pb

for some a 6= b ∈ B. Then by definition there exist va ∈ Va and vb ∈ Vb

such that va, vb ∈ V (P ) and va, vb /∈ V (MS) and therefore va and vb are



the endpoints of the alternating path P . Since neither of the endpoints of
the path belong to MS , P must have an odd number of edges. However,
because both endpoints of P belong to the same partition of the bipartite
graph G, the path P must have an even number of edges, hence the claim
holds by contradiction.

b1

b2

b3

P1

P2

P3

(a)

b1

(b)

b2

(c)

b3

(d)

Fig. 2: An example with 3 seminars, b1, b2, b3. (a) Two assignments
MS (dashed edges) and MT (dotted edges); the three alternating
paths formed by MS ∪ MT (light gray). q(P1) = b1 because it
only intersects vertices from Vb1 ; q(P2) = b1 because P2 contains
a vertex V (MT ) \ V (MS) that is in Vb1 ; r(P3) = b2. (b), (c) and
(d) assignments for seminar selections S ⊕ (b1, 3), S ⊕ (b2, 2) and
S ⊕ (b3, 2) combining edges of MS and MT .

Let q : C → B be a map of the isolated components to the seminars with
the following properties:

1. q(P ) ∈ {b ∈ B : V (P ) ∩ Vb 6= ∅};
2. if P ∈ Pb for any b ∈ B, q(P ) = b.

Since Pb are disjoint by the previous claim and since for any seminar b
it holds by definition that V (P ) ∩ Vb 6= ∅ whenever P ∈ Pb, it is clear
that such a mapping q exists.
For every b ∈ B let Mb be the matching of G that uses all the edges of
MT from the alternating paths P ∈ C mapped by q to the seminar b, and
all the edges of MS from the paths P ∈ C mapped by q to some other
seminar:

Mb = [MT ∩E(q−1(b))] ∪ [MS ∩ (E(C) \E(q−1(b)))].

Observe that any edge of MT belongs to at least one matching Mb for
some b ∈ B and that any edge of MS belongs to all but one of the



matchings Mb. Therefore,

∑

b∈B

ω(Mb) ≥ ω(MT ) + (|B|−1) · ω(MS).

Moreover, observe that for each b ∈ B, Mb is a matching in the bipartite
representation of the seminar selection S ⊕ (b, T (b)). Therefore p(S ⊕
(b, T (b))) = ω(Mb) and the lemma follows.

Lemma 4. Let S and T be two seminar selections such that S⊕(b, T (b))
is feasible for every b ∈ B. Let S∗ = argmaxS′∈inc(S)(p(S

′)−p(S))/(c(S′)−
c(S)). Then it holds that:

p(S∗)− p(S)

c(S∗)− c(S)
≥

p(T )− p(S)

c(T )
.

Proof. By Lemma 3 we have that

∑

b∈B

[p(S ⊕ (b, T (b)))− p(S)] ≥ p(T )− p(S). (2)

Since
∑

b∈B
[c(S ⊕ (b, T (b)))− c(S)] ≤

∑

b∈B
T (b) = c(T ), inequality (2)

implies that

∑

b∈B [p(S ⊕ (b, T (b)))− p(S)]
∑

b∈B
[c(S ⊕ (b, T (b)))− c(S)]

≥
p(T )− p(S)

c(T )
. (3)

Then, there exists at least one seminar b∗ ∈ B such that

p(S ⊕ (b∗, T (b∗)))− p(S)

c(S ⊕ (b∗, T (b∗)))− c(S)
≥

p(T )− p(S)

c(T )
. (4)

Since S⊕(b∗, T (b∗))) is clearly in inc(S) the lemma follows directly from
Eq. (4) and the definition of S∗.

Lemma 5. Let T be a feasible seminar selection and let r ∈ N be such
that Si ⊕ (b, T (b)) is feasible for every i < r and b ∈ B. Then for each
i ≤ r the following holds:

p(Si)− p(S0) ≥

[

1−
i−1
∏

k=0

(

1−
c(Sk+1)− c(Sk)

c(T )

)

]

·
(

p(T )− p(S0)
)

.

Proof. We prove the lemma by induction on the iterations i. By the
definition of the algorithm, S1 is the seminar selection with maximum
marginal density in inc(S0), and thus Lemma 4 shows that the inequality
holds for i = 1. Suppose that the lemma holds for iterations 1, ..., i. We
show that it also holds for iteration i+ 1. For ease of exposition, for the

remainder of this proof let αi =
c(Si+1)−c(Si)

c(T )
.



p(Si+1)− p(S0) = p(Si)− p(S0) + p(Si+1)− p(Si)

≥ p(Si)− p(S0) + αi · (p(T )− p(Si))

= (1− αi)p(Si) + αi · p(T )− p(S0)

≥ (1− αi) ·

(

1−
i−1
∏

k=0

(1− αk)

)

(p(T )− p(S0))

+ (1− αi) · p(S0) + αi · p(T )− p(S0)

=

(

1− αi −
i
∏

k=0

(1− αk)

)

(p(T )− p(S0))

+ αi · (p(T )− p(S0))

=

(

1−
i
∏

k=0

(1− αk)

)

(p(T )− p(S0)).

Where the first inequality follows from Lemma 4 and the second inequal-
ity follows from the induction hypothesis.

Theorem 4. When S0 is the empty assignment the Greedy algorithm
is a 1

2
·
(

1− e−1
)

approximation for SAP.

Proof. Let OPT be the seminar selection of a fixed optimal assignment
solution for the given SAP instance. Let b∗ ∈ B be the seminar that
is allocated the most students in OPT and let OPT ′ be the seminar
selection for which OPT ′(b∗) = 0 and OPT ′(b) = OPT (b) for any b 6=
b∗ ∈ B. Let r be the first iteration of the algorithm for which c(Sr) >
c(OPT ′). Clearly, Si ⊕ (b,OPT (b)) is feasible for every i < r and b ∈ B.
Since p(S0) = 0, by applying Lemma 5 to iteration r we obtain:

p(Sr) ≥

[

1−
r−1
∏

k=0

(

1−
c(Sk+1)− c(Sk)

c(OPT ′)

)

]

· p(OPT ′)

≥

[

1−
r−1
∏

k=0

(

1−
c(Sk+1)− c(Sk)

c(Sr)

)

]

· p(OPT ′). (5)

Observe that c(Sr) =
∑r−1

k=0 c(Sk+1)− c(Sk) and that for any real num-
bers a0, ..., ar−1 with

∑r−1
k=0 ak = A it holds that:

r−1
∏

k=0

(

1−
ak

A

)

≤

(

1−
1

r

)r

< e−1. (6)

Therefore Eq. (5) implies p(Sr) > (1 − e−1) · p(OPT ′). Since the profit
of A2 is at least p(b∗, OPT (b∗)) it holds that

A1 +A2 > (1− e−1) · p(OPT ′) + p(b∗, OPT (b∗))

≥ (1− e−1) · p(OPT )

and therefore either A1 or A2 has profit at least 1
2
·(1−e−1)p(OPT ).



5 Improving the Approximation

In this section we show that the algorithm can be improved by starting
the greedy algorithm not from an empty seminar selection, but from
a seminar selection that is part of the optimal solution. The improved
algorithm is less efficient but achieves the optimal approximation ratio
of (1 − e−1). Let Aopt be an optimal seminar assignment and for any
b ∈ B let popt(b) be the profit obtained in this assignment from seminar
b:

popt(b) =
∑

i∈A
−1
opt(b)

p(i, b).

Clearly, the profit of the optimal solution is
∑

b∈B
popt(b). W.l.o.g, let

b1, b2, b3 be the three seminars of the optimal solution with highest profit
and let S∗ be a seminar selection such that S∗(b) = OPT (b) if b ∈
{b1, b2, b3}, and S∗(b) = 0 otherwise.

Theorem 5. When S0 = S∗ the Greedy algorithm is a
(

1− e−1
)

-
approximation for SAP.

Proof. Let OPT be the seminar selection corresponding to Aopt. Let b
∗

be the seminar that is allocated the most students in OPT and is not
allocated students in S∗. Moreover, let OPT ′ be the seminar selection
for which OPT ′(b∗) = 0 and OPT ′(b) = OPT (b) for any b 6= b∗ ∈ B.
Let r be the first iteration of the algorithm for which c(Sr) > c(OPT ′).
Clearly, the seminar selection Si⊕ (b,OPT (b)) is feasible for every i < r
and b ∈ B. By applying Lemma 5 to iteration r we obtain:

p(Sr)− p(S∗) ≥

[

1−
r−1
∏

k=0

(

1−
c(Sk+1)− c(Sk)

c(OPT ′)

)

]

·
(

p(OPT ′)− p(S∗)
)

≥

[

1−
r−1
∏

k=0

(

1−
c(Sk+1)− c(Sk)

c(Sr)

)

]

·
(

p(OPT ′)− p(S∗)
)

.

By applying Eq. (6) we obtain that

p(Sr)− p(S∗) ≥ (1− 1/e) ·
(

p(OPT ′)− p(S∗)
)

,

and therefore

p(Sr) ≥ (1− 1/e) · p(OPT ′) + p(S∗)/e

≥ (1− 1/e) · p(OPT )− popt(b
∗) + p(S∗)/e. (7)

By hypothesis S∗ selects the three seminars with maximum profit in the
optimal assignment and allocates exactly as many students to each as
OPT does. Then, since popt(b

∗) ≤ popt(bi) for i = 1, ..., 3 it holds that
p(S∗) ≥ 3 · popt(b

∗) > e · popt(b
∗) and the theorem follows.

Observe that the number of feasible seminar selections assigning stu-
dents to at most three seminars is polynomial in the size of the input.
Therefore, by repeatedly calling the greedy algorithm with all possible
such selections our main result follows:

Corollary 1. There exists a polynomial time (1 − e−1)-approximation
algorithm for SAP.
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11. D. Shmoys and É. Tardos. An approximation algorithm for the
generalized assignment problem. Math. Program., 62(3):461–474,
December 1993.

12. M. Sviridenko. A note on maximizing a submodular set function
subject to a knapsack constraint. Oper. Res. Lett., 32(1), 2004.

13. R. Vohra and N. Hall. A probabilistic analysis of the maximal cov-
ering location problem. Discrete Appl. Math., 43(2), May 1993.


	Tight Approximation Bounds for the Seminar Assignment Problem  

