Skip to main content

An Avoiding Obstacles Method of Multi-rotor UAVs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10036))

Abstract

As UAVs (Unmanned Aerial Vehicle) being widely used in remote sensing of agriculture resources and many other areas, the security of UAVs flying at a low altitude is getting more and more serious. This paper studies on the problem of obstacle avoidance while the UAV cruises at low altitude for agriculture sensing. Two kinds of obstacles are taken into account. A rapid obstacle-avoidance algorithm with adding a compensation waypoint is proposed for the avoidance of static obstacles; and a real-time method with dynamic information of navigation status and flying control sequence is proposed for tackling dynamic obstacles. Based on the sharing obstacle avoidance information, UAVs optimize their flight paths dynamically. Simulation results show that UAVs can avoid both static and dynamic kinds of obstacles quickly and their heading angles have a good convergence effect after flying over obstacles which can save much more energy for UAVs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu, W., Zheng, Z., Cai, K.: Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval. Chin. J. Aeronaut. 26(3), 646–666 (2013)

    Article  Google Scholar 

  2. Gómez-Candón, D., Virlet, N., Costes, E., et al.: UAV thermal imagery contribution to high throughput field phenotyping of apple tree hybrid population and characterization of genotypic response to water stress. In: Plant Biology Europe FESPB/EPSO Congress, p. 2014 (2014)

    Google Scholar 

  3. Valente, J., Del Cerro, J., Barrientos, A., et al.: Aerial coverage optimization in precision agriculture management: A musical harmony inspired approach. Comput. Electron. Agric. 99, 153–159 (2013)

    Article  Google Scholar 

  4. Gallagher, K., Lawrence, P.: Unmanned systems and managing from above: the practical implications of UAVs for research applications addressing urban sustainability. In: Gatrell, J.D., Jensen, R.R., Patterson, M.W., Hoalst-Pullen, N. (eds.). GE, vol. 14, pp. 217–232. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26218-5_14

    Chapter  Google Scholar 

  5. Fossen, T., Pettersen, K.Y., Galeazzi, R.: Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces. IEEE Trans. Control Syst. Technol. 23(2), 820–827 (2015)

    Article  Google Scholar 

  6. Peng, Z., Li, B., Chen, X., et al.: Online route planning for UAV based on model predictive control and particle swarm optimization algorithm. In: Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA), pp. 397–401 (2012)

    Google Scholar 

  7. Wang, Y., Han, S., Deng, B.: UAV route planning based on the shortest path. Surveying Mapp. 36(3), 125–128 (2013)

    Google Scholar 

  8. Deng, W., Wang, X., Wang, Y.: Controller design of UAVs formation keep and change. Comput. Simul. 28(10), 73–77 (2011)

    Google Scholar 

  9. Xiang, M., Li, J.Y., Liu, B.: Framework of autonomous cooperative control for multi-UAV team. Electron. Opt. Control 22(3), 1–6 (2015)

    Google Scholar 

  10. Budiyanto, A., Cahyadi, A., Adji, T.B., et al.: UAV obstacle avoidance using potential field under dynamic environment. In: 2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pp. 187–192. IEEE (2015)

    Google Scholar 

  11. Arya, S.R., Ashokkumar, C.R., Arya, H.: Gamma and velocity tracking for UAV obstacle avoidance in pitch plane. In: 2016 Indian Control Conference (ICC), pp. 362–368. IEEE (2016)

    Google Scholar 

  12. Gao, Q., Yue, F., Hu, D.: Research of stability augmentation hybrid controller for quadrotor UAV. In: Proceedings of the Control and Decision Conference (2014 CCDC), pp. 5224–5229 (2014)

    Google Scholar 

  13. Choi, H., Kim, Y., Hwang, I.: Reactive collision avoidance of unmanned aerial vehicles using a single vision sensor. J. Guid. Control Dyn. 36(4), 1234–1240 (2013)

    Article  Google Scholar 

  14. Xargay, E., Dobrokhodov, V., Kaminer, I., et al.: Time-critical cooperative control of multiple autonomous vehicles. IEEE Control Syst. Mag. 32(5), 49 (2012)

    Article  MathSciNet  Google Scholar 

  15. Jin, Y., Liao, Y., Minai, A., et al.: Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams. IEEE Trans. Syst. Man Cybern. B Cybern. 36(3), 571–587 (2006)

    Article  Google Scholar 

  16. Wen, N., Zhao, L., Su, X., et al.: UAV online path planning algorithm in a low altitude dangerous environment. IEEE/CAA J. Automatica Sin. 2(2), 173–185 (2015)

    Article  MathSciNet  Google Scholar 

  17. Alejo, D., Cobano, J.A., Heredia, G., et al.: Particle swarm optimization for collision-free 4D trajectory planning in unmanned aerial vehicles. In: Unmanned Aircraft Systems (ICUAS), pp. 298–307 (2013)

    Google Scholar 

  18. Peng, H., Huo, M., Liu, Z., et al.: Challenges and technologies for networked multiple UAVs cooperative control. In: IEEE International Conference on Electrical and Control Engineering (ICECE), pp. 3860–3863 (2011)

    Google Scholar 

  19. Chen, Y., Su, F., Shen, L.C.: Improved ant colony algorithm base on PRM for UAV route planning. J. Syst. Simul. 21(6), 1658–1666 (2009)

    Google Scholar 

  20. Fan, Q.J., Yang, Z., Fang, T.: Research status of coordinated formation flight control for multi-UAVs. Acta Aeronaut. Astronaut. Sin. 30, 683–691 (2009)

    Google Scholar 

  21. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Heidelberg (2011)

    Google Scholar 

  22. Román, M.O., Gatebe, C.K., Schaaf, C.B., et al.: Variability in surface BRDF at different spatial scales (30 m–500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sens. Environ. 115(9), 2184–2203 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported in part by Natural Science Foundation of China (61174177 and 41172298), National Technology R&D Program (2013AA10230207) and BRCAST-KFKT2014001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Xu, S., Cheng, Y., Zhou, H., Huang, C., Huang, Z. (2016). An Avoiding Obstacles Method of Multi-rotor UAVs. In: Hsu, CH., Wang, S., Zhou, A., Shawkat, A. (eds) Internet of Vehicles – Technologies and Services. IOV 2016. Lecture Notes in Computer Science(), vol 10036. Springer, Cham. https://doi.org/10.1007/978-3-319-51969-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51969-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51968-5

  • Online ISBN: 978-3-319-51969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics