Skip to main content

Left-Ventricle Basal Region Constrained Parametric Mapping to Unitary Domain

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10124))

  • 751 Accesses

Abstract

Due to its complex geometry, the basal ring is often omitted when putting different heart geometries into correspondence. In this paper, we present the first results on a new mapping of the left ventricle basal rings onto a normalized coordinate system using a fold-over free approach to the solution to the Laplacian. To guarantee correspondences between different basal rings, we imposed some internal constrained positions at anatomical landmarks in the normalized coordinate system. To prevent internal fold-overs, constraints are handled by cutting the volume into regions defined by anatomical features and mapping each piece of the volume separately. Initial results presented in this paper indicate that our method is able to handle internal constrains without introducing fold-overs and thus guarantees one-to-one mappings between different basal ring geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Avaliable at: http://cvrgrid.org/data/ex-vivo.

References

  1. Carapella, V., Bordas, R., Pathmanathan, P., et al.: Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PloS One 9(4), e92792 (2014)

    Article  Google Scholar 

  2. Casero, R., Burton, R.A.B., Quinn, T.A., Bollensdorff, C., Hales, P., Schneider, J.E., Kohl, P., Grau, V.: Towards high-resolution cardiac atlases: ventricular anatomy descriptors for a standardized reference frame. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 75–84. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15835-3_8

    Chapter  Google Scholar 

  3. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 209–218 (2002)

    Article  Google Scholar 

  4. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  5. Garcia-Barnes, J., Gil, D., Badiella, L., et al.: A normalized framework for the design of feature spaces assessing the left ventricular function. TMI 29(3), 733–745 (2010)

    Google Scholar 

  6. Gil, D., et al.: What a difference in biomechanics cardiac fiber makes. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 253–260. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36961-2_29

    Chapter  Google Scholar 

  7. Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: setting the state of the art with discrete methods*. Ann. Rev. Biomed. Eng. 13, 219–244 (2011)

    Article  Google Scholar 

  8. Gurgui, A., Gil, D., Marti, E.: Laplacian unitary domain for texture morphing. In: VISAPP (2015)

    Google Scholar 

  9. Helm, P., Beg, M.F., Miller, M.I., et al.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. N. Y. Acad. Sci. 1047, 296–307 (2005)

    Article  Google Scholar 

  10. Karim, R., et al.: Surface flattening of the human left atrium and proof-of-concept clinical applications. Comput. Med. Imag. Graph 38, 251–266 (2014)

    Article  Google Scholar 

  11. Lamata, P., Niederer, S., Nordsletten, D., et al.: An accurate, fast and robust method to generate patient-specific cubic hermite meshes. Med. Image Anal. 15(6), 801–813 (2011)

    Article  Google Scholar 

  12. Lombaert, H., Grady, L., Pennec, X., Ayache, N., Cheriet, F.: Spectral log-demons: diffeomorphic image registration with very large deformations. IJCV 107(3), 254–271 (2014)

    Article  Google Scholar 

  13. Medrano-Gracia, P., Cowan, B.R., Suinesiaputra, A., et al.: Atlas-based anatomical modeling and analysis of heart disease. Drug Disc. Today Dis. Models 14, 33–39 (2015)

    Article  Google Scholar 

  14. Paun, B., Bijnens, B., Butakoff, C.: Subject independent reference frame for the left ventricular detailed cardiac anatomy. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 240–247. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20309-6_28

    Chapter  Google Scholar 

  15. Poveda, F., Marti, E., Andaluz, A., et al.: Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging multi-resolution tractography. Revista Española de Cardiología 66(10), 782–790 (2013)

    Article  Google Scholar 

  16. Soto-Iglesias, D., Butakoff, C., Andreu, D., et al.: Integration of electro-anatomical and imaging data of the left ventricle: an evaluation framework. Med. Image Anal. 32, 131–144 (2016)

    Article  Google Scholar 

  17. Vera, S., Ballester, M.A.G., Gil, D.: Anatomical parameterization for volumetric meshing of the liver. In: SPIE (2014)

    Google Scholar 

  18. Vera, S., González, M.A., Linguraru, M.G., Gil, D.: Optimal medial surface generation for anatomical volume representations. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds.) ABD-MICCAI 2012. LNCS, vol. 7601, pp. 265–273. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33612-6_28

    Chapter  Google Scholar 

  19. Young, A.A., Frangi, A.F.: Computational cardiac atlases: from patient to population and back. Exp. Physiol. 94, 578–596 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Gurgui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gurgui, A., Gil, D., Grau, V., Marti, E. (2017). Left-Ventricle Basal Region Constrained Parametric Mapping to Unitary Domain. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science(), vol 10124. Springer, Cham. https://doi.org/10.1007/978-3-319-52718-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52718-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52717-8

  • Online ISBN: 978-3-319-52718-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics