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LOWER BOUNDS FOR ON-LINE INTERVAL COLORING WITH

VECTOR AND CARDINALITY CONSTRAINTS

GRZEGORZ GUTOWSKI AND PATRYK MIKOS

Abstract. We propose two strategies for Presenter in the on-line interval graph
coloring games. Specifically, we consider a setting in which each interval is
associated with a d-dimensional vector of weights and the coloring needs to satisfy
the d-dimensional bandwidth constraint, and the k-cardinality constraint. Such
a variant was first introduced by Epstein and Levy and it is a natural model for
resource-aware task scheduling with d different shared resources where at most
k tasks can be scheduled simultaneously on a single machine.

The first strategy forces any on-line interval coloring algorithm to use at least
(5m− 3) d

log d+3
different colors on an m

(

d

k
+ log d+ 3

)

-colorable set of intervals.

The second strategy forces any on-line interval coloring algorithm to use at least
⌊

5m
2

⌋

d

log d+3
different colors on anm

(

d

k
+ log d+ 3

)

-colorable set of unit intervals.

1. Introduction

A proper coloring of a graph G is an assignment of colors to the vertices of the
graph such that adjacent vertices receive distinct colors. A k-bounded coloring of
G is a proper coloring of G such that the number of vertices that receive any single
color is at most k. For a graph G, let χ(G) denote the chromatic number of G, that
is the minimum number of colors in a proper coloring of G, and let ω(G) denote
the clique number of G, that is, the maximum size of a subset of vertices such that
any two vertices in the subset are adjacent.
An on-line graph coloring game is a two-person game, played by Presenter and

Algorithm. In each round Presenter introduces a new vertex of a graph with its
adjacency status to all vertices presented earlier. Algorithm assigns a color to the
incoming vertex in such a way that the coloring of the presented graph is proper.
The color of the new vertex is assigned before Presenter introduces the next vertex
and the assignment is irrevocable. The goal of Algorithm is to minimize the number
of different colors used during the game. In the k-bounded variant of the game,
the coloring constructed by Algorithm needs to be a k-bounded coloring of the
presented graph.
For an interval I = [l, r] on the real line, we say that l is the left endpoint, and

r is the right endpoint of I. The length of interval I is the difference between its
right endpoint and its left endpoint. A set of intervals on the real line represents a
graph in the following way. Each interval represents a vertex and any two vertices
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are joined by an edge whenever the corresponding intervals intersect. A graph
which admits such a representation is an interval graph.
An on-line interval coloring game is a two-person game, again played by Pre-

senter and Algorithm. In each round Presenter introduces a new interval on the
real line. Algorithm assigns a color to the incoming interval in such a way that
the coloring of the presented interval graph is proper, i.e. all intervals of the same
color are pairwise disjoint. The color of the new interval is assigned before Pre-
senter introduces the next interval and the assignment is irrevocable. The goal of
Algorithm is to minimize the number of different colors used during the game.
We consider a few variants of the on-line interval coloring game. In the unit

variant of the game, all intervals presented by Presenter are of length exactly 1.
In the d-dimensional variant of the game, Presenter associates a d-dimensional
vector of weights from [0, 1] with each presented interval. Moreover, the coloring
constructed by Algorithm needs to satisfy a different condition. The condition
is that for each color γ and any point p on the real line, the sum of weights of
intervals containing p and colored γ does not exceed 1 in any of the coordinates.
In the k-cardinality variant of the game, the coloring constructed by Algorithm
needs to satisfy that for each color γ and any point p on the real line, the number
of intervals containing p and colored γ does not exceed k.
We are most interested in the on-line (k, d) interval coloring, a variant in which

each interval has a d-dimensional vector of weights and the coloring must satisfy
constraints of both d-dimensional and k-cardinality variant. That is, for each color
γ and any point p, the number of intervals containing p and colored γ does not
exceed k, and the sum of weights of those intervals does not exceed 1 in any
coordinate.
In the context of various on-line coloring games, the measure of the quality of

a strategy for Algorithm is given by competitive analysis. A coloring strategy
for Algorithm is r-competitive if it uses at most r · c colors for any c-colorable
graph, or set of intervals, presented by Presenter. The competitive ratio for a
problem is the infimum of all values r such that there exists an r-competitive
strategy for Algorithm for this problem. In this paper we give lower bounds on
competitive ratios for different problems. We obtain these results by presenting
explicit strategies for Presenter that force any Algorithm strategy to use many
colors while the presented graph, or set of intervals, is colorable with a smaller
number of colors.
We say that a strategy for Presenter in an on-line coloring problem is transparent

if after each time Algorithm assigns a color to a vertex, or interval, Presenter
colors the vertex with his own color and reveals that color to Algorithm. The
coloring constructed by Presenter must satisfy the same conditions as the coloring
constructed by Algorithm. The number of colors used by a transparent strategy
for Presenter gives an upper bound on the minimum number of colors that can be
used in a coloring.
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1.1. Previous work. There is a simple strategy for Presenter in on-line graph col-
oring game that forces Algorithm to use any number of colors while the constructed
graph is 2-colorable. Thus, the competitive ratio for this problem is unbounded.
Nevertheless, it is an interesting question what is the competitive ratio when the
on-line game is played only for at most n rounds. Halldórsson and Szegedy [4]
presented a transparent strategy for Presenter that forces Algorithm to use at
least 2 n

logn
(1 + o(1)) different colors in n rounds of the game while the constructed

graph is log n(1 + o(1))-colorable. The best known upper bound of O
(

n
log∗ n

)

on

the competitive ratio for the n-round on-line graph coloring problem was given by
Lovasz, Saks and Trotter [6].
The competitive ratio for the on-line interval coloring problem was established

by Kierstead and Trotter [5]. They constructed a strategy for Algorithm that
uses at most 3ω − 2 colors while the clique size of the constructed graph is ω.
They also presented a matching lower bound – a strategy for Presenter that forces
Algorithm to use at least 3ω−2 colors. Unit variant of the on-line interval coloring
problem was studied by Epstein and Levy [2]. They presented a strategy for
Presenter that forces Algorithm to use at least

⌊

3ω
2

⌋

colors while the clique size of
the constructed graph is ω. Moreover, they showed that First-Fit algorithm uses
at most 2ω−1 colors. Epstein and Levy [3] introduced many variants of the on-line
interval coloring problem. The best known lower bound on the competitive ratio
for the on-line (k, d) interval coloring is 3 for small k and 24

7
for large k. For unit

variant of this problem the best known lower bound is 3

2
.

Halldórsson and Szegedy ideas were adopted by Azar et al. [1] to show lower
bounds on competitive ratio for on-line d-vector bin packing. This problem is
equivalent to a variant of d-dimensional on-line interval coloring where all presented
intervals are the interval [0, 1] with different vectors of weights. Their strategy
for Presenter shows that the competitive ratio for the on-line d-dimensional unit
interval coloring problem is at least 2 d

log2 d
(1 + o(1)).

1.2. Our results. We generalize Halldórsson and Szegedy [4] strategy into the
setting of the k-bounded coloring, and using the technique similar to the one by
Azar et al. [1] we adopt it to the on-line (k, d) interval coloring problem. We
present how to combine this technique with classical results by Kierstead and
Trotter [5], and by Epstein and Levy [2, 3] to obtain a new lower bound of
5 d

log d( d

k
+log d)

(1 + o(1)) on the competitive ratio for the on-line (k, d) interval color-

ing, and a lower bound of 5
2

d

log d( d

k
+log d)

(1 + o(1)) for unit variant of this problem.

2. Graph coloring

Theorem 1. For every n > 2 and k ∈ N+, there is a transparent strategy for

Presenter that forces Algorithm to use at least 2 n
logn+3

different colors in the n-

round, k-bounded on-line graph coloring game and uses n
k
+ log n+ 3 colors.
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Proof. Let b = ⌊logn⌋+3. The state of a k-bounded on-line graph coloring game is
represented by a progress matrix M . Each cell M [i, j] is either empty or it contains
exactly one vertex. At the beginning of the game, all cells are empty. A vertex in
M [i, j] is colored by Algorithm with color j and by Presenter with color i. Each
player can use a single color γ to color at most k vertices, so there are at most
k vertices in any column, and in any row of the progress matrix. We say that a
row with k vertices is depleted. Presenter can no longer use colors corresponding
to depleted rows. Presenter maintains a set of exactly b active rows, denoted A,
that contains all nonempty non-depleted rows and additionally some empty rows
({i : 1 6 |∪jM [i, j]| < k} ⊂ A and |A| = b). At the beginning of the game there
are no depleted rows and A = {1, . . . , b}. When some row becomes depleted then
it is removed from A and a new empty row is added to A. A pattern is a subset of
rows. We say that a pattern p represents a column j if ∀i : i ∈ p ⇐⇒ M [i, j] 6= ∅.
A pattern p is active if it is a nonempty subset of A such that |p| 6

⌊

b
2

⌋

. An active
pattern p is present in M if at least one column of M is represented by p.

1 2 3 4 5 6 7 8 9 10 . . .
1 v1 v3 v5 v7
2∗ v2 v10 v12
3 v15 v4 v9 v13
4∗ v6 v11
5∗ v8 v14
6∗

7
. . .

Table 1. Example of a progress matrix after 15 rounds

Table 1 shows a possible state of the progress matrix M after 15 rounds of the
4-bounded on-line graph coloring game with n = 4 and b = 4. In this example, the
last introduced vertex v15 is colored by Algorithm with color 2 and by Presenter
with color 3. Rows 1 and 3 are depleted and the set of active rows isA = {2, 4, 5, 6}.
There are 10 different active patterns, but only 2 of them are present inM : pattern
{2, 5} in column 6, and pattern {5} in column 9.
The transparent strategy for Presenter for round t is as follows:

(1) Choose an active pattern pt that is not present in M .
(2) Introduce a new vertex vt that is adjacent to all vertices colored by Presenter

with colors not in pt.
(3) Algorithm colors vt with color γ.
(4) Color vt with any color ̺ such that ̺ ∈ pt and M [̺, γ] = ∅.

We claim that Presenter can follow this strategy as long as there is an active
pattern not present in the progress matrix. To prove that, we need to show that in
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step (4) Presenter always can choose an appropriate color ̺, and that the coloring
constructed by Presenter is a k-bounded coloring of the constructed graph.
Let q be a pattern that represents column M [∗, γ] of the progress matrix before

round t. We claim that q ( pt. Assume to the contrary that i ∈ q r pt. It follows,
that there is a vertex v in cell M [i, γ] and by rule (2) v is adjacent to vt. Thus,
Algorithm cannot color vertex vt with color γ. Pattern q is present in M before
round t and by rule (1) pattern pt is not present in M before round t. It follows
that q is a strict subset of pt and Presenter has at least one choice for color ̺ in
step (4).
When Presenter assigns color ̺ to vertex vt, we have that ̺ ∈ pt; pt is an active

pattern; ̺ is an active row, and there are less than k vertices colored by Presenter
with ̺. Rule (2) asserts that none of the vertices adjacent to vt is colored with any
of the colors in pt. Thus, we have that Presenter can follow the strategy as long as
there is a choice of an appropriate pattern in step (1).
We claim that the game can be played for at least n rounds. Indeed, there are

(

b

x

)

different patterns of size x and each one of them must represent a column
of the progress matrix with exactly x vertices. Thus, when all active patterns
represent some column of the progress matrix, the game has been played for at
least

∑

16x6⌊ b

2⌋
x
(

b

x

)

> n rounds.

After n rounds, Presenter used colors corresponding to depleted and active rows.
There are at most

⌊

n
k

⌋

depleted rows and exactly ⌊logn⌋ + 3 active rows. Thus,
Presenter uses at most n

k
+ logn + 3 colors in the first n rounds.

Let qj be a pattern representing column M [∗, j] after n rounds. Let t be the
last round when a vertex was added to column j. We have that qj is a subset of
pattern pt which was an active pattern before round t, and the size of qj is at most
⌊

b
2

⌋

. Thus, there are at least 2 n
logn+3

nonempty columns after n rounds.
�

For fixed parameters n and k, denote a generalized Halldórsson and Szegedy
strategy by HSk,n. Note that for k = +∞, there are no depleted rows in matrix
M and k-bounded coloring is simply a proper coloring. In this case we get the
original Halldórsson and Szegedy result for the on-line graph coloring problem.

Theorem 2 (Halldórsson, Szegedy [4]). For every integer n > 2, there is a trans-

parent strategy for Presenter that forces Algorithm to use at least 2 n
logn+3

colors in

the n-round on-line graph coloring game and uses logn+ 3 colors.

3. Interval coloring

In the proof of the following theorem, we use strategy HSk,d to show a lower
bound on the competitive ratio for the on-line (k, d) interval coloring problem.

Theorem 3. For every d > 2 and k,m ∈ N+, there is a strategy for Presenter that

forces Algorithm to use at least (5m− 3) d
log d+3

different colors in the on-line (k, d)
5



interval coloring game while the constructed set of intervals is m
(

d
k
+ log d+ 3

)

-

colorable.

Proof. For any fixed parameters k ∈ N+, d > 2, L < R, ε ∈ (0, 1

d
) we describe an

auxiliary strategy HSk,d(ε, L,R). Let α = 1− 1
2
ε, δ = 1

2d
ε. In the t-th round of the

on-line (k, d) interval coloring game, Presenter uses HSk,d strategy to get a new
vertex vt. Then, presents an interval [L,R] with weights wt, where wt = (x1, . . . , xd)
is a d-dimensional vector with xt = α, xi = ε for all i < t such that vi is adjacent
to vt, and xi = δ in every other coordinate. Figure 1 shows an example of w6 for
a vertex v6 that is adjacent to v2 and v5.

1 2 3 4 5 6 7 8 . . . d

δ
ε

δ δ
ε

α

δ δ δ

Figure 1. Encoding of v6 in a d-dimensional vector of weights

([L,R], wt) is colored by Algorithm with color γt. Then, γt is forwarded to HSk,d

as the color of vt. HSk,d colors vt with ̺t, but Presenter discards that information.
See Figure 2 for a diagram of the strategy HSk,d(ε, L,R), and Figure 3 for an
example encoding of a graph.

A
lg
or
it
h
m

en
co
d
e

HSk,d

vt✛
[L,R], wt✛

γt ✲
̺t✛

Figure 2. Encoding of HSk,d strategy

We claim that the encoding strategy ensures that any intervals Ii and Ij can get
the same color iff vertices vi and vj are not adjacent. First, assume that i < j and
vi is adjacent to vj. Vector wi has α in the i-th coordinate, vector wj has ε in the
i-th coordinate, and α + ε > 1. Thus, intervals Ii and Ij must be colored with
different colors. Let J ⊂ {I1, ..., It−1} be the set of intervals colored with γ before
round t 6 d. Assume that vt is not adjacent to any of the vertices in J . Denote
the l-th coordinate of the sum of vectors of weights of intervals in J by Wl. For
any 1 6 l 6 d, if Il ∈ J then Wl = α + δ(|J | − 1) < 1 − δ. In this case we have
that vt is not adjacent to vl, and that the l-th coordinate of the vector of weights

6



of vt is δ. If Il /∈ J then Wl 6 ε|J | < 1− ε. For l = t, we have Wl 6 δ|J | 6 1−α.
Thus, the sum of vector of weights of the intervals in the set J ∪ {It} does not
exceed 1 in any coordinate and It can be colored with γ.

❞

❞

❞

❞

❞

❞

❅
❅❅■

�
��✠

✏✏✏✏✏✏✏✏✮

�
��✠

✛ ❍❍❍❍❍❍❨ ✁
✁✁☛

◗
◗

◗◗❦
v1

v2

v3

v4

v5

v6

w1 α δ δ δ δ δ
w2 ε α δ δ δ δ
w3 δ ε α δ δ δ
w4 ε δ ε α δ δ
w5 δ ε ε δ α δ
w6 δ δ δ ε ε α

Figure 3. Example of a graph and vectors of weights corresponding
to the vertices

Consider a sequence of parameters {εi}i∈N+
defined as εi :=

(

1
2d

)i
. See that for

every i ∈ N+ we have εi ∈ (0, 1
d
) and we can use HSk,d(εi, L, R) strategy. Let

αi = 1− 1
2
εi and δi =

1
2d
εi = εi+1.

Let Ji be a set of intervals constructed by HSk,d(εi, Li, Ri) strategy and Jj be
a set of intervals constructed by HSk,d(εj, Lj , Rj) strategy. Assume that i < j,
[Li, Ri] ∩ [Lj , Rj ] 6= ∅ and that the construction of Ji is finished before the con-
struction of Jj starts. Any interval I ∈ Jj has weight αj in one of the coordinates
and every interval in Ji has weight either αi, εi or δi in that coordinate. In any
case, sum of those weights exceeds 1 and no two intervals, one in Ji, other in Jj

can be colored with the same color.
The rest of the proof uses a technique similar to the one by Kierstead and Trot-

ter [5]. For m ∈ N+, let cm = (5m− 3) d
log d+3

, and om = m
(

d
k
+ log d+ 3

)

. By

induction on m, we show a strategy Sm for Presenter such that: all introduced
intervals are contained in a fixed region [A,B]; all intervals come from calls of
strategies HSk,d(ε, L,R) with ε in {ε1, . . . , ε3m}; Algorithm uses at least cm differ-
ent colors; constructed set of intervals is om-colorable. Form = 1 and a fixed region
[A,B], Presenter uses strategy HSk,d(ε1, A, B). This strategy forces Algorithm to
use at least c1 different colors, and the constructed set of intervals is o1-colorable.
Thus, in this case we are done.
Let c̄ = 3

(

cm+1

cm

)

+ 1. Presenter splits the fixed region [A,B] into c̄ disjoint

regions [l1, r1], . . . , [lc̄, rc̄]. By induction, in each region Presenter can use strategy
Sm independently. As a result, in each region [li, ri], we get a set of intervals
Ji. If during the construction Algorithm uses at least cm+1 colors, we are done.
Otherwise, let Ci be a cm-element subset of colors used by Algorithm to color Ji.
Some cm-element set of colors C∗ appears on the list (C1, . . . , Cc̄) at least 4 times.
Let a, b, c, d ∈ {1, . . . , c̄}, a < b < c < d be indices such that Ca = Cb = Cc = Cd =
C∗. Define pi =

1

2
(ri + li+1) for i = a, b, c.

Presenter uses strategy HSk,d(ε3m+1, la, pa) to get a set of intervals K1 and then
strategy HSk,d(ε3m+1,

rc+pc
2

, rd) to get a set of intervals K2. Let D1 be a c1-element
7



subset of colors used by Algorithm to color K1, and D2 be a c1-element subset
of colors used to color K2. The construction of Ja and Jd is finished before the
construction of K1 and K2 started and region [la, pa] covers [la, ra], and region
[

rc+pc
2

, rd
]

covers [ld, rd]. Thus, none of the colors in C∗ can be used to color any
interval in K1 or K2. Now, the strategy splits into two cases: we either have
|D1 ∩D2| 6

1

2
c1 or |D1 ∩D2| >

1

2
c1.

Case 1. |D1 ∩D2| 6
1
2
c1. Presenter uses strategy HSk,d(ε3m+2,

ra+pa
2

, pc) to get
a set of intervals K3. Let D3 be the set of colors used to color K3. See Figure 4
for a diagram of the construction. Region

[

ra+pa
2

, pc
]

covers [lb, rb] and we get
C∗ ∩D3 = ∅. Moreover, any interval in K3 intersects any interval in K1, and any
interval in K2. Thus, D3 ∩ D1 = ∅, D3 ∩ D2 = ∅, and Algorithm uses at least
|C∗ ∪D1 ∪D2 ∪D3| > cm + c1 +

1

2
c1 + c1 = cm+1 colors. Each set of intervals

J1, . . . ,Jc̄ intersects with intervals in at most one of the sets K1, K2, or K3. Thus,
all presented intervals can be colored with max{2, m + 1}( d

k
+ log d + 3) = om+1

colors and in this case we are done.

la ra
Ca

lb rb
Cb

lc rc
Cc

ld rd
Cd

pa

❄

pb

❄

pc

❄

D1 D2

D3

Figure 4. Construction in case |D1 ∩D2| 6
1
2
c1

Case 2. |D1 ∩D2| >
1

2
c1. Presenter uses strategy HSk,d(ε3m+2,

rb+pb
2

, pc) to get a

set of intervals K4 and then strategy HSk,d(ε3m+3,
ra+pa

2
, pb) to get K5. Let D4 be

a c1-element subset of colors used by Algorithm to color K4, and D5 be the set of
colors used to color K5. See Figure 5 for a diagram of the construction. Similar
argument as in the previous case gives C∗ ∩ D4 = ∅, C∗ ∩ D5 = ∅, D2 ∩ D4 = ∅,
D1∩D5 = ∅, andD4∩D5 = ∅. SetD2 contains at least

1

2
c1 elements from the setD1.

Thus, we have |D4 ∩D1| 6
1
2
c1. Algorithm uses at least |C∗ ∪D1 ∪D4 ∪D5| >

cm + c1 +
1

2
c1 + c1 = cm+1 colors. Each set of intervals J1, . . . ,Jc̄ intersects with

intervals in at most one of the sets K1, K2, K4, or K5. Thus, all intervals can be
colored with max{2, m+ 1}( d

k
+ log d+ 3) = om+1 colors.

la ra
Ca

lb rb
Cb

lc rc
Cc

ld rd
Cd

pa

❄

pb

❄

pc

❄

D1 D2

D4

D5

Figure 5. Construction in case |D1 ∩D2| ≥
1

2
c1
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4. Unit interval coloring

Theorem 4. For every d > 2 and k,m ∈ N+, there is a strategy for Presenter that

forces Algorithm to use at least
⌊

5m
2

⌋

d
log d+3

different colors in the on-line (k, d) unit

interval coloring game while the constructed set of intervals is m
(

d
k
+ log d+ 3

)

-

colorable.

Proof. The proof combines strategy HSk,d(ε, L,R) introduced in the proof of The-
orem 3 with technique similar to the one by Epstein and Levy [2, 3]. Assume that
the sequence of encoding parameters {εi}i∈N+

is defined the same way as in the
proof of Theorem 3.
The strategy consists of 3 phases. In the initial phase Presenter uses strategy

HSk,d(εi, 0, 1) for i = 1, . . . ,
⌊

m
2

⌋

sequentially. There is a coloring of all intervals

introduced in the initial phase using
⌊

m
2

⌋(

d
k
+ log d+ 3

)

colors, but Algorithm uses

at least
⌊

m
2

⌋

2d
log d+3

colors. Let Cinit be a
⌊

m
2

⌋

2d
log d+3

-element subset of colors used

by Algorithm in the initial phase.
For L < R < L + 1, let Sep(L,R) be the separation strategy that introduces

d unit intervals in the following way. Initialize l = L, and r = R. To get next
interval, calculate p = 1

2
(l + r) and introduce interval I = [p, p+ 1]. If Algorithm

colors I with color in Cinit, then update r = p. Otherwise, mark interval I and
update l = p. Observe that to the left of p there are only left endpoints of marked
intervals. Moreover, all introduced intervals have nonempty intersection.
The separation phase consists of 2

⌊

m
2

⌋

subphases. We fix L1 = 3

2
and R1 = 2.

For i = 2, . . . , 2
⌊

m
2

⌋

, points Li and Ri are established after the (i− 1)-th subphase.
Denote by Subi, the strategy for the i-th subphase being a combination of the
HSk,d(εi, 0, 1) strategy and the Sep(Li, Ri) strategy. Strategy Subi introduces d
intervals. The position of each interval is determined using Sep(Li, Ri) strategy,
and the d-dimensional vector of weights associated with each interval is determined
according to HSk,d(εi, 0, 1). See Figure 6 for a diagram of the strategy Subi.
At the end of each subphase, Presenter decides whether the subphase is marked

or not. The set of marked subphases is denoted by M. Let Ci be the set of colors
used by Algorithm in the i-th subphase and not present in the set Cinit. Subphase
i is marked if and only if one of the following conditions holds:

(1) the number of remaining subphases including the i-th is
⌊

m
2

⌋

− |M|.

(2) |Ci| >
d

log d+3
and |M| <

⌊

m
2

⌋

,

Observe that at the end of the separation phase we have exactly
⌊

m
2

⌋

marked
subphases.
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i,
R

i)

H
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k
,d
(ε

i,
0,
1)

[0, 1], wt✛

It✛
It, wt✛

γt ✲
γt ✲

Figure 6. Strategy Subi for a single subphase

Let L∗ be the left endpoint of the leftmost interval introduced in the i-th sub-
phase. Let L be the left endpoint of the rightmost interval introduced in the i-th
subphase and colored by Algorithm with a color c /∈ Cinit. Set L = Li if such an
interval does not exist. Let R be the left endpoint of the leftmost interval intro-
duced in the i-th subphase and colored by Algorithm with a color c ∈ Cinit. Set
R = Ri if such an interval does not exist. If subphase i is marked then Li+1 = L
and Ri+1 = R. Otherwise, Li+1 = Li and Ri+1 = L∗. This completes the definition
of the separation phase.
Let m′ = 2

⌊

m
2

⌋

and P = 1
2
(Lm′+1 + Rm′+1). Observe that every interval intro-

duced in the separation phase with the left endpoint to the left of P belongs to a
marked subphase and is colored with a color c /∈ Cinit. Let Csep be the set of colors
used in the separation phase to color intervals with the left endpoint to the left of
P .
In each subphase Algorithm uses at least 2d

log d+3
different colors, so in the sepa-

ration phase Algorithm uses at least 2
⌊

m
2

⌋

2d
log d+3

colors in total. Because |Cinit| =
⌊

m
2

⌋

2d
log d+3

, Algorithm, in the separation phase, uses at least
⌊

m
2

⌋

2d
log d+3

colors not

in Cinit. The set of marked subphases M contains x subphases in which Algorithm
used at least d

log d+3
such colors and

⌊

m
2

⌋

−x last subphases. From the first
⌊

m
2

⌋

+x

subphases only x subphases are marked. By the definition, in an unmarked sub-
phase i for i 6

⌊

m
2

⌋

+ x, Algorithm uses less than d
log d+3

colors not in Cinit. Thus,

at most
⌊

m
2

⌋

d
log d+3

such colors from subphases 1 up to
⌊

m
2

⌋

+ x are not in the set

Csep. All colors not in Cinit used in the subphase i for i >
⌊

m
2

⌋

+ x are in the set

Csep. Thus, |Csep| >
⌊

m
2

⌋

d
log d+3

.

In the final phase, Presenter uses strategy HSk,d(εi, P − 1, P ) for i = m +
1, . . . , m+

⌈

m
2

⌉

sequentially. Every interval introduced in the final phase intersects
with every interval from the initial phase and every interval from the separation
phase with the left endpoint to the left of P . Thus, each color used in the final
phase belongs neither to Cinit nor to Csep. In the final phase, Algorithm uses at
least

⌈

m
2

⌉

2d
log d+3

colors.
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In total, Algorithm uses at least
(

2
⌊

m
2

⌋

+
⌊

m
2

⌋

+ 2
⌈

m
2

⌉)

d
log d+3

=
⌊

5m
2

⌋

d
log d+3

dif-
ferent colors. On the other hand, the presented set of intervals can be easily colored
using

(⌊

m
2

⌋

+
⌈

m
2

⌉)(⌊

d
k

⌋

+ log d+ 3
)

= m
(⌊

d
k

⌋

+ log d+ 3
)

colors.
�

Note that for k = +∞, the strategy HS∞,d becomes independent of k-cardinality
constraint. This gives two new bounds on the competitive ratio for on-line d-
dimensional interval coloring problems.

Theorem 5. For every d > 2 and n ∈ N+, there is a strategy for Presenter

that forces Algorithm to use at least (5m − 3) d
log d+3

different colors in the on-

line d-dimensional interval coloring game while the constructed set of intervals is

m(log d+ 3)-colorable.

Theorem 6. For every d > 2 and n ∈ N+, there is a strategy for Presenter

that forces Algorithm to use at least
⌊

5m
2

⌋

d
log d+3

different colors in the on-line d-
dimensional unit interval coloring game while the constructed set of intervals is

m(log d+ 3)-colorable.
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[4] Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring. Theo-

retical Computer Science, 130(1):163 – 174, 1994.
[5] Henry A. Kierstead and William T. Trotter. An extremal problem in recursive combinatorics.

In 12th Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton

Rouge, LA, USA, March 1981. Proceedings, vol. II, volume 33 of Congressus Numerantium,
pages 143–153, 1981.

[6] Laszlo Lovasz, Michael Saks, and W.T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Mathematics, 75(1):319 – 325, 1989.

Theoretical Computer Science Department,, Faculty of Mathematics and Com-

puter Science,, Jagiellonian University, Kraków, Poland

E-mail address : {gutowski,mikos}@tcs.uj.edu.pl

11


	1. Introduction
	1.1. Previous work
	1.2. Our results

	2. Graph coloring
	3. Interval coloring
	4. Unit interval coloring
	References

