Adaptive Process Management
in Cyber-Physical Domains

Andrea Marrella and Massimo Mecella

Sapienza Universita di Roma, Italy
Dipartimento di Ingegneria Informatica Automatica e Gestionale
{marrella,mecella}@dis.uniromal.it

Abstract. The increasing application of process-oriented approaches in new
challenging cyber-physical domains beyond business computing (e.g., person-
alized healthcare, emergency management, factories of the future, home automa-
tion, etc.) has led to reconsider the level of flexibility and support required to
manage complex processes in such domains. A cyber-physical domain is char-
acterized by the presence of a cyber-physical system coordinating heterogeneous
ICT components (PCs, smartphones, sensors, actuators) and involving real world
entities (humans, machines, agents, robots, etc.) that perform complex tasks in the
“physical” real world to achieve a common goal. The physical world, however, is
not entirely predictable, and processes enacted in cyber-physical domains must be
robust to unexpected conditions and adaptable to unanticipated exceptions. This
demands a more flexible approach in process design and enactment, recognizing
that in real-world environments it is not adequate to assume that all possible re-
covery activities can be predefined for dealing with the exceptions that can ensue.
In this chapter, we tackle the above issue and we propose a general approach, a
concrete framework and a process management system implementation, called
SmartPM, for automatically adapting processes enacted in cyber-physical do-
mains in case of unanticipated exceptions and exogenous events. The adaptation
mechanism provided by SmartPM is based on declarative task specifications, ex-
ecution monitoring for detecting failures and context changes at run-time, and au-
tomated planning techniques to self-repair the running process, without requiring
to predefine any specific adaptation policy or exception handler at design-time.

Keywords: Process Adaptation, Process Management System, Cyber-Physical Sys-
tem, Emergency Management, Knowledge Representation, Automated Planning

1 Introduction

As Information and Communication Technologies (ICTs) are being increasingly in-
tegrated and embedded into our everyday environment, the design of embedded ICT
from components (PCs, smartphones, sensors, actuators, etc.) to cyber-physical systems
is becoming a reality. A cyber-physical system (CPS) is a system of interconnected
and collaborating computational elements controlling physical components that pro-
vide real world entities (e.g., humans, machines, agents, robots, etc.) with a wide range

of innovative applications and services [1]. CPSs are designed to support and facili-
tate collaboration among people and software services on complex tasks. On the other
side, the Business Process Management (BPM) discipline has gained an increasing im-
portance in describing complex correlations between distributed systems and offers a
powerful representation of collaborative activities [2]. In the field of online trading and
manufacturing, for example, modelling and execution languages for business processes,
such as BPMN [3] and BPEL [4], have proven to be well suited to formalize high-level
sequences of activities involving web service invocations and human interaction.

Nowadays, the current maturity of process management systems (PMSs) and
methodologies has led to the application of process-oriented approaches in new chal-
lenging cyber-physical domains beyond business computing [5, 6], such as personalized
healthcare [7-9], emergency management [10, 11], factories of the future [12] and home
automation [13]. Such domains are characterized by the presence of a CPS coordinat-
ing heterogeneous ICT components with a large variety of architectures, sensors, com-
puting and communication capabilities, and involving real world entities that perform
complex tasks in the “physical” real world to achieve a common goal. In this context, a
PMS is used to manage the life cycle of the collaborative processes that coordinate the
services offered by the CPS to the real world entities. To guarantee a better control over
the interaction that PMS has with the real world, it continuously collects contextual
information from the specific cyber-physical domain it is employed in.

The long-term objective of CPSs is to create a strong link between the physical
world and the cyber world to support their users with performing their tasks [14]. The
physical world, however, is not entirely predictable. CPSs do not necessarily and always
operate in a controlled environment, and their collaborative processes must be robust to
unexpected conditions and adaptable to exceptions and external exogenous events. To
this end, we define an exception as any deviation from an “ideal” collaborative process
that uses the available resources to achieve the task requirements in an optimal way [15].

Exception handling is one of the most important tasks that process designers under-
take during business process modelling and execution [16]. Exceptions can be either
anticipated or unanticipated. An anticipated exception can be planned at design-time
and incorporated into the process model, i.e., a (human) process designer can provide
an exception handler which is invoked during run-time to cope with the exception.
Conversely, unanticipated exceptions generally refer to situations, unplanned at design-
time, that may emerge at run-time and can be detected by monitoring discrepancies and
inconsistencies between the real-world processes and their computerized representa-
tion. To cope with those exceptions, a PMS is required to allow ad hoc process changes
for adapting running process instances in a situation- and context-dependent way.

However, in cyber-physical domains, the number of possible anticipated excep-
tions is often too large, and traditional manual implementation of exception handlers
at design-time is not feasible for the process designer, who has to anticipate all poten-
tial problems and ways to overcome them in advance. Furthermore, anticipated excep-
tions cover only partially relevant situations, as in such scenarios many unanticipated
exceptional circumstances may arise during the process execution. While most PMSs
of today shy away from dealing with the inherent dynamic nature of cyber-physical
domains [12], the management of processes enacted in such domains requires a PMS

providing real-time monitoring and adaptation features during process execution. This
requires the formalization of explicit mechanisms to model world changes and respond-
ing to anomalous situations, exceptions, exogenous events in an automated way, in
order to achieve the overall objectives of the processes still preserving their structure
without (or by minimising) any human intervention.

In this chapter, we tackle the above challenge by presenting a general approach, a
concrete framework and a PMS implementation, called SmartPM (Smart Process Man-
agement) for automatically adapting processes enacted in cyber-physical domains in
case of unanticipated exceptions and exogenous events. SmartPM is based on declara-
tive task specifications, process execution monitoring for detecting failures and context
changes at run-time, and automated exception handling and resolution strategies on
the basis of well-established Artificial Intelligence (AI) techniques. Even more impor-
tantly, the adaptation mechanisms provided by SmartPM allow deviations at run-time
from the execution path prescribed by the original process without altering its process
model, a feature that makes SmartPM particularly suitable for managing processes in
cyber-physical domains. The rest of the chapter is organized as follows. In Section 2 we
describe the state-of-the-art approaches to process adaptation, by investigating existing
techniques to deal with anticipated and unanticipated exceptions in BPM. In Section 3,
we first present a concrete running example of a process enacted in a cyber-physical
environment; then, we derive a list of characterizing features that a PMS managing pro-
cesses in cyber-physical domains should provide. To meet the identified features, in
Section 4 we introduce the general approach to handle with unanticipated exceptions
and exogenous events as defined in the SmartPM framework, and we present the archi-
tecture of the implemented SmartPM system. Then, in Section 5 we provide a critical
discussion about the general applicability of the SmartPM approach and we trace the
future challenges related to the management of processes in cyber-physical domains.
Finally, Section 6 concludes the chapter.

2 Related Work

Over the last years, there was a trend in providing PMSs with a growing support for
adapting business processes to deal with exceptions, changing environments and evolv-
ing needs [16, 17]. If not detected and handled effectively, exceptions can result in se-
vere impacts on the cost and schedule performance of PMSs [18].

Process adaptation techniques rely on the assumption that exceptions and deviations
are detectable [19]. When detection capabilities are provided by the PMSs, mainly in the
case of anticipated exceptions, the modeling and execution environment enables process
designers to define events, triggers and conditions (e.g., timers, error messages, pre- and
post-execution constraints, etc.) whose run-time occurrence or violation is recognized
as an exception. When the exceptions and deviations are unanticipated or caused by
external factors not under the control of the PMS, users (or external systems) are often
allowed to explicitly notify the PMS about the detected exception or deviation.

In this section, we describe the state-of-the-art approaches to process adaptation
considering to what extent users are involved in the process of defining exception con-
ditions and handling policies (as summarized in Figure 1), which directly influences

I Type of

: Exception

Unanticipated

|
|
|
|
|
]
|
|
Ad-hoc changes |
|
_______ d
I ' ' |
. | | |
| Definition | Manually, at | Manually, Semi-automatically, Automatically, |
: Stage : Design-Time : at Run-Time at Run-Time at Run-Time :

Fig. 1. Exception handling and process adaptation approaches.

the degree of automation provided in the exception resolution and process adaptation
stages. Specifically, we first outline traditional exception handling techniques used to
deal with anticipated exceptions (Section 2.1). Then, we review the existing approaches
allowing ad hoc process changes for adapting running process instances in case of unan-
ticipated exceptions (Section 2.2). Finally, we analyze a number of techniques from the
field of Al that have been applied to BPM with the aim of increasing the degree of
automated process adaptation at run-time (Section 2.3).

2.1 Exception Handling

Initial research efforts addressing the need for exception handling in PMSs can be traced
back to the late nineties and early two thousands [15, 20-25]. Although possible sources
of anticipated exceptions are different (as outlined in [21, 22], they can be related to ac-
tivity failures, deadline expirations, resource unavailabilities, constraint violations and
external events) and go beyond technical failures, not surprisingly exception handling
approaches in PMSs trace and resemble exception handling mechanisms in program-
ming languages. Abstracting from the specific techniques and implementations, a com-
mon behavioral pattern can be identified. At design-time, the process designer identifies
possible exceptions that may occur, defines exception triggering events and conditions,
and specifies exception handlers associated with the predefined process model. Excep-
tion handlers can be defined for single activities, for selected process regions (including
multiple activities), or for the overall process (as in the case of a try block in program-
ming languages). The main process logic is thus clearly separated from the exception
handling logic. During process execution, timers, messages, errors, constraint viola-
tions and other events might interrupt the process flow: the exception is detected and
thrown. The run-time environment checks for the availability of a suitable exception
handler, which is then invoked to catch the exception (as in the case of a catch block).
Typically, the process (or sub-parts of it) is interrupted and the flow of control passes to
the exception handler. The handler defines specific activities to be performed to recover
from the exception, so that process execution can be possibly resumed.

As extensively discussed in [26], exception handling capabilities provided by aca-
demic prototypes and commercial PMSs can be reconducted to the abstract framework
introduced before. The different approaches vary in the exception types that can be
handled and in the way they support the definition and selection of exception handlers,

which can be completely predefined, contextually selected from a repository or instan-
tiated from templates. Typical strategies applied when defining exception handlers for
anticipated exceptions have been systematized in the form of exception handling pat-
terns [16,27,28]. When for a given exception no explicit handling logic is defined or
the handler is not able to resolve the issue, a process participant may be notified and
involved in the definition of corrective actions.

Several exception detection and handler activation techniques [20, 24,29] adopt a
rule-based approach, typically relying on some form of Event-Condition-Action (ECA)
rules. ECA rules have the form “on event if condition do action” and specify to exe-
cute the action (i.e., the exception handler) automatically when the event happens (i.e.,
when the exception is caught), provided that the specific condition holds. ECA rules
represent a good way for separating the graphical representation of the process with the
“exception handling flow”. A similar principle has been applied in YAWL [30], where
for each exception that can be anticipated, it is possible to define an exception handling
process, named ex/et, which includes a number of exception handling primitives (for
removing, suspending, continuing, completing, failing and restarting a workitem/case)
and one or more compensatory processes in the form of worklets (i.e., self-contained
YAWL specifications executed as a replacement for a workitem or as compensatory
processes). Exlets are linked to specifications by defining specific rules (through the
Rules Editor graphical tool), in the shape of Ripple Down Rules specified as “if con-
dition then conclusion”, where the condition defines the exception triggering condition
and the conclusion defines the exlet.

2.2 Ad Hoc Process Change

Even though the handling of anticipated exceptions is fundamental for every PMS, the
latter also needs to be able to deal with unanticipated exceptions. Research efforts deal-
ing with unanticipated exceptions have established the area of adaptive process man-
agement [16,31]. While the introduction of exception handling techniques for antic-
ipated exceptions increases process flexibility and adaptation capabilities, a different
approach is required for handling unanticipated exceptions and deviations occurring
at run-time. The handling of unanticipated exceptions does not assume the availabil-
ity of predefined exception handlers and relies on the possibility of performing ad hoc
changes over process instances at run-time. The need to perform complex behavioral
changes over a process instance requires structural adaptation of the corresponding
process model, which leads to adaptations of the process instance state.

As in the case of exception handling, structural adaptation techniques have been sys-
tematized through the identification and definition of adaptation patterns [32,33]. At a
low-level of abstraction, structural model adaptations can be performed by applying
change primitives such as adding/removing nodes, routing elements, edges and other
process elements. At a higher level of abstraction, change operations provide a set of
adaptation patterns to perform model adaptations, such as adding, deleting, moving or
replacing activities or process fragments. A single change operation corresponds to the
application of multiple change primitives, hiding the complexity of the model editing
task. Adaptation patterns are not limited to the control flow perspective and also cover
other process perspectives to perform changes, e.g., at the level of the data flow schema

or on process resources. In addition, change operations performed for one perspective
(e.g., control flow) may affect the other perspectives (e.g., the data flow) as well, re-
sulting in so-called secondary changes. Notice that ad hoc changes must preserve the
correctness of the process model and the executability of the process instance [34].

While a good level of support can be provided to ensure correctness and compliance
when high-level change operations are performed, the degree of automation in perform-
ing these changes is generally limited. In fact, ad hoc changes are often manually per-
formed by experienced users: process execution is suspended and the model and state
of the affected instance are adapted by relying on the capabilities of the modeling envi-
ronment. In an attempt to increase the level of user support, semi-automated approaches
have been proposed [35]. They aim at storing and exploiting available knowledge about
previously performed changed, so that users can retrieve and apply it when adapting a
process. Knowledge retrieval and reuse requires establishing a link between performed
changes and the application context, including the occurred exception and the process
state. Contextual information allows, in turn, identifying similarities between the cur-
rent exceptional situation and previous cases. The available knowledge on how similar
cases were handled in the past is used to assist the users, provide recommendations and
suggest possible changes to be applied. Such an approach has been concretely put into
practice using case-based reasoning techniques [36, 37].

Strong support for adaptive process management and exception handling is pro-
vided by the ADEPT system and its evolutions [38—41]. ADEPTflex offers modeling ca-
pabilities to explicitly define pre-specified exceptions, and supports changes of process
instances to enable different kinds of ad hoc deviations from the pre-modeled process
models in order to deal with run-time exceptions. These features have been extended
and improved in ADEPT?2, which provides full support for the structural process change
patterns defined in [32], and in ProCycle, which combines ADEPT2 with conversational
case-based reasoning (CCBR) methodologies. On the basis of the ADEPT technology,
the AristaFlow BPM Suite was developed, with the aim of transferring process flexibil-
ity and adaptation concepts into an industrial-strength PMS. Similarly, AgentWork [42]
relies on ADEPTflex and exploits a temporal ECA rule model to automatically detect
logical failures and enable both reactive and predictive process adaptation of control-
and data-flow elements. Here, exception handling is limited to single tasks failures,
and the possibility exists for conflicting rules to generate incompatible actions, which
requires manual intervention and resolution.

If compared with traditional exception handling approaches (cf. Section 2.1), adap-
tive PMSs deal with unanticipated exceptions by automatically deriving the try block
as the situation in which the PMS does not adequately reflect the real-world process
anymore. As a consequence, one or several process instances have to be adapted with
ad hoc process changes, and the catch block should include those recovery procedures
required for realigning the computerized processes with the real-world ones.

2.3 Al-based Process Adaptation

The AI community has been involved with research on process management for several
decades, and Al technologies can play an important role in the construction of PMS

engines that manage complex processes, while remaining robust, reactive, and adap-
tive in the face of both environmental and tasking changes [43]. One of the first works
dealing with this research challenge is [44]. It discusses at high level how the use of
an intelligent assistant based on planning techniques may suggest compensation pro-
cedures or the re-execution of activities if some anticipated failure arises during the
process execution. In [45] the authors describe how planning can be interleaved with
process execution and plan refinement, and investigates plan patching and plan repair
as means to enhance flexibility and responsiveness. Similarly, the approach presented
in [46] highlights the improvements that a legacy workflow application can gain by
incorporating planning techniques into its day-to-day operation.

A goal-based approach for enabling automated process instance change in case of
emerging exceptions is shown in [47]. If a task failure occurs at run-time and leads to a
process goal violation, a multi-step procedure is activated. It includes the termination of
the failed task, the sound suspension of the process, the automatic generation (through
the use of a partial-order planner) of a new complete process definition that complies
with the process goal and the adequate process resumption. A similar approach is pro-
posed in [48]. The approach is based on learning business activities as planning oper-
ators and feeding them to a planner that generates a candidate process model that is
capable of achieving some business goals. If an activity fails during the process execu-
tion at run-time, an alternative candidate plan is provided with the same business goals.
The major issue of [47,48] lies in the replanning stage used for adapting a faulty pro-
cess instance, which forces to completely redefine the process specification at run-time
when the process goal changes (due to some activity failure), by revolutionizing the
work-list of tasks assigned to the process participants (that are often humans).

In the work [49] the authors propose a goal-driven approach for service-based appli-
cations to automatically adapt business processes to run-time context changes. Process
models include service annotations describing how services contribute to the intended
goal, and business policies over domain elements. Contextual properties are modeled
as state transition systems capturing possible values and possible evolutions in the case
of precondition violations or external events. Process and context evolution are con-
tinuously monitored and context changes that prevent goal achievement are managed
through an adaptation mechanism based on service composition via automated planning
techniques. However, this work requires that the process designer explicitly defines the
policies for detecting the exceptions at design-time.

A work dealing with process interference is that of [50]. Process interference is a
situation that happens when several concurrent business processes depending on some
common data are executed in a highly distributed environment. During the processes
execution, it may happen that some of these data are modified causing unanticipated or
wrong business outcomes. To overcome this limitation, the work [50] proposes a run-
time mechanism which uses (i) Dependency Scopes for identifying critical parts of the
processes whose correct execution depends on some shared variables; and (ii) Interven-
tion Processes for solving the potential inconsistencies generated from the interference,
which are automatically synthesised through a domain independent planner based on
CSP (Constraint Satisfaction Problems) techniques.

3 Managing Processes in Cyber-Physical Domains

CPSs are having widespread applicability and proven impact in multiple areas, like
aerospace, automotive, traffic management, healthcare, manufacturing, emergency
management, entertainment, and consumer appliances [14,51]. According to [1], any
physical environment that contains computing-enabled devices can be considered as a
cyber-physical domain. The trend of managing processes in cyber-physical domains has
been fueled by two main factors. On the one hand, the recent development of powerful
mobile computing devices providing wireless communication capabilities have become
useful to support mobile workers to execute tasks in such dynamic settings [52]. On the
other hand, the increased availability of sensors disseminated in the world has lead to
the possibility to monitor in detail the evolution of several real-world objects of interest.
The knowledge extracted from such objects allows to depict the contingencies and the
context in which processes are carried out, by consenting a fine-grained monitoring,
mining, and decision support for them.

However, if compared with traditional business domains, additional challenges need
to be considered when managing processes in cyber-physical domains. On the one
hand, there is the need of representing explicitly real-world objects and “technical”
aspects like device capability constraints, wireless networking, device mobility, etc. On
the other hand, since cyber-physical domains are intrinsically “dynamic”, a PMS that
runs a process in such domains must be able to adapt itself to the current real world
entities and environment.

To make our discussion more concrete, in Section 3.1 we present an application sce-
nario (as running example) that comes from the emergency management domain and is
inspired to a real disaster response plan investigated by the authors during the European
project WORKPAD' [53-56]. Then, starting from the analysis of the application sce-
nario and from the experience gained from participating to several European Projects
involving CPSs, in Section 3.2 we identify a list of high-level features that a PMS that
aims at managing and adapting processes in cyber-physical domains should provide.

3.1 A Running Example from the Emergency Management Domain

As an application scenario, let us consider the emergency management domain, in
which teams of first responders act in disaster locations with the main purpose of as-
sisting potential victims and stabilizing the situation. A CPS composed by first respon-
ders’ mobile devices, robots and wireless communication technologies is coupled with
a process-oriented approach for team coordination. A response plan encoded as a pro-
cess and executed by a PMS deployed on mobile devices can help to coordinate the
activities of first responders acting on the field.

To be more concrete, let us consider the emergency management situation described
in Figure 2(a), in which a train derailment is depicted in a grid-type map. For the sake
of simplicity, the train is composed of a locomotive (located at loc33) and two coaches

' The WORKPAD Project (http://www.dis.uniromal.it/~workpad) investigated how the
use of a process-oriented approach can enhance the level of collaboration and support provided
to first responders that act in emergency/disaster scenarios.

loc03 loc13 loc23 loc33 “|loc13 loc23 loc33;
“”

@

[TTTTT

I SR

[T]TTT [T]TT1
/ /

loc32 loc32!

locoi: i loc31 loc31]

o

[==1EIr=10N

@ 833 : = @@3

[TITT T TS T AT T
|Seee) |seee]

actl act2'act3 actd| i FEE “ack2 act3 actd ':, ::, ::::: |

HERHRRE >3 i i -
irbliirb2 : : : : : coirbLiirh2 —
S o0 7 iec00)

(a) Train derailment scenario. (b) Failed Go(loc00, loc33).

O Start event

e
l:c33) |;c32) I:cSl) @ End event
"o (loc32) (loc31) (] resk
(loc33) (I;csz) (loc31) —>» Transition
:g:

<_'> Parallel
gateway
(c) Main process.

Fig. 2. A train derailment situation; area and context of the intervention.

(located at loc32 and loc31, respectively). In our train derailment situation, the goal
of an incident response plan is to evacuate people from the coaches and take pictures
for evaluating possible damages to the locomotive. To that end, a response team is sent
to the derailment scene. The team is composed of four first responders, called actors,
and two robots, initially all located at location cell [oc00. It is assumed that actors are
equipped with mobile devices for picking up and executing tasks, and that each pro-
vides specific capabilities. For example, actor actl is able to extinguish fire and take
pictures, while act2 and act3 can evacuate people from train coaches. The two robots,
in turn, are designed to remove debris from specific locations. When the battery of a
robot is discharged, actor act4 can charge it. In order to carry on the response plan,
all actors and robots ought to be continually inter-connected. The connection between
mobile devices is supported by a fixed antenna located at [oc00, whose range is limited
to the dotted squares in Figure 2(a). Such a coverage can be extended by robots rbl
and rb2, which have their own independent (from antenna) connectivity to the network

and can act as wireless routers to provide network connection in all adjacent locations.
An incident response plan is defined by a set of activities that are meant to be executed
on the field by first responders, and are predicated on specific contexts. Therefore, the
information collected on-the-fly is used for defining and configuring at run-time the in-
cident response plan at hand. A possible concrete realization of an incident response
plan for our scenario is shown in Figure 2(c), using the BPMN modeling language. The
process under investigation is composed of three parallel branches, with tasks instruct-
ing first responders to act for evacuating people from train coaches in loc31 and loc32,
taking pictures of the locomotive, and assessing the gravity of the accident.

Due to the high dynamism of the environment, there are a wide range of exceptions
that can ensue. Because of that, there is not a clear anticipated correlation between a
change in the context and a change in the process. So, suppose for instance that actor
actl is sent to the locomotive’s location, by assigning to it the task GO(loc00,loc33)
in the first parallel branch. Unfortunately, however, the actor happens to reach location
loc03 instead. The actor is now located at a different position than the desired one,
and most seriously, is out of the network connectivity range (cf. Figure 2(b)). Since
all participants need to be continually inter-connected to execute the process, the PMS
has to first find a recovery procedure to bring back full connectivity, and then find a
way to re-align the process. We notice that the execution of an emergency management
process can also be jeopardized by the occurrence of exogenous events (e.g., a fire burnt
up into a coach, a rock slide collapses in a location, etc.). Indeed, exogenous events
could change, in asynchronous manner, some contextual properties of the scenario in
which the process is under execution, hence possibly requiring the process to be adapted
accordingly.

The above example (though it is very simple) shows that in a cyber-physical domain
it is inadequate to assume that a process designer can pre-define all possible recovery
activities for dealing with the exceptions that can ensue. The recovery procedures will
depend on the actual context (e.g., the positions of process participants, the range of
the main network, robot’s battery levels, whether a location has become dangerous to
get it, etc.) and there are too many of them to be considered at design-time. This em-
phasizes the fact that for processes enacted in cyber-physical domains there is a critical
need of explicit mechanisms to model world changes and responding to them in a fully
automated way.

3.2 High-Level Features for Managing Processes in Cyber-Physical Domains

The management of processes enacted in cyber-physical domains requires a PMS pro-
viding real-time monitoring and automated adaptation features during process execu-
tion [16]. To this end, the role of the data perspective becomes fundamental. Data,
including information processes by process tasks as well as contextual information, is
the main driver for triggering process adaptation, as focusing on the control flow per-
spective only would be insufficient. In fact, in a cyber-physical domain, a process is
genuinely knowledge and data centric: the process control flow must be coupled with
contextual data and knowledge production and process progression may be influenced
by user decision making. This means that procedural and imperative models have to be
extended and complemented with the introduction of declarative elements (e.g., tasks

preconditions and effects) which enable a precise description of data elements and their
relations, so as to go beyond simple process variables, and allow establishing a link
between the control flow perspective and the data perspective.

Starting from the above considerations, coupled with the experience gained in the
area and lessons learned from several European Projects involving CPSs (a partial list
can be found in the Acknowledgements section at the end of the chapter), we derive a
set of 5 high-level characterizing features that must be provided by a PMS that wants to
successfully manage processes enacted in cyber-physical domains:

— [F1] Representing digitally real-world objects. The screening of real-world ob-
jects performed by the physical sensors disseminated in the world must be taken
into consideration when planning and executing a collaborative process in cyber-
physical domains. To make the PMS aware of physical reality, a physical-to-digital
bridge that transforms the knowledge extracted from real-world objects in their
digital counterpart is required.

— [F2] Modeling contextual data. Contextual data representing the cyber-physical do-
main in which the process will be enacted and all relevant data affecting the process
and manipulated by it need to be formalized and encoded in an information model,
so as to define data objects and information to be considered as part of the process
context and execution state. A process designer should be also allowed to express
conditions over process data, if needed.

— [F3] Representing data-driven activities. A process executed in a cyber-physical
domain is characterized by activities whose enactment is related to the evolution of
the information model. Such activities are enriched with declarative elements and
constraints (e.g., preconditions and effects) defined on contextual data, which spec-
ify when a particular activity can be executed in a specific state of the contextual
scenario, the execution dependencies between activities and the effects that activity
executions have on the current state.

— [F4] Monitoring and exception detection. The PMS should automatically detect
exceptional situations, i.e., any mismatch between the computerized version of the
process and its corresponding real-world version. This requires to monitor running
process instances against the evolution of the process execution context, to identify
when a process instance is deviating from the intended behavior.

— [F5] Exceptions resolution. The PMS should react to any event that represents a
risk for process continuity. If a detected anomalous situation may prevent process
progressing, the PMS needs to automatically deriving and enacting a recovery pro-
cedure that allows the process to progress as expected.

If compared with the features provided by traditional control-flow oriented PMSs (a
comprehensive list can be found in [57]), it is clear that processes enacted in cyber-
physical domains reveal some challenging features (e.g., data orientation, low pre-
dictability, etc.) that pose serious problems for their support through the use of existing
approaches [5]. While there is the lack of a holistic approach that allows to tackle the set
of identified features as a whole and to provide a right support for them, we argue that
the realization of such an approach can be regarded as a key success factor for the fruit-
ful application of BPM in new domains different from the business one, and represents
one main challenge that is currently under investigation by the research community [5,

16]. As a step towards this goal, in the following section we introduce the SmartPM
approach and the corresponding implemented system. SmartPM provides a flexible ap-
proach to manage the life-cycle of processes enacted in cyber-physical domains, with a
targeted support for the set of features discussed above.

4 The SmartPM Approach and System

SmartPM? (Smart Process Management) [58] is a model and a PMS implementing a
set of techniques that enable automatically adapting process instances at run-time in
the presence of unanticipated exceptions, without requiring an explicit definition of
handlers/policies to recover from tasks failures and exogenous events, and without the
intervention of domain experts at run-time.

The SmartPM approach builds on the dualism between an expected reality, the (ide-
alized) model of reality that is used by the PMS to reason, and a physical reality, the
real world with the actual values of conditions and outcomes. Process execution steps
and exogenous events have an impact on the physical reality and any deviation from
the expected reality results in a mismatch (or exception) to be removed to allow process
progression. If an exception invalidates the enactment of the process being executed,
an external state-of-the-art planner is invoked to synthesise a recovery procedure that
adapts the faulty process instance by removing the gap between the two realities.

To meet the high-level features described in Section 3.2, SmartPM relies on and
combines well-established Al techniques and frameworks, including the Situation Cal-
culus [59], the IndiGolog framework [60] and automated planning [61]. The choice of
adopting Al technologies is motivated by their ability to provide the right abstraction
level needed when dealing with dynamic situations in which data (values) play a rel-
evant role in system enactment and automated reasoning over the system progress. In
the field of BPM, many other formalisms and technologies are being used, such as Petri
Nets [62], Coloured Petri Nets [63], Workflow Nets [64], YAWL nets [30], BPMN [3]
and process algebras [65], with varying degrees of automated reasoning support over
them. While Petri Nets and Worklow Nets do not support data-based decisions as well
as data-driven execution of any kind due to the lack of data-awareness [66], other for-
malisms such as Coloured Petri Nets, YAWL Nets, BPMN and Process Algebras are
potentially all fine solutions for realizing our framework. However, the level of abstrac-
tion provided for manipulating data values and reasoning over dynamic changes is not
formally specified (in the case of YAWL), performed at shallow level (in the case of
BPMN) or at very low level (in the case of Coloured Petri Nets and Process Algebras),
since such formalisms mainly focus on the control-flow perspective of a business pro-
cess. Conversely, the Al field is rich of algorithms and systems that support the user
in the creation, acquisition, adaptation, evolution, and sharing of data knowledge for
specifying and implementing dynamic systems [59, 67, 68]

While the formal model underlying SmartPM is described in detail in [58], in this
section we aim at providing an overview of the SmartPM approach (cf. Section 4.1),
its concrete implementation (cf. Section 4.2) and application (cf. Section 4.3) to the
running example introduced in Section 3.1.

2 http://www.dis.uniromal.it/~smartpm

4.1 Overview of the Approach
Process Representation

In SmartPM a process model includes a set 1" of n task definitions. Each task ¢; € T'is
described in terms of its preconditions Pre; and effects F f f;, and can be considered as
a single step that consumes input data and produces output data. Data are represented
through a set F' of fluents whose definition strictly depends on the specific process
domain of interest. In Al a fluent is a condition that can change over time. Such fluents
can be used to constrain the task assignment (in terms of task preconditions), to assess
the outcome of a task (in terms of fask effects) and as guards for decision points and
routing elements (e.g., for cycles or conditional statements).

SmartPM adopts a service-based approach to process management, that is, tasks are
executed by services (that could be software applications, human actors, robots, agents,
etc.). Choosing the fluents that are used to describe each activity falls into the general
problem of knowledge representation. To this end, the environment, services and tasks
are grounded in domain theories described in Situation Calculus [59]. Situation Calcu-
lus is specifically designed for representing dynamically changing worlds in which all
changes are the result of task executions. Situation Calculus is thus used for providing a
declarative specification of the domain (i.e., available tasks, contextual properties, tasks
preconditions and effects, what is known about the initial state) where a process has to
be executed. This declarative specification also covers the resource perspective, with a
definition of the available services and the capabilities they provide, to be matched with
capability requirements defined for the tasks.

On top of Situation Calculus, SmartPM relies on the IndiGolog high-level agent
programming language for the specification of the process control flow. IndiGolog [60]
enables the definition of programs with cycles, concurrency, conditional branching and
interrupts that rely on program steps that are actions of some domain theory expressed in
Situation Calculus. The dynamic world of SmartPM is modeled as progressing through
a series of situations, where each situation s is the result of the various tasks performed
up to that point. In this context, fluents can be considered as “properties” of the world
whose values may vary across situations.

Process Monitoring and Adaptation

SmartPM provides mechanisms for adapting process models that require no predefined
handlers. To this end, a specialized version of the concept of adaptation from the field
of agent-oriented programming [69] is used. The approach is schematized in Figure 3.
Specifically, adaptation in SmartPM can be seen as reducing the gap between the ex-
pected reality, i.e., the (idealized) model of reality that is used by the PMS to reason,
and the physical reality, i.e., the real world with the actual values of conditions and
outcomes. The physical reality ¢, reflects the concept of “now”, i.e., what is happening
in the real environment while the process is under execution. The physical reality ¢
captures exactly the value assumed by each fluent in the situation s. In general, a task ¢;
can only be performed in a given physical reality ¢, if and only if that reality satisfies
the preconditions Pre; of that task. Moreover, each task has also a set of effects E'f f;
that change the current physical reality ¢ into a new physical reality ¢g4 1.

'O

=== Taski --——---"-"-"-"""""""“"“"-"“"-"-"-"-"—"—"—"——- —{ Taski+1 ———»
Prei Effi====
2 | expected —_—
| i effect I model
——————— e e l— oo
| i | instance
.
A4 X physical| the realities are — v

w 2 t misaligned
o Task L # | _rotmisaligned RN | Task .,
Instance ____,| ¢ [} Instance
= ||expected

actual effect

I
| ADAPT

|
|
Plan M recoveny b@
recovery
procedure

Fig. 3. Execution monitoring and adaptation in SmartPM.

A PMS that takes as input a process specification should guarantee that each task
is executed correctly, i.e., with an output that satisfies the process specification itself.
In fact, at execution time, the process can be easily invalidated because of task failures
or since the environment may change due to some external event. For this purpose, the
concept of expected reality 1, is introduced. The expected reality in a situation s is
given by the set of fluents that are supposed to hold. Basically, when a task is executed
and completed, both the physical and expected realities are updated so that:

— the physical reality reflects the actual outcome produced by the task execution;
— the expected reality reflects the intended outcome of the task execution, according
to the specification of task’s effects.

A recovery procedure is needed in a specific situation if the two realities are different
from each other. A misalignment of the two realities often stems from errors in the tasks
outcomes (e.g., incorrect data values) or is the result of exogenous events coming from
the environment. An execution monitor is responsible for detecting whether the gap
between the expected and physical realities is such that the process instance cannot
progress. In that case, the PMS has to find a recovery process whose execution removes
the gap between the physical reality and the expected one.

SmartPM allows the synthesis of a recovery procedure at run-time by invoking an
external state-of-the-art planner [61]. Given as the goal condition the process state re-
flecting the expected reality, the planner searches for a plan that may turn the physical
reality into the expected reality. The recovery procedure will be built by composing
tasks stored in a specific repository. The repository contains both tasks used for defin-
ing the specific process instance under execution and other tasks built on the same
contextual scenario and possibly used in past executions of the process. If a recovery
plan exists, it will be executed by SmartPM for adapting the faulty process instance.

4.2 The SmartPM Environment and Architecture

The concrete implementation of the SmartPM approach has required to cover the mod-
eling, execution and monitoring stages of the process life-cycle and to make explicit the

External Environment

CYBER-PHYSICAL

Device #1 Device #N

Task
Handler

SmartPM Definition Tool
Google Cloud 3 Process Designer |
esSene XML file

XML-to-IndiGolog Parser

IndiGolog file
Communication Manager IndiGolog Engine

IndiGolog Recovery Plan ‘ '

2
o
=B
<
il
Z
w
7
w
[4
o

EXECUTION
Aioayy upwog

[oomin |_|

Synchronization Builder | ;

ADAPTATION
punoy unjg oN

Fig. 4. The SmartPM architecture.

connection of implemented processes with the real-world objects of the cyber-physical
domain of interest. To that end, as shown in Figure 4, the architecture of the SmartPM
system relies on five architectural layers.

Presentation Layer

The Presentation Layer provides a GUI-based tool called SmartPM Definition Tool (cf.
Figure 5), which assists the process designer in the definition of a process model at
design-time. The SmartPM Definition Tool has been developed using the Java SE 7 Plat-
form, and the JGraphX open source graphical library.> To define a process model with
the SmartPM Definition Tool means (i) to build a tasks repository, (ii) to define the pro-
cess control flow and (iii) to formalize the contextual knowledge of the cyber-physical
domain in which the process will be enacted.

Contextual knowledge is represented as a domain theory that includes all the infor-
mation of the application domain, such as the people/services that may be involved in
performing the process, the exogenous events, the contextual data and so forth. Data

3 http://www. jgraph.com/

£ C:\Users\Andrea\workspace\SmartPM Definition Tool\process.mxe* - SmartPM Definition Tool - B

File Edit View Format Shape Diagram Options Window Generate Analyze Help
AU E| S|4 @] X]|H M| Hehetica viepp v||B i |2 = = |AL D wn v
Symbols :
= P =/ SmartML Editor — &
T
L 4 File | Edit
i CHOCH =
PAR] Resource Perspective @
¥ o takephoto updstatus <act i
(l0c00,l0c33) (loc33) (l0c33) Data Perspective
Parallel G... |
()—»@— —— —D%—O [(:AP‘ Atomic Term » Add new Atomic Term
oy
® Start Parallel 90 evacuate . updstatus Parallel End "]
Exclusive.., Event = Gateway |[(loc00,loc32) (loc32) (lac32) Gateway Event RoL1 Task L Edit Atomic Term 4
Exogenous Event L il
‘—D—D—D—’ i‘:: Delete Atomic Term ¥
End Event go evacuate . updstatus o Formula »
(loc00,loc31) (loc31) = (loc31)
] DATA TYPES:
Al . Integer type = <0..30>
Boolean type = <true,false>
Location type = <loc00,locl0, loc2C
Status_type = <ok, fire,debris>
ATOMIC TERMS (DYNAMIC): 2
< >

723, 419

Fig. 5. A screenshot of the SmartPM Definition Tool.

are represented through some atomic terms that range over a set of data objects, de-
fined over some data types. In short, a data object depicts an entity of interest (e.g., a
location, a capability, a service, etc.), while each data type explicitly specifies the data
objects that represent the domain of that type. Under this representation, possible val-
ues of a data type univocally identify data objects in the scenario of interest. Afomic
terms can be used to express properties of domain objects (and relations over objects)
and argument types of a term - taken from the set of the available data types - represent
the finite domains over which the term is interpreted. For example, if we consider the
emergency management domain discussed in Section 3.1, the term At{act : Actor] =
(loc : Location_type) is used for recording the position of each actor in the area. Sim-
ilarly, the numeric term BatteryLevel[rbt : Robot| = (int : Integer_type) records the
battery level of each robot. In addition, the designer can define complex terms. They
are declared as basic atomic terms, with the additional specification of a well-formed
first-order formula that determines the truth value for the complex term. For example,
the complex term Connected[act : Actor| can be defined to express that an actor is
connected to the network if s/he is in a covered location or if s/he is in a location adja-
cent to a location where a robot is located. For each atomic/complex term, the process
designer has to decide which ones are relevant for adaptation and which ones have not
to be considered for that. An atomic term that is considered as relevant for adaptation
will be continuously monitored by the PMS, and if its value becomes different from the
one expected, then the adaptation mechanisms provided by SmartPM will be triggered.
A process designer can also specify which exogenous events may be catched at run-time
and which atomic terms will be modified after their occurrence.

Concerning the definition of process fasks, the process designer is required to spec-
ify which tasks are applicable to the dynamic scenario under study. Tasks will be stored
in a specific tasks repository and can be used for composing the control flow of the

process and for adaptation purposes. Each task can be considered as a single step that
consumes input data and produces output data, and is described with (i) typed input
parameters, (ii) preconditions - defined over atomic and complex terms - that constrain
the task assignment and must be satisfied before the task is applied, and (iii) deter-
ministic effects, which establish the outcome of a task after its execution in terms of a
change of the value of one or more atomic terms. For example, the task GO involves
two input parameters from and to of type Location_type, representing a starting and
an arrival location. An instance of this task can be executed only if the actor SRV that
will execute it at run-time is at the starting location from and provides the required
capabilities for executing the task. As a consequence of task execution, the actor moves
from the starting to the arrival location, and this is reflected by assigning to the atomic
term At[SRV] the value to in the effect.

Notice that the definition of a valid domain theory and of tasks specifications al-
lows to meet the features F2 and F3 introduced in Section 3.2. At this point, the process
designer uses the BPMN graphical editor provided by the SmartPM Definition Tool to
define the process control flow among a set of tasks selected from the tasks repository.
The editor provides visual, graphical editing and creation of BPMN 2.0 business pro-
cesses.* It is important to notice that atomic/complex terms can be used as guards for
decision points and routing elements (e.g., for cycles or conditional statements). The
outcome of the process design activity is a complete XML-encoded process specifica-
tion that is passed to the Execution Layer.

Execution and Service Layers

The Execution Layer is in charge of managing and coordinating the process enactment.
The BPMN process and the associated domain theory are taken as input from the XML-
to-IndiGolog Parser component, a Java module that translates them into situation calcu-
lus [59] and IndiGolog [60] readable formats (cf. Section 4.1). It is interesting to notice
that while from a user perspective the process control flow is defined using a subset of
the modeling constructs provided by the BPMN notation, an executable model is ob-
tained in the form of an IndiGolog program to be executed through an IndiGolog engine.
To that end, we customized an existing IndiGolog engine,5 written in the well-known
open source SWI-Prolog environment,® to (i) build a physical reality by taking the ini-
tial context from the external environment; (ii) build an expected reality (initially equal
to the physical one) that records the expected process state after each task execution or
exogenous event occurrence; (iii) manage the process routing and decide which tasks
are enabled for execution; (iv) collect exogenous events from the external environment.
Once a task is ready for being executed, the IndiGolog engine is in charge of assigning
it to a proper service (which may be a human actor, a robot, a software application,
etc.) that is available (i.e., free from any other task assignment) and that provides all the
required capabilities for task execution.

* The SmartPM Definition Tool provides a relevant subset of the BPMN modeling constructs
to define the control flow of a process, including basic activities, start/end events and paral-
lel/exclusive gateways.

> http://sourceforge.net/projects/indigolog/

6 http://www.swi-prolog.org/

Yo 3@ ‘oo W1936 08
" SmartPM " SmartPM
Actor: act] Status: New task Execution Layer
Actor: act1 Status: New task
Go ’
F||| the Form Tipusd FROM:lo00TO:locaa ermemeesesssssese 7 e

*First Name Ex.Outputs loc33

Checked? | Expected Output:

GPS: 10603 - position: Latitude = 58.36300024 Atexp(aCtl): loc33
*Last Name Longitude = 26.70140553 N
Age on 15 0ct. 2010 Physical Output:
*Gender Male Noize level:55.07790002275196 -
4 Humidity level:1.0 At(aCtl) loc03
GPS:NotMapped position: Latitude = 58.36300024 Temperature level:1.0
Longitude = 26.70140553
Age on 15 Oct. 2010 Stop

Noize level:55.07790002275196
Humidity level:1.0

)

Temperature level:1.0 P W) 4 |
0L 8¢
...... Nes 23
Stop DD .
_____________ G

(2)

Fig. 6. The SmartPM Task Handler.

Process participants interact with the engine through a Task Handler, an interac-
tive GUI-based software application that supports the visualization of assigned tasks
and enables starting task execution and notifying of task completion by selecting an
appropriate outcome (cf. Figure 6(a)). The SmartPM Task Handler is realized for An-
droid devices from version 4.0 and up. Each device has an unique ID that matches the
service name defined in the domain theory by the designer. Every step of the task life
cycle - ranging from the assignment to the release of a task - requires an interaction
between the IndiGolog engine and the task handlers. Such an interaction is mainly in-
tended for notifying the device corresponding to the human actor of actions performed
by the IndiGolog engine as well as for notifying the engine of actions executed by ac-
tor through the task handler of the corresponding device. The communication between
the IndiGolog engine and the task handler is mediated by the Communicator Manager
component (which is essentially a web server) and established using the Google Cloud
Messaging (GCM) service.’

As previously discussed, the IndiGolog engine is in charge of monitoring contextual
data to identify changes or events which may affect process execution, and notify them
to the adaptation layer. This allows to meet the feature F4 introduced in Section 3.2.
Specifically, given a process instance J, after each task completion (or exogenous event
occurrence), the physical and expected realities are updated to reflect the actual and
intended (according to the specification of task’s effects) outcome of task performance
(or the contextual changes produced by an exogenous event). If we consider the first
example shown in Section 3.1, when the task GO(loc00,loc33) completes, it means
that the output value for Af[act1] (generated as an effect of the task GO) is *loc03’, that

" https://developer.android.com/google/gcm/index.html

is different from the task’s expected outcome, that is loc33’. Hence, the two realities
are misaligned, and the faulty process instance ¢ needs to be adapted (cf. Figure 6(b)).

Adaptation Layer

To enable the automated synthesis of a recovery procedure, and to provide the right sup-
port to feature F5 discussed in Section 3.2, the Adaptation Layer of SmartPM resorts to
classical planning techniques. Process adaptation relies on the capabilities provided by
a PDDL-based planner component (the LPG-td planner [70]), which assumes the avail-
ability of a so-called planning problem, i.e., an initial state and a goal to be achieved,
and of a planning domain definition that includes the actions to be composed to achieve
the goal, the domain predicates and data types. To this end, if process adaptation is
required, the Domain Builder component translates (i) the domain theory defined at
design-time into a planning domain, while the Problem Builder component converts
(ii) the physical reality into the initial state of the planning problem and (iii) the ex-
pected reality into the goal state of the planning problem. The planning domain and
problem represent the input for the planner component and, in particular, the planning
problem reflects the gap between the two realities. If the planner is able to synthesize
a recovery procedure d,, the Synchronization component combines ¢’ (which is the re-
maining part of the faulty process instance ¢ still to be executed), with the recovery
plan &, and builds an adapted process 6" = (d4;0"). Notice that, whenever a process
¢ needs to be adapted, every running task is interrupted, since the recovery sequence
of tasks J, has to be executed before that the remaining part of the process instance
0’ can progress. Thus, active branches can only resume their execution after the repair
sequence has been executed. This is fundamental to avoid the risk of introducing data
inconsistencies during the repair phase. Finally, the Synchronization component con-
verts ¢’ into an executable IndiGolog program so that it can be enacted by the IndiGolog
engine. Otherwise, if no plan exists for the current planning problem and no handling
strategy can be automatically derived for the specific deviation, the control passes back
to the process designer, who can try to manually manage the exception and adapt the
process instance.

Cyber-Physical Layer

The cyber-physical layer is tightly coupled with the concrete physical components
available in the cyber-physical domain under consideration. For automating the data
collection from the environment, different built-in and external sensors can be used
with the SmartPM Task Handler. To exploit sensors that are built in the mobile devices,
several plugins have been created for the task handler. For example, location data can
be obtained using built-in GPS sensors. Similarly, using the microphone, it is possible
to automatically get the current noise level near the device. In addition, external sensors
can be taken into use to gather automatic measurements - for prototyping purposes, the
Arduino platform can be used.® The task handler can take advantage of this technol-

8 Arduino is an open-source physical computing platform based on a simple microcon-
troller board, and a development environment for writing software for the board, cf.
http://arduino.cc/en/guide/introduction

SmartPM map tool

Result:

smartpm.cloudapp.net; vc¢| 8-
3 Generated result XML wil appear here!

Top Latitude Top Longitude Bottom Latitude Bottom Longitude Name

41.90775579423421 12.47797966003418 41.903076117196605 12.486433982849121 loc00
Vila Tortonia

41.90775579423421 12.486433982849121 41.903076117196605 12.494888305664062 locO1

v 3 N 41.90775579423421 12.494888305664062 41.903076117196605 12.503342628479004 loc02
finata di 7\ 0 RO Delete
ini ® PN
\\ \, S

i Monti
o 41.90775579423421 12.503342628479004 41.903076117196605 12.511796951293945 loc03

41.903076117196605 12.47797966003418 41.898396440159004 12.486433982849121 loc10

55
a & 41.903076117196605 12.486433982849121 41.898396440159004 12.494888305664062 loci1

2 41.903076117196605 12.503342628479004 41.898396440159004 12.511796951293945 loci3

5 41.898396440159004 12.47797966003418 41.893716763121404 12.486433982849121 loc20

Fig. 7. A screenshot of the location web tool provided by the SmartPM Definition Tool.

ogy for gathering environmental data: Arduino has a large variety of sensors available
to measure different environmental values, for example different gas levels in the air,
water quality, radiation level, etc.; Arduino can be connected with Android via Blue-
tooth for transferring the data. We notice that the IndiGolog engine of SmartPM can
only work with defined discrete values, while data gathered from physical sensors have
naturally continuous values. Therefore, to meet feature F1 introduced in Section 3.2,
a mapping of such continuous values into their discrete counterparts is required. To
tackle this issue, we enhanced the SmartPM Definition Tool by providing several web
tools that allow process designers to associate some of the data objects defined in the
domain theory with the continuous data values collected from the environment. Notice
that in SmartPM finiteness is crucial, as it is one of the main assumptions that makes
classical planning possible to the computation of a recovery plan. For example, in the
case of the GPS sensor, we developed a location web tool (as a Google Maps plugin)
that allows a process designer to mark areas of interest from a real map (by select-
ing latidude/longitude values) and associate them to the discrete locations (e.g., loc00,
loc01, etc.) defined during the design stage of a process through the SmartPM Definition
Tool. Figure 7 shows a screenshot of the location web tool. Similarly, we developed
further web tools for the other developed sensors (temperature, humidity, noise level,
etc.). The mapping rules generated are then encoded in a XML file that is saved into the
Communication Manager and retrieved at run-time (after any task completion) to allow
the matching of the continuous data values collected by the specific sensor into discrete
data objects.

4.3 Applying SmartPM to the Running Example

While in the previous sections we discussed the approach underlying SmartPM and the
architecture of the implemented SmartPM system, in this section we present a practical
application of SmartPM with respect to the running example introduced in Section 3.1.
As anticipated in Section 4.2, the design of a process to be enacted in a cyber-physical
domain starts from the SmartPM Definition Tool, which supports the process design

activity. In SmartPM, the process design activity consists of defining the domain theory,
the tasks repository and the control flow of the process.

When defining a new domain theory, the very first step to perform involves speci-
fying the resource perspective of the process, i.e., the services that will be involved in
tasks execution and the required capabilities to execute those tasks. If we consider the
emergency management scenario depicted in Section 3.1, the following services and
capabilities should be defined:

Service = {actl,act2,act3,act4,rbl,rb2}
Capability = {movement,hatchet,camera,gps,extinguisher,battery,digger,
powerpack}

We notice that the SmartPM Definition Tool allows to explicitly specify the service
providers, i.e., the real-world entities offering services to perform specific process tasks.
Examples of service providers are software components, smartphones, agents, humans,
robots, etc. In our running example, two kinds of providers are required, actors and
robots:

Actor = {actl,act2,act3,act4}
Robot = {rbl,rb2}

To make explicit which capabilities are provided by available services, a special atomic
term Provides[srv : Service, cap : Capability] (that is true if the capability cap is
provided by srv and false otherwise) is used. For example, to state that actor actl
owns a mobile device with GPS capabilities, the term Provides[actl, gps] will be set to
true. Concerning the definition of data, two new data types (Boolean and Integer types
are considered as predefined by the SmartPM Definition Tool) are required to capture the
objects of interest in the emergency management domain under study.

Location_type = {loc00,loc10,1l0c20,loc30,locd1,locll,locd2,1l0c03,locl3,
loc23,loc31,l0c32,1l0c33}
Status_type = {ok,fire,debris}

The data type Status_type denotes the possible ‘“states” of a location, while
Location_type represents locations in the area. As discussed at the end of Section 4.2,
data objects representing locations can be associated to real locations through a location
web tool. The definition of data types and of the corresponding data objects allows the
process designer to explicitly express the contextual properties of the cyber-physical
domain under study. Such properties are captured through a finite number of atomic
and complex terms. For our emergency management scenario, the following atomic and
complex terms are required:

Evacuated[loc:Location_type] = (bool:Boolean_type)
BatteryLevel[rbt:Robot] = (int:Integer_type)
PhotoTaken[loc:Location_type] = (int:Integer_type)

At[srv:Service] = (loc:Location_type)

Status[loc:Location_type] = (st:Status_type)

MoveStep[] = (int:Integer_type)

DebrisStep[] = (int:Integer_type)
Neigh[locl:Location_type,loc2:Location_type] = (bool:Boolean_type)
Covered[loc:Location_type] = (bool:Boolean_type)
Connected[act:Actor] = {

EXISTS(11l:Location_type, 12:Location_type, rbt:Robot).
((at[act]=11) AND (Covered[11] OR (at[rbt]=12 AND Neigh[11,12])))}

Therefore, we need boolean terms for indicating if people have been evacuated from
a location (Evacuated), integer terms for representing the battery charge level of each
robot (BatteryLevel) or for indicating the number of pictures taken in a specific loca-
tion (PhotoTaken), and functional terms for recording the position of each actor/robot
in the area (Ar) or for indicating if a specific location is safe, on fire or under debris
(Status). Some atomic terms may be used as constant values. For example, the terms
MoveStep and DebrisStep reflect the amount of battery consumed respectively when a
robot moves from a location to another and when a robot removes debris from a spe-
cific location. Finally, atomic terms can also be used for expressing static relations over
objects. For example, the atomic term Neigh indicates all adjacent locations in the area,
while the atomic term Covered reflects the locations covered by the network provided
by the fixed antenna. For each atomic term, the process designer may decide which ones
are relevant for triggering the adaptation mechanisms provided by SmartPM. In our ex-
ample, we can consider as relevant the atomic terms Az, Evacuated and PhotoTaken.
Finally, as anticipated in Section 4.2, our emergency management scenario requires
also the definition of a complex term Connected to denote if an actor is connected to
the network.

The definition of the domain theory is the basis to specify the tasks repository and
the exogenous events required for the scenario under study. Our running example re-
quires the following tasks and exogenous events:

Tasks Repository = {go, move, takephoto, evacuate, updstatus,
extinguishfire, chargebattery}
Ex_events = {photolost, fireRisk, rockSlide}

For each task, the SmartPM Definition Tool provides a wizard-based editor to build a
task specification and to define the single conditions composing the task preconditions
and effects. We notice that the process designer is required to make explicit if a task
effect can be considered as supposed or automatic. When a task returns some real-world
outcome after its completion, we define that outcome as supposed, since its physical
value may be different from the expected one as thought at design-time. This is the case,
for example, of the effect of the task GO (the definition of the task GO has been provided
in Section 4.2), whose consequence is to move an actor from a starting to an arrival
location, which can be different from the one expected at design-time. Sometimes it
may also happen that a task effect is automatic, i.e., it is applied every time a task
completes its execution, independently from the outcomes returned by the task itself.
For example, when a robot removes debris from a location, its battery decreases of a
fixed quantity that does not depend on any physical outcome.

The procedure is similar for the definition of exogenous events. However, in this
latter case there is no need to specify any precondition, while effects can only be con-
sidered as automatic (i.e., they are automatically applied to the involved terms when
the exogenous event is catched). For example, the exogenous event ROCKSLIDE(loc)
alerts about a rock slide collapsed in location loc, and its effect changes the value of the
atomic term Status[loc] to the value *debris’.

Starting from the domain theory and the tasks repository just defined, the control
flow that captures the response plan of our running example can be built through the
BPMN editor provided by the SmartPM Definition Tool (as shown in Figure 5).

The very last step before executing the process consists of instantiating the domain
theory with a starting state, which reflects an initial assignment of values to the atomic
terms. This procedure is performed automatically by the SmartPM Definition Tool, which
collects the values of the properties of the cyber-physical domain of interest by querying
the sensors installed on services’ devices. From a formal point of view, the definition
of the starting state corresponds to the creation of the physical and expected realities.
In the case of our running example, the initial physical and expected realities reflect
the values of the contextual properties of the world before to execute any step of the
emergency management process (cf. Figure 2(a)). A fragment of two realities in the
starting state Sy is shown below:

- ¢(So) = {Atlact1]=loc00, ... ,Connected[act]]=true, ... ,Status[loc31]=0k }
- (So) = {Atlact1]=loc00, ... ,Connected[act1]=true, ... ,Status[loc31]=0k}

During process enactment, SmartPM is in charge of assigning tasks to proper ser-
vices and of continuously monitoring the evolution of the two realities. Let us consider
again our running example, and suppose that actor act1 is sent to the locomotive’s loca-
tion, by assigning to it the task GO(loc00, loc33) in the first parallel branch of the emer-
gency management process defined in Figure 2(c). However, as depicted in Figure 2(b),
the actor happens to reach location [oc03 instead, meaning that it is now located at a
different position than the desired one and is out of the network connectivity range.
Consequently, the two realities change as follows:

- ¢(S1) = {Atlactl]=loc03, ... ,Connected[act]]=false, ... ,Status[loc31]=ok}
- (S1) = {Atlactl]=loc33, ... ,Connected[act]]=true, ... ,Status[loc31]=0k}

To re-align the physical reality with the expected one, SmartPM has to first find a re-
covery procedure to bring back full connectivity, and then find a way to re-align the
process. To that end, provided robots have enough battery charge, SmartPM may first
instruct the first robot to move to cell [oc03 (cf. Figure 8(a)) in order to re-establish
network connection to actor actl, and then instruct the second robot to reach location
loc23 in order to extend the network range to cover the locomotive’s location loc33.
Finally, task GO(loc03, loc33) is reassigned to actor actl (cf. Figure 8(b)). The corre-
sponding updated process is shown in Figure 9(a), with the encircled section being the
recovery (adaptation) procedure. The two realities are updated as follows:

- ¢(S2) = {Atlactl]=loc33, ... ,Connected[act]]=true, ... Status[loc31]=o0k}
— (S2) = {At[act1]=loc33, ... ,Connected[act1]=true, ... Status[loc31]=0k}

Notice that after the recovery procedure, the enactment of the original process can be
resumed to its normal flow. For example, in the third parallel branch, actor act2 can now
be instructed to reach loc31. However, even if act2 completes its task as expected (cf.
Figure 8(c)), a further exception is thrown. In fact, act2 is out of the network connectiv-
ity range and, again, the PMS may instruct the first robot to move from cell loc03 to cell
loc20 in order to re-establish network connection to actor act2 (cf. top of Figure 8(a)).
At this point, act2 may start evacuating people from loc31.

loc33

[TTTTT II;II;L'&: fj'

loc32

loc31

I==1NIr==101
|Seee)

loc30

[TTTTT

(a) Re

(b) Successful Go(loc03, loc33).

loc03 loco3

[TTTTI

locoz.

Joco2

(c) Recover act2 connectivity. (d) Final stage.
Fig. 8. Evolution of the contextual scenario introduced in Section 3.1.

As a further example, let us suppose now that a rock slide collapses in location loc31
(cf. Figure 8(c)) while act2 is evaluating the damages in that area (i.e., act2 is execut-
ing the UPDATESTATUS(loc31) task). Such an exogenous event, which corresponds to
ROCKSLIDE(loc31), changes in asynchronous manner only the physical reality, as fol-
lows:

— ¢(S3) = {Atlactl]=loc33, Connected[actl]=true , ..., Status[loc31]=debris}
- 1(S3) = {Atlact1]=loc33, Connected[actl]=true , ..., Status[loc31]=o0k}

In such a case, SmartPM needs first to abort the running task UPDATESTATUS(loc31)
(the presence of a rock slide may possibly prevent the correct execution of the task),
and then to find a recovery procedure that allows to remove the rock slide from loc31
by maintaining all the process participants inter-connected to the network. A possible

gofact1,loc00,loc33)
OUTPUT : loc03

move(rb1,10c00, move(rb2,loc00, gofact1,loc03,
loc03) loc23, loc33,

go(acti,loc00,loc33)
OUTPUT : loc03

- ﬁil e gofact2,loc00,loc31) '
P 31 A
move(rb1,loc00, move(rb2,loc00, gofact1,loc03, VAN
loc03) loc23) loc33)

move(rb1,l0c03,l0c20)

&

ABORT

ey updStatus evacuate
| (act2,loc31) . (act2,loc31)
go(loc00, go(loc00, IN PROGRESS L ru
loc32) loc31) {&‘1

rockslide
(loc31)

go(actd,loc00,

takePhoto evacuate evacuate| chargeBattery ~ move(rb1,
(loc33) (loc32) (loc31) loc20) (actd,rb1) loc20,loc31)
pd! pd: p loc31) loc31)
(loc33) (loc32) (loc31) [

/7———‘(’ - - T~—
Remaining part of the process B

(a) Adapted process after a task failure (b) Adapted process after an ex-
ogenous event

Fig. 9. Recovery procedures for the emergency response plan introduced in Section 3.1.

solution is shown in Figure 8(d), and consists of instructing act4 to reach loc20 for
recharging the battery of b1, of moving the robot b1 in loc31 in order to remove
debris, and finally of reassigning the UPDATESTATUS(loc31) task to act2. The corre-
sponding adapted process is shown in the bottom of Figure 9(b), and the two realities
are updated as follows:

- ¢(Sy) = {Atlactl]=loc33, Connected[actl]=true, ..., Status[loc31]=0k}
- (S4) = {Atlact1]=loc33, Connected[actl]=true, ..., Status[loc31]=0k}

It is worth noting that we validated the SmartPM approach with a case study based
on real processes coming from the emergency management domain. Specifically, we
first performed empirical experiments on synthetic data by enacting several emergency
management processes, and they confirm the feasibility of the planning-based approach
provided by SmartPM for adapting processes in medium-sized cyber-physical domains
from the timing performance perspective. Then, we tested the SmartPM System with
3600 different process models having control flows with different structures (and dif-
ferent domain theories associated to them) to measure the effectiveness of SmartPM in
adapting processes. We define the effectiveness of a PMS as the ability of a PMS to
complete the execution of a process model (i.e., to execute all the tasks involved in a
path from the start event to the end event) by adapting automatically its running pro-
cess instance if some failure arises, without the need of any manual intervention of the
process designer at run-time. To evaluate the effectiveness of SmartPM, we simulated

processes execution by introducing task failures and exogenous events during the pro-
cess enactment according to a given probability. As an instance, if the percentage of
tasks failures was equal to 70% and the process model to be executed was composed of
10 tasks, we had that 7 tasks of its running process instance completed with some phys-
ical outcome different from the one expected, thus requiring the process to be adapted.
To sum up, SmartPM was able to complete 2537 process instances without any domain
expert intervention, corresponding to an effectiveness of about 70,5%. For a detailed
discussion of the above experiments, we invite the interested reader to refer to [58].

