Skip to main content

Finding Relevant Templates via the Principal Component Analysis

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10145))

Abstract

The polyhedral model is widely used for the static analysis of programs, thanks to its expressiveness but it is also time consuming. To cope with this problem, weak-polyhedral analysis have been developed which offer a good trade off between expressiveness and efficiency. Some of these analysis are based on templates which fixed the form of the program’s invariant. These templates are defined statically at the beginning of the analysis, without taking into account the dynamic of programs. Finding good templates is a difficult problem. In this article, we present a method that uses the Principal Component analysis to compute an interesting template. We demonstrate the relevancy of the obtained templates on several benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, H., Williams, L.J.: Principal component analysis (2010)

    Google Scholar 

  2. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component analysis. J. Symb. Comput. 47(12), 1533–1560 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  4. Chen, X., Ábrahám, E.: Choice of directions for the approximation of reachable sets for hybrid systems. In: Computer Aided Systems Theory - EUROCAST 2011–13th International Conference, Las Palmas de Gran Canaria, Spain (2011)

    Google Scholar 

  5. Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19718-5_10

    Chapter  Google Scholar 

  6. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992). doi:10.1007/3-540-55844-6_142

    Chapter  Google Scholar 

  7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–97. ACM Press (1978)

    Google Scholar 

  8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM Press (1977)

    Google Scholar 

  9. Gale, D.: Linear programming and the simplex method. Notices AMS 54(3), 364–369 (2007). Spanoudakis, G., Kloukinas, C., Mahbub, K.

    Google Scholar 

  10. Gaubert, S., McEneaney, W.M., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms. In: CDC-ECE. IEEE (2011)

    Google Scholar 

  11. Goubault, E., Putot, S., Védrine, F.: Modular static analysis with zonotopes. In: Proceedings of Static Analysis - 19th International Symposium, SAS 2012, Deauville, France (2012)

    Google Scholar 

  12. Hiriart-Urrut, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2004)

    Google Scholar 

  13. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  14. Laviron, V., Logozzo, F.: Subpolyhedra: a family of numerical abstract domains for the (more) scalable inference of linear inequalities. In: STTT (2011)

    Google Scholar 

  15. Lieven De Lathauwer, B.D.M., Vandewalle, J.: A multilinear singular value decomposition. SIAM. J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Google Scholar 

  16. Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput. 19(1), 31–100 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Google Scholar 

  18. Nesterov, Y., Nemirovskiĭ, A.: Interior-point polynomial algorithms in convex programming. SIAM studies in applied mathematics, Society for Industrial and Applied Mathematics (1994). http://opac.inria.fr/record=b1084763

  19. Sankaranarayanan, S., Colón, M.A., Sipma, H., Manna, Z.: Efficient strongly relational polyhedral analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005). doi:10.1007/11609773_8

    Chapter  Google Scholar 

  20. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30579-8_2

    Chapter  Google Scholar 

  21. Seladji, Y., Bouissou, O.: Numerical abstract domain using support functions. In: Proceedings of NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA, pp. 155–169 (2013)

    Google Scholar 

  22. Shlens, J.: A tutorial on principal component analysis. CoRR (2014)

    Google Scholar 

  23. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003). doi:10.1007/3-540-36580-X_35

    Chapter  Google Scholar 

  24. Tipping, M.E.: Bishop: probabilistic principal component analysis. J. Royal Stat. Soc. Ser B (Statistical Methodology) 61(3), 611–622 (1999)

    Google Scholar 

Download references

Acknowledgement

We want to thank A. Chapoutot, M. Martel and O. Bouissou for their helpful suggestions and precious advices. The authors are also thankful to the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassamine Seladji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Seladji, Y. (2017). Finding Relevant Templates via the Principal Component Analysis. In: Bouajjani, A., Monniaux, D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2017. Lecture Notes in Computer Science(), vol 10145. Springer, Cham. https://doi.org/10.1007/978-3-319-52234-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52234-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52233-3

  • Online ISBN: 978-3-319-52234-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics