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Abstract. We present a framework for semantic situation understand-
ing and interpretation of multimodal data using Description Logics (DL)
and rules. More precisely, we use DL models to formally describe contex-
tualised dependencies among verbal and non-verbal descriptors in multi-
modal natural language interfaces, while context aggregation, fusion and
interpretation is supported by SPARQL rules. Both background knowl-
edge and multimodal data, e.g. language analysis results, facial expres-
sions and gestures recognized from multimedia streams, are captured in
terms of OWL 2 ontology axioms, the de facto standard formalism of DL
models on the Web, fostering reusability, adaptability and interoperabil-
ity of the framework. The framework has been applied in the eminent
field of healthcare, providing the models for the semantic enrichment and
fusion of verbal and non-verbal descriptors in dialogue-based systems.
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1 Introduction

A key requirement in multimodal domains is the ability to integrate the different
pieces of information (modalities), so as to derive high-level interpretations. More
precisely, in such environments, information is typically collected from multiple
sources and complementary modalities, such as from multimedia streams (e.g.
using video analysis and speech recognition), lifestyle and environmental sensors
[15]. Though each modality is informative on specific aspects of interest, the
individual pieces of information themselves are not capable of delineating com-
plex situations. Combined pieces of information on the other hand can plausibly
describe the semantics of situations, facilitating intelligent situation awareness.

In parallel, the demand for context-aware user task support has proliferated
in the recent years across a multitude of application domains, ranging from
healthcare and smart spaces to transportation and energy control. A key chal-
lenge in such applications is to abstract and fuse the captured context in order
to elicit an adequate understanding of user actions [5]. In healthcare, for exam-
ple, wearable and ambient sensors, coupled with profile information and clinical
knowledge can be used to improve the quality of life of care recipients and pro-
vide useful insights to clinical experts for personalized interventions and care
solutions [23].



Given the inherent requirement in multimodal environments to aggregate
low-level information and integrate domain knowledge, it comes as no surprise
that Semantic Web technologies have been acknowledged as affording a num-
ber of highly desirable features. More precisely, the OWL 2 ontology language
[10] has been extensively used to capture context elements (e.g. profiles, events,
activities, locations, postures and emotions) and their pertinent relations, map-
ping observations and domain knowledge to class and property assertions in
the Description Logics (DL) [3] theory, fostering integration of information at
various levels of abstraction and completeness [14]. The generated models encap-
sulate formal and expressive semantics, harvesting several benefits brought by
ontologies, e.g. modelling of complex logical relations, sharing information from
heterogeneous sources, sound and complete reasoning engines.

This paper describes an ontology-based framework for context awareness
and conversation understanding in multimodal natural language interfaces. The
framework allows the semantic enrichment of verbal and non-verbal information
coming from multiple devices and acquisition methods, e.g. from multimedia
analysis, following a knowledge-driven methodology for observation aggregation,
linking and situation interpretation. The contributions of our work can be sum-
marized in the following:

– We alleviate the lack of inherent temporal reasoning support in DL and
OWL 2 by adopting an a-temporal approach for subsumption reasoning and
multimodal data fusion based on time-windows.

– We propose an iterative combination of DL reasoning and rules to enhance
the reasoning capabilities of the framework.

– We use SPARQL queries (CONSTRUCT graph patterns) as the underlying rule
language of the framework, overcoming the lack of a standard rule language
that runs directly on top of RDF and OWL ontologies.

– Due to the dynamic and open nature of ontologies, the framework is modality-
agnostic, in the sense that it is not tight to specific domains and data sources
but it can be extended, adapted and used in a variety of situations.

We illustrate the capabilities of the framework through its integration into
a dialogue-based agent for conversational assistance in healthcare. More specif-
ically, elderly use the dialogue system (usually at home) to acquire information
and suggestions related to basic care and healthcare (e.g. symptoms, treatments,
etc.). A key challenge in this domain is the effective fuse of verbal and non-verbal
communication modalities, e.g. deictic gestures and spoken utterances, in order
to disambiguate and interpret user input during the interaction with the agent.

The rest of the paper is structured as follows: Section 2 begins with a basic
background on the DL theory and OWL ontologies. It continues with a discus-
sion on ontology-based context-aware solutions, explaining basic concepts and
challenges. Section 3 describes the proposed framework, providing details on
the representation and interpretation layers, as well as on the hybrid reasoning
scheme and the role of SPARQL. Section 4 explicates through an example use
case from the ongoing simulated evaluation of the framework in the healthcare
domain and Section 5 concludes the paper and outlines next steps.



2 Background and Related Work

2.1 Description Logics

Description Logics (DL [3]) is a family of knowledge representation formalisms
characterised by logically grounded semantics and well-defined reasoning tasks.
The main building blocks are concepts (or classes), representing sets of objects,
roles (or properties), representing relationships between objects, and individuals
(or instances) representing specific objects. Starting from atomic concepts, arbi-
trary complex concepts can be described through a rich set of constructors that
define the conditions of concept membership. DL provides, among others, con-
structs for concept inclusion (C v D), equality (C ≡ D) and assertion (C(a)),
as well as role inclusion (R v S) and assertion (R(a, b)).

The semantics of a DL language is formally defined through an interpretation
I that consists of a nonempty set ∆I (the domain of interpretation) and an
interpretation function ·I , which assigns to every atomic concept A a set AI ⊆ ∆I

and to every atomic role R a binary relation RI ⊆ ∆I ×∆I . Table 1 shows the
syntax and semantics of some of the most common DL constructors. For example,
the class of all deictic gesture observations that point to the head can be defined
as PointsToHeadGesture ≡ DeicticGesture u ∃hasBodyPart.{head}.

Besides formal semantics, DL comes with a set of powerful reasoning ser-
vices, for which efficient, sound and complete reasoning algorithms are available.
For example, through subsumption, one can derive implicit taxonomic relations
among concepts. Satisfiability and consistency checking are useful to determine
whether a knowledge base is meaningful at all. Instance realization returns all
concepts from the knowledge base that a given individual is an instance of.

2.2 OWL 2 Ontologies

An ontology is a set of precise descriptive statements about some part of the
world (usually referred to as the domain of interest). Precise descriptions satisfy
several purposes: most notably, they prevent misunderstandings in human com-
munication and they ensure that software behaves in a uniform, predictable way
and works well with other software1.

1 https://www.w3.org/TR/owl2-overview/

Table 1. Examples of concept and role constructors in DL.

Name Syntax Semantics

Intersection C uD CI ∩DI

Union C tD CI ∪DI

Universal Quantification ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
Existential Quantification ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}



The Web Ontology language (OWL/OWL 2) [10] is a knowledge represen-
tation language widely used within the Semantic Web community for creating
ontologies. The design and semantics of OWL 2 have been strongly influenced
by DL2. Some basic notions are: a) axioms, the basic statements that an OWL
ontology expresses, b) entities, elements used to refer to real-world objects, and
c) expressions, combinations of entities to form complex descriptions.

In principle, every OWL 2 ontology is essentially a collection of such basic
“pieces of knowledge”. Statements that are made in an ontology are called ax-
ioms, and the ontology asserts that its axioms are true. However, despite the
rich primitives, there are certain limitations that amount to the DL style model
theory used to formalise semantics, and particularly the tree model property
[16] conditioning DL decidability. For example OWL 2 can model only domains
where objects are connected in a tree-like manner. In order to leverage OWL’s
limited relational expressiveness, research has been devoted to the integration
of OWL with rules (e.g. SWRL [12], SPIN [13]). User-defined rules on top of
the ontology allow expressing richer semantic relations that lie beyond OWL’s
expressive capabilities and couple ontological and rule knowledge [9].

2.3 Ontology-based Context Awareness and Fusion

Congruous with the open nature of context-awareness, where information at var-
ious levels of abstraction and completeness has to be integrated, ontologies have
attracted growing interest as means for modelling and reasoning over contex-
tual information in various domains [2][14]. For example, BeAware! [4] provides
a framework for context awareness in road traffic management; [26] proposes
an ontology-based framework for context-aware activity recognition in smart
homes. A survey on context awareness from an IoT perspective is presented in
[17], whereas challenges and opportunities in applying Semantic Web technolo-
gies in context-aware pervasive applications are discussed in [27].

A common characteristic in all cases above is the use of ontologies for domain
modelling. Ontology languages, such as OWL 2, share a common understanding
of the structure and semantics of information, enabling knowledge reuse and
inferencing. Capitalizing on the expressivity of the models, several approaches
define one or more interpretation layers in order to elicit an understanding of
the situation. For example, in the domain of natural language interfaces and
dialogue-based systems [24], ontologies provide the vocabulary and semantics
for content disambiguation [6][7], such as WordNet3 and BabelNet4. Ontolo-
gies have been also used in NLP information extraction contexts for coreference
resolution in textual input [22][19]. In the domain of multimodal fusion, ontolo-
gies are used to fuse multi-level contextual information [8]. For example, [18]
presents a framework for coupling audio-visual cues with multimedia ontologies.

2 In this paper, OWL 2 is used to refer to OWL 2 DL ontologies interpreted using the
Direct Semantics [20]

3 http://wordnet-rdf.princeton.edu/
4 http://babelnet.org/rdf/page/



Relevant approaches are also described in [1] for various multimedia analysis
tasks. SmartKom [25] partially uses ontologies to fuse information in multi-
modal dialogue systems, combining speech, gesture and facial expressions.

Similar to the aforementioned approaches, we use OWL 2 ontologies for mod-
elling context types and their relationships in terms of DL concept class con-
structors. However, we argue that the constructors provided by DL, and hence
by OWL 2, are sometimes inadequate to facilitate effective multimodal fusion.
Certain modelling and reasoning limitations, such as the tree-model property
mentioned above or the lack of temporal reasoning, render OWL 2 insufficient
to address practical fusion requirements, such as the assertion of property fillers
for unconnected instances, as we demonstrate in Section 4. Our framework lever-
ages OWL 2 limited expressivity through an intelligent, multi-tier hybrid scheme
of DL reasoning that follows a context-aware fusion and interpretation solution
along with the use of SPARQL CONSTRUCT graph patterns [11] as the underlying
rule language of the framework.

3 Semantic Fusion Framework

The aim of the Semantic Fusion Framework (SFF) is to aggregate context types
and couple them with background knowledge. SFF does not impose any restric-
tion on the modalities that can be fused, provided that the underlying ontologies
support their representation. As such, SFF consists of two core tiers:

– Representation tier: Provides the knowledge structures needed to capture
the semantics and structure of the various modalities, as well as the semantics
of the domain model that drives the fusion task.

– Interpretation tier: Implements the fusion logic, capitalizing on OWL 2
DL reasoning and custom interpretation rules that combine the available
input and generate additional inferences.

The conceptual architecture of SFF is depicted in Fig. 1. In the following
sections, we further elaborate on the specifics of each tier.

2nd Tier: Interpretation Layer

DL reasoning and SPARQL

1st Tier: Representation Layer

vocabularies and patterns

current context

Fig. 1. Conceptual architecture of the Semantic Fusion Framework (SFF)



3.1 Domain and Context Descriptors

As mentioned above, SFF is modality-agnostic since it is not tight to specific con-
text types. In that sense, contextual information may be collected from a variety
of sources, such as ambient and wearable sensors (e.g. temperature and prox-
imity observations), multimedia analysis, such as text analysis (named entities
and concepts), video analysis (e.g. location, gestures), etc. All this information
needs to be mapped on domain entities to enable the derivation of contextual
descriptors that best satisfy and interpret the context.

We use the term “observation” to abstractly refer to the root of the context
type hierarchy. Fig. 2 depicts a lightweight vocabulary for modelling context
types. The ontology extends the leo:Event concept of LODE [21] to benefit
from existing vocabularies to describe events and observations. Property asser-
tions about the temporal extension of the observations and the agent (actor) are
allowed, reusing core properties of LODE. Fig. 2 also depicts the relationship be-
tween the upper-level domain and context models. More precisely, the Context

class is provided that allows one or more contains property assertions referring
to observations. In terms of DL semantics, the Context class is defined as:

Context ≡ ∃contains.Observation (1)

classifying instances with contains property assertions in Context. As we demon-
strate in Section 4, the adaptation of the framework in different domains involves
the extension of the Context concept, specifying the observation types that des-
ignate complex situations of interest that need to be recognized. Intuitively,
instances of the Context concept define set of observations, designating the cur-
rent context that needs to be classified and interpreted.

3.2 DL Reasoning and SPARQL

The interpretation tier defines the way atomic observations can lead to the
derivation of high-level interpretations. For this task, we group observations into
a single Context instance, creating the current context, which is then fed into
the DL reasoner for subsumption reasoning and context classification. In prin-
ciple, the current context is built taking into account the temporal extension of
observations, along with background information pertinent to the domain. We
present an example current context definition in Section 4.

Observation

time:Temporal
Entity

leo:atTime

leo:Event

leo:involvedAgent
dul:Agent Context

contains

Fig. 2. Upper-level domain and context structures in SFF



However, apart from context classification, an important reasoning require-
ment in multimodal fusion is the propagation of property fillers among incoming
observations, e.g. the injection of the body part where a deictic gesture points
to, which is derived after fusion with spoken utterances. Due to the tree-model
property, DL reasoning is not able to update property fillers for unconnected
instances (observations). SFF uses SPARQL CONSTRUCT graph patterns to en-
rich the reasoning capabilities of the framework, implementing certain fusion
requirements, according to the entities and relations involved.

The hybrid reasoning algorithm is depicted in Figure 3. Assuming that G is
the RDF/OWL graph with context observations, Q is the set with all SPARQL
CONSTRUCT graph patterns,RDL is the OWL 2 DL reasoning module andRSPARQL

is the SPARQL query engine, the algorithm in Figure 3 enriches G with addi-
tional interpretations. More specifically, the algorithm implements an iterative
combination of DL reasoning and SPARQL query execution. Initially, the DL
reasoning module is used over G for subsumption reasoning and realization (line
2). The derivations are added back to G that is now used as the underlying
graph for the SPARQL reasoning module. When all SPARQL queries have been
executed (lines 3 to 5), a reasoning iteration has been completed. The algorithm
terminates when no SPARQL inferences are derived after an iteration.

4 Use Case: Reference Resolution

We describe the simulated evaluation of SFF that involves the conversation of
users with a dialogue-based agent at a home or a nursing environment in order
to acquire treatment suggestions about problems they have. We describe the
ontologies and rules needed to disambiguate referring expressions, taking into
account non-verbal modalities, e.g. deictic gestures. In the simulated example,
the user touches his head and says “It hurts here!”. By fusing pointing gestures,
the agent can conclude that the user has a headache and it can provide relevant
treatment suggestions.

4.1 Domain Ontologies

It is assumed that SFF acquires contextual information about body gestures
(e.g. deictic gestures to the head) and verbal events (e.g. entities and concepts
extracted through language analysis) through respective multimedia analysis8

Require: G 6= ∅, Q 6= ∅
1: repeat
2: G← G ∪RDL(G)
3: for all q ∈ Q do
4: G← G ∪RSPARQL (q,G)
5: end for
6: until RSPARQL (q,G) = ∅

Fig. 3. The hybrid context interpretation algorithm.

In effect, the reasoning algorithm consists of successive steps of OWL rea-
soning, materialisation, and SPARQL queries execution. MetaQ can be char-
acterised as a loosely-coupled bidirectional hybrid framework in the sense that
the two reasoning modules are separate: the materialisation results of OWL rea-
soning are sent to the SPARQL module for executing the rules on top of the
information. Then the results of SPARQL are sent back to the OWL reasoner.
In principle, decidability in frameworks that combine ontologies and rules is en-
sured by allowing rule variables to bind only to explicitly named individuals.
SPARQL follows the Closed-World Assumption (i.e. the knowledge available is
thought to be a complete encoding of the domain of interest) and hence in-
herently satisfies this condition. Therefore, even if OWL reasoning follows the
OWA, the SPARQL-based interpretation layer queries the underlying knowl-
edge in a CWA-like manner. Also note that, in the generation of new individuals
during the execution of the SPARQL queries, unique URIs are enforced that en-
sure that an individual that has already been generated in a previous reasoning
cycle, cannot be reintroduced in a subsequent one (NOT EXISTS triple pattern
operator).

In Section 4 we present examples of such rules.

4 Use Case: Coreference Resolution

We present an instantiation of the framework in the domain of...

5 Conclusions

Acknowledgments. This work has been partially supported by the H2020-
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Fig. 3. Skeleton of the hybrid context interpretation algorithm.
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Fig. 4. Excerpt of the gesture and body part ontologies.

modules (in this case, from video and audio data). Fig. 4 depicts the specializa-
tion of the Observation hierarchy (Fig. 2) for modelling gestures. The emphasis
is placed on the HandGesture concept that allows pointsTo property asser-
tions about the body part where the hand points to. Additional complex con-
cepts are defined (not visualised in Fig. 4) by composing existing contexts, e.g.
HeadReference ≡ HandGestureu ∃pointsTo.Head. As far as language analysis
is concerned, the current deployment capitalizes on the results of a frame-based
formalisation of natural language utterances using DOLCE-DnS Ultralite pat-
terns5. Fig. 5 depicts the relevant ontology. For example, a gesture event pointing
to the head can be represented as:

:g1 a :HandGesture;

:pointsTo [rdf:type :Head] ;

:atTime [...] .

which is further classified as HeadReference, based on the axiom defined above.
Likewise, the verbal event corresponding to the example can be represented as:

:fs1 a :InformSpeechAct, :PerceptionBodyFrameSituation;

dul:isSettingFor :h1 .

:h1 a [:Hurt rdfs:SubClassOf dul:Event] ;

dul:hasParticipant :d1 .

:d1 a :Here ;

dul:isClassifiedBy [:bp1 a :BodyPart], [:sd1 a :SpatialDeictic] .

As illustrated, the example utterance is an InformSpeechAct about a physi-
cal experience (i.e. a PerceptionBodyFrameSituation), where the affected body
part, i.e. the object classified as BodyPart, is not named explicitly but instead
implied by a deictic referring expression.

5 http://ontologydesignpatterns.org/



Fig. 5. The upper level ontology for representing verbal analysis results.

4.2 Context Models and Fusion

As already discussed, SFF needs to build the current context. In our example,
whenever a FrameSituation is sent to the SFF framework, SPARQL queries
retrieve neighbouring events that overlap a fixed time interval around it, e.g.
[-2s, +2s]. The overlapped observations form the current context, which is fed
into the ontology reasoner to interpret it. The current context is defined as

CurrentContext ≡ Context u ∃contains.FrameSituation (2)

where Context is given by (1). In order to model the situation when the user
feels pain, CurrentContext is further specialised as:

PainContext ≡ CurrentContext u ∃contains.(FrameSituation
u ∃isSettingFor.Hurt)

(3)

According to (3), if the current context contains a FrameSituation that is
associated with a Hurt conceptualisation, it is classified in the PainContext

class. Assuming that fs1 is part of the current context, SFF interprets it as a
PainContext situation, since sf1 satisfies the complex class description in (3).

In addition, provided that the Hurt instantiation of the FrameSituation is
also associated with a body part, the current context can be further classified in
the Headache class, defined as:

Headache ≡ PainContext u ∃contains.
(FrameSituation u ∃isSettingFor.

(Hurt u ∃isAssociatedWith.
(Head u ∃isClassifiedBy.BodyPart)))

(4)

As such, if the user explicitly mentions the body part, then the FrameSituation
can be directly classified by the underlying ontology reasoner as a Headache. In



our example, however, the user does not explicitly refer to the head, but instead
points to it, while using the deictic referring expression “here”. As a result, the
inferred PainContext is associated with a non-body part entity, which moreover
is classified as SpatialDeictic. In this case, SFF needs to take into account
the fact that there is an underspecified body part in the FrameSituation that
requires additional contextual information, and in particular non-verbal one, in
order to resolve the ambiguity and provide an appropriate feedback. The logic
to derive such inferences is beyond the expressivity provided by OWL 2. In this
case, SFF uses a fusion rule to resolve this ambiguity. The following SPARQL
rule implements the fusion of language analysis results with hand gestures to
body parts, so as to fill the missing body part fillers.

CONSTRUCT {

?p isAssociatedWith ?bodypart.

}

WHERE {

?c a PainContext;

contains [isSettingFor ?p] .

?p a Hurt;

isAssociatedWith ?bp .

?bp a SpatialDeictic.

?c contains [a HandGesture; pointTo ?bodypart].

}

Having updated the context with the inferred body part, the DL reasoner
can now classify the current context in the Headache class, based on (4). As
such, through the combination of the DL and SPARQL modules, SFF interprets
the current situation as a headache, propagating it to subsequent modules to
retrieve suggestions and provide feedback to the end user.

5 Conclusions

In this work, we presented SFF, an ontology-driven framework that couples DL
reasoning and rules for multimodal fusion. The focus has been given on the
interpretation of conversational contexts in dialogue-based systems, fusing non-
verbal (i.e. gestures) and verbal features extracted from multimedia data for
situation awareness. Ontologies are used to formally capture context types and
background knowledge, while fusion and interpretation is reduced on the efficient
combination of DL reasoning and SPARQL query execution.

We also described the simulated evaluation of SFF for reference resolution.
We are currently collecting data for evaluating the framework using real-world
conversations. In parallel, we are working towards further enrichment of the
fusion and interpretation capabilities of the framework, so as to support for
additional use cases, e.g. tasking into account emotions and facial expressions.
It is also important to mention that the identification of the current conversa-
tional context does not take into account uncertainty. Our plan is to investigate



lightweight probabilistic and non-monotonic reasoning schemes to enhance the
interpretation capabilities of SFF.
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