5 Discussion

The analysis performed in this chapter underlines that processes enacted in cyber-
physical domains demand a more flexible approach to process management, recog-
nizing the fact that in real-world environments process models quickly become out-
dated and hence require closer interweaving of modeling and execution. The fact is
that the common strategy used by the adaptive PMSs to deal with exceptions is to
manually or semi-automatically define recovery procedures at run-time. However, in
cyber-physical domains, analyzing and defining these adaptations “manually” becomes
time-demanding and error-prone. Indeed, the designer should have a global vision of the
application and its context to define appropriate recovery actions, which becomes com-
plicated when the number of relevant context features and their interleaving increases.

Conversely, the adaptation mechanism provided by SmartPM is based on execution
monitoring for detecting failures and context changes, and allows to automatically syn-
thesize at run-time the recovery procedures, without requiring to predefine any specific
adaptation policy or exception handler at design-time. Furthermore, if compared with
the existing techniques on process adaptation coming from the field of Al, the SmartPM
approach provides unique features that make it particularly suitable for managing pro-
cesses in cyber-physical domains. For example, if compared with the works [47, 48]
(discussed in Section 2.3), the SmartPM approach adapts a running process instance by
modifying only those parts of the process that need to be changed/adapted and keeps
other parts stable. This is particularly important, as processes executed in cyber-physical
domains often involve real human participants, and to completely re-define the pro-
cess specification at run-time for adaptation purposes would mean to revolutionize the
work-list of tasks assigned to the process participants. Finally, while closely related
to works [49, 50], the SmartPM approach deals with changes in a more abstract and
domain-independent way, by just checking misalignment between expected/physical
realities. Conversely, the work [49] requires that the process designer explicitly defines
the policies for detecting the exceptions at design-time, while the work [50] requires
specification of a (domain-dependent) adaptation policy, based on volatile variables and
when changes to them become relevant.

From a general perspective, the planning-based automated exception handling ap-
proach of SmartPM should be considered as complementary with respect to existing
techniques, acting as a “bridge” between pre-planned approaches and unplanned ap-
proaches. When an exception occurs and is detected, the run-time engine may first
check the availability of a predefined exception handler, and if no handler was defined,

it can rely on an automated synthesis of the recovery process. In the case that a planning-
based approach fails in synthesizing a suitable handler (or a handler is generated but its
execution does not solve the exception), a human participant can be involved, leaving
her/him the task of manually adapting the process instance.

The use of classical planning techniques for the synthesis of the recovery procedure
has a twofold consequence. On the one hand, we can exploit the good performance of
current state-of-the-art planners to solve medium-sized real-world problems as used in
practice (cf. [58]). On the other hand, classical planning imposes some restrictions for
addressing more expressive problems, including incomplete information, preferences
and multiple task effects. To sum up, specific requirements frame the scope of applica-
bility of the approach, which basically relies on the following assumptions:

1. process structure can be completely captured in a procedural predefined process
model that explicitly defines the tasks and their execution constraints;

2. process execution context can be fully captured as part of the process model, i.e.,
complete information about a fully observable domain is available;

3. domain objects and contextual properties representing the state of the world can be
reconducted to a finite set of finite-domain variables;

4. process tasks can be completely specified in term of I/O data elements, precondi-
tions and deterministic effects.

Moreover, in addition to the full observability assumption, the approach relies on a high
degree of controllability over the environment: when process execution deviates from
the prespecified expected behavior (i.e., the physical reality deviates from the expected
one), it should be possible to synthesize a recovery process whose execution modifies
the environment (as reflected in the physical reality) so that the process instance can
progress as expected, according to the prespecified model (basically, the physical reality
is reconducted to the expected reality). When the operational environment and process
state cannot be reconducted to their expected representation, we are back to the case
where a process cannot be recovered to progress according to the predefined model,
and it is the process itself that has to be (manually or semi-automatically) adapted to
the changed environment.

The above assumptions result from the need of balancing between modeling com-
plexity and expressive power, and the practical requirements that enable exploiting clas-
sical planning tools. Although the need to explicitly model process execution context
and annotate tasks with preconditions and effects may require some extra modeling
effort at design-time (also considering that process modeling efforts are often mainly
directed to the sole control flow perspective), the overhead is compensated at run-time
by the possibility of automating exception handling procedures.

6 Conclusion

In this chapter we have introduced a general approach, a concrete framework and a
PMS, called SmartPM, for automated adaptation of processes enacted in cyber-physical
domains in case of unanticipated exceptions. The approach is based on declarative task

specifications and planning techniques, and relies on the ability of automatically synthe-
sizing recovery procedures at run-time. No predefined exception detection and handling
logic is thus required. The current prototype of SmartPM is developed to be effectively
used by process designers and practitioners. Users define processes in the well-known
BPMN language, enriched with semantic annotations for expressing properties of tasks,
which allow our interpreter to derive the IndiGolog program representing the process.
Interfaces with human actors (as specific graphical user applications in Java) and soft-
ware services (through Web service technologies) allow the core system to be effec-
tively used for enacting processes.

Future work will include an extension of our approach to “stress” the above assump-
tions by making the approach applicable to less-controllable cyber-physical domains,
such as smart museums and, in general, smart spaces. In fact, in the last years, the cur-
rent widespread availability of wireless network technology for mass consumption has
triggered the appearance of plenty of wireless and/or mobile devices providing appli-
cations able to enhance the visitors’ experience in cultural sites. The “pre-fixed” and
static visits of physical spaces have been turned into interactive dynamic experiences
customized to the human visitors’ behaviours and needs. In this context, a process can
be used to personalize the visit of an individual into a smart space.

In addition, we aim at turning the centralized control provided by SmartPM (in
which the reasoning is performed by a single entity, which subsequently instructs the
process participants what to do) into a decentralized control, in which each participant
will be provided with her/his mobile device with the SmartPM system installed into it.
The challenge is to provide each SmartPM system with the ability to adapt the single
processes of individual process participants by considering not only the local knowledge
collected by the single participant, but also the knowledge produced by the other visitors
of the smart space and the global knowledge provided by the smart space as a whole
(e.g., the knowledge produced by the sensors installed in the smart space). As shown
in [71,72], our research is already going in this direction.

Acknowledgements

This work has been partly supported over the years by the following projects: EU FP-
6 WORKPAD, EU FP-7 SM4All, Italian Sapienza grant TESTMED, Italian Sapienza
grant SUPER, Italian Sapienza award SPIRITLETS, Italian cluster Social Museum and
Smart Tourism, Italian project NEPTIS, Italian project RoMA. The authors would like
to thanks the many persons involved over the years in the SMARTPM conception and
development, namely Giuseppe De Giacomo, Massimiliano de Leoni, Patris Halapuu,
Arthur H.M. ter Hofstede, Alessandro Russo, Sebastian Sardina, Paola Tucceri, Stefano
Valentini.

References

1. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing (ISORC). pp. 363-369. IEEE
Computer Society (2008)

10.

11.

12.

14.

15.

16.

17.

18.

19.

. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd Edi-

tion. Springer (2012)

. Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Modeling. BoD—

Books on Demand (2010)

. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,

D., Smith, D., Thatte, S., et al.: Business Process Execution Language for Web Services.
Version 1.1. (2003)

. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-Intensive Processes: Characteristics, Re-

quirements and Analysis of Contemporary Approaches. Journal on Data Semantics 4(1),
29-57 (2015)

. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive Processes: An Overview of

Contemporary Approaches. In: 1st International Workshop on Knowledge-intensive Busi-
ness Processes (KiBP). CEUR Workshop Proceedings, vol. 861. CEUR-WS.org (2012)

. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges, Per-

spectives. Data & Knowledge Engineering 61(1), 39-58 (2007)

. Cossu, F.,, Marrella, A., Mecella, M., Russo, A., Bertazzoni, G., Suppa, M., Grasso,

F.: Improving Operational Support in Hospital Wards through Vocal Interfaces and
Process-Awareness. In: 25th International Symposium on Computer-Based Medical Systems
(CBMS). pp. 1-6. IEEE Computer Society (2012)

. Cossu, F., Marrella, A., Mecella, M., Russo, A., Kimani, S., Bertazzoni, G., Colabianchi, A.,

Corona, A., Luise, A.D., Grasso, F., Suppa, M.: Supporting Doctors through Mobile Multi-
modal Interaction and Process-Aware Execution of Clinical Guidelines. In: 7th International
Conference on Service-Oriented Computing and Applications (SOCA). pp. 183-190. IEEE
(2014)

Marrella, A., Mecella, M.: Continuous Planning for Solving Business Process Adaptivity.
In: 12th International Working Conference on Business Process Modeling, Development and
Support (BPMDS). Lecture Notes in Business Information Processing, vol. 81, pp. 118-132.
Springer (2011)

Marrella, A., Russo, A., Mecella, M.: Planlets: Automatically Recovering Dynamic Pro-
cesses in YAWL. In: 20th International Conference on Cooperative Information Systems
(CooplS). Lecture Notes in Computer Science, vol. 7565, pp. 268-286. Springer (2012)
Seiger, R., Keller, C., Niebling, F., Schlegel, T.: Modelling Complex and Flexible Processes
for Smart Cyber-physical Environments. Journal of Computational Science (2014)

. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator Tech

Smart House: A Programmable Pervasive Space. IEEE Computer 38(3), 50-60 (2005)
Rajkumar, R.R., Lee, L., Sha, L., Stankovic, J.: Cyber-Physical Systems: the Next Computing
Revolution. In: 47th Design Automation Conference (DAC). pp. 731-736. ACM (2010)
Klein, M., Dellarocas, C.: A Knowledge-based Approach to Handling Exceptions in Work-
flow Systems. Computer Supported Cooperative Work (CSCW) 9(3-4), 399—412 (2000)
Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Chal-
lenges, Methods, Technologies. Springer (2012)

Marrella, A., Mecella, M., Russo, A.: Featuring Automatic Adaptivity through Workflow
Enactment and Planning. In: 7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom). pp. 372-381. ICST / IEEE
(2011)

Klein, M., Dellarocas, C., Bernstein, A.: Introduction to the Special Issue on Adaptive Work-
flow Systems. Computer Supported Cooperative Work (CSCW) 9(3-4), 265-267 (2000)
Sadiq, S., Orlowska, M.: On Capturing Exceptions in Workflow Process Models. In: 3rd In-
ternational Conference on Business Information Systems (BIS), pp. 3-19. Springer London
(2000)

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and Implementation of Exceptions
in Workflow Management Systems. ACM Transactions on Database Systems (TODS) 24(3),
405451 (1999)

Casati, F., Cugola, G.: Error Handling in Process Support Systems. In: Advances in Ex-
ception Handling Techniques (ECOOP). Lecture Notes in Computer Science, vol. 2022, pp.
251-270. Springer (2001)

Eder, J., Liebhart, W.: The Workflow Activity Model WAMO. In: Third International Con-
ference on Cooperative Information Systems (CooplS). pp. 87-98 (1995)

Eder, J., Liebhart, W.: Workflow Recovery. In: First IFCIS International Conference on Co-
operative Information Systems (CooplS). pp. 124-134. IEEE Computer Society (1996)
Hagen, C., Alonso, G.: Exception Handling in Workflow Management Systems. IEEE Trans-
actions on Software Engineering 26(10), 943-958 (2000)

Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception Handling in Workflow Systems. Applied
Intelligence 13(2), 125-147 (2000)

Adams, M.J.: Facilitating Dynamic Flexibility and Exception Handling for Workflows. Ph.D.
thesis, Queensland University of Technology Brisbane, Australia (2007)

Russell, N., van der Aalst, W.M.P,, ter Hofstede, A.H.M.: Workflow Exception Patterns. In:
Advanced Information Systems Engineering. Lecture Notes in Computer Science, vol. 4001,
pp. 288-302. Springer Berlin Heidelberg (2006)

Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.: Excep-
tion Handling Patterns for Process Modeling. IEEE Transactions on Software Engineering
36(2), 162-183 (2010)

Chiu, D.K.W., Li, Q., Karlapalem, K.: A Logical Framework for Exception Handling in
ADOME Workflow Management System. In: 12th International Conference on Advanced
Information Systems Engineering (CAiSE). Lecture Notes in Computer Science, vol. 1789,
pp- 110-125. Springer (2000)

ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its Support Environment. Springer (2009)

Weske, M.: Formal Foundation and Conceptual Design of Dynamic Adaptations in a Work-
flow Management System. In: 34th Annual Hawaii International Conference on System Sci-
ences (HICSS). IEEE Computer Society (2001)

Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support Features —
Enhancing Flexibility in Process-Aware Information Systems. Data & Knowledge Engineer-
ing 66(3), 438-466 (2008)

Reichert, M., Weber, B.: Process Change Patterns: Recent Research, Use Cases, Research Di-
rections. In: Seminal Contributions to Information Systems Engineering, 25 Years of CAiSE,
pp- 397-404. Springer (2013)

Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria for Dynamic Changes in Work-
flow Systems — A Survey. Data & Knowledge Engineering 50(1), 9-34 (2004)

Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating Process Learning and Process
Evolution — A Semantics Based Approach. In: 3rd International Conference on Business
Process Management (BPM). Springer (2005)

Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling Adaptive Workflow Management
Through Conversational Case-Based Reasoning. Lecture Notes in Computer Science, vol.
3155, pp. 434-448. Springer (2004)

Minor, M., Bergmann, R., Gorg, S.: Case-Based Adaptation of Workflows. Information Sys-
tems 40, 142-152 (2014)

Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows Without
Losing Control. Journal of Intelligent Information Systems 10(2), 93-129 (1998)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Reichert, M., Rinderle, S., Dadam, P.: ADEPT Workflow Management System. In: Business
Process Management (BPM). Lecture Notes in Computer Science, vol. 2678, pp. 370-379.
Springer (2003)

Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management with
ADEPT?2. In: 21st International Conference on Data Engineering (ICDE). pp. 1113-1114.
IEEE Computer Society (2005)

Lanz, A., Reichert, M., Dadam, P.: Robust and Flexible Error Handling in the AristaFlow
BPM Suite. In: Information Systems Evolution - CAiSE Forum 2010, Selected Extended
Paper. Lecture Notes in Business Information Processing, vol. 72, pp. 174-189. Springer
(2011)

Miiller, R., Greiner, U., Rahm, E.: AGENT WORK: A Workflow System Supporting Rule-
Based Workflow Adaptation. Data & Knowledge Engineering 51(2) (2004)

Myers, K., Berry, P.: Workflow Management Systems: An Al Perspective. AIC-SRI report
(1998)

Beckstein, C., Klausner, J.: A Meta Level Architecture for Workflow Management. Journal
of Integrated Design and Process Science 3(1), 15-26 (1999)

Jarvis, P., Moore, J., Stader, J., Macintosh, A., du Mont, A.C., Chung, P.: Exploiting Al Tech-
nologies to Realise Adaptive Workflow Systems. AAAI Workshop on Agent-Based Systems
in the Business Context (1999)

R-Moreno, M.D., Kearney, P.: Integrating Al Planning Techniques with Workflow Manage-
ment System. Knowledge Based Systems 15(5-6), 285-291 (2002)

Gajewski, M., Meyer, H., Momotko, M., Schuschel, H., Weske, M.: Dynamic Failure Re-
covery of Generated Workflows. In: 16th International Workshop on Database and Expert
Systems Applications (DEXA). pp. 982-986. IEEE Computer Society Press (2005)
Ferreira, H., Ferreira, D.: An Integrated Life Cycle for Workflow Management Based on
Learning and Planning. International Journal on Cooperative Information Systems 15(4),
485-505 (2006)

Bucchiarone, A., Pistore, M., Raik, H., Kazhamiakin, R.: Adaptation of Service-Based Busi-
ness Processes by Context-Aware Replanning. In: 4th International Conference on Service-
Oriented Computing and Applications (SOCA). pp. 1-8 (2011)

van Beest, N., Kaldeli, E., Bulanov, P., Wortmann, J., Lazovik, A.: Automated Runtime Re-
pair of Business Processes. Information Systems 39, 45-79 (2014)

Baheti, R., Gill, H.: Cyber-Physical Systems. The Impact of Control Technology. Tech. rep.
(2011)

Neyem, A., Franco, D., Ochoa, S.F., Pino, J.A.: An Approach to Enable Workflow in Mo-
bile Work Scenarios. In: 11th International Conference on Computer Supported Cooperative
Work in Design IV (CSCWD), Lecture Notes in Computer Science, vol. 5236, pp. 498-509.
Springer (2007)

Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Salvatore, B., Vetere, G., Dustdar, S.,
Juszczyk, L., Manzoor, A., Truong, H.L.: Pervasive Software Environments for Supporting
Disaster Responses. IEEE Internet Computing 12(1), 26-37 (2008)

Humayoun, S.R., Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Bortenschlager, M.,
Steinmann, R.: The WORKPAD User Interface and Methodology: Developing Smart and
Effective Mobile Applications for Emergency Operators. In: 5th International Conference
on Universal Access in Human-Computer Interaction. Applications and Services (UAHCI).
Lecture Notes in Computer Science, vol. 5616, pp. 343-352. Springer (2009)

Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Russo, A., Steinmann, R., Borten-
schlager, M.: WORKPAD: Process Management and Geo-Collaboration Help Disaster Re-
sponse. International Journal on Information Systems for Crisis Response and Management
(IJISCRAM) 3(1), 32-49 (2011)

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Marrella, A., Mecella, M., Russo, A.: Collaboration On-the-field: Suggestions and Beyond.
In: 8th International Conference on Information Systems for Crisis Response and Manage-
ment (ISCRAM) (2011)

van der Aalst, W.M.P.: Business Process Management: A Comprehensive Survey. ISRN Soft-
ware Engineering (2013)

Marrella, A., Mecella, M., Sardina, S.: SmartPM: An Adaptive Process Management Sys-
tem through Situation Calculus, IndiGolog, and Classical Planning. In: 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR). AAAI Press
(2014)

Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press (2001)

De Giacomo, G., Lespérance, Y., Levesque, H., Sardina, S.: IndiGolog: A High-Level Pro-
gramming Language for Embedded Reasoning Agents. In: Multi-Agent Programming, pp.
31-72. Springer US (2009)

Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2004)

van Der Aalst, W.M.P.: Three Good Reasons for Using a Petri-Net-Based Workflow Manage-
ment System. In: International Working Conference on Information and Process Integration
in Enterprises (IPIC’96). pp. 179-201. Cambridge, Massachusetts (1996)

Jensen, K.: Coloured Petri Nets. In: Petri Nets: Central Models and their Properties, pp.
248-299. Springer (1987)

van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8(01), 21-66 (1998)

Puhlmann, F., Weske, M.: Using the w-Calculus for Formalizing Workflow Patterns. In: Busi-
ness Process Management (BPM), Lecture Notes in Computer Science, vol. 3649, pp. 153—
168. Springer Berlin Heidelberg (2005)

Meyer, A., Smirnov, S., Weske, M.: Data in Business Processes. No. 50, Universititsverlag
Potsdam (2011)

Reichgelt, H.: Knowledge Representation: An Al perspective. Ablex (1991)

Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan Kaufmann
Publishers Inc. (2004)

De Giacomo, G., Reiter, R., Soutchanski, M.: Execution Monitoring of High-Level Robot
Programs. In: 6th International Conference on Principles of Knowledge Representation and
Reasoning (KR). pp. 453-465. Morgan Kaufmann (1998)

Gerevini, A., Saetti, A., Serina, 1., Toninelli, P.. LPG-TD: a Fully Automated Planner for
PDDL2.2 Domains. In: 14th International Conference on Automated Planning and Schedul-
ing (ICAPS). International Planning Competition abstracts (2004)

Marrella, A., Lespérance, Y.: Towards a Goal-oriented Framework for the Automatic Syn-
thesis of Underspecified Activities in Dynamic Processes. In: 6th International Conference
on Service-Oriented Computing and Applications (SOCA). pp. 361-365. IEEE (2013)
Marrella, A., Lespérance, Y.: Synthesizing a Library of Process Templates through Partial-
Order Planning Algorithms. In: 14th International Working Conference on Business Process
Modeling, Development and Support (BPMDS). Lecture Notes in Business Information Pro-
cessing, vol. 147, pp. 277-291. Springer (2013)

