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Abstract. Cardiac Magnetic Resonance (CMR) provides unique func-
tional and anatomical visualisation of the macro and micro-structures of
the heart. However, CMR acquisition times usually necessitate slices to
be acquired at different breath holds, which results in potential misalign-
ment of the acquired slices. Correcting for this spatial misalignment is
required for accurate three-dimensional (3D) reconstruction of the heart
chambers allowing robust metrics for shape analysis among populations
as well as precise representations of individual geometries and scars.
While several methods have been proposed to realign slices, their use in
other important protocols such as late gadolinium enhancement (LGE)
is yet to be demonstrated. We propose a registration framework based on
local phase to correct for slice misalignment. Our registration framework
is a group registration technique combining long- and short-axis slices.
Validation was performed on LGE slices using expert-traced ventricular
contours. For 15 clinical multi-breath-hold datasets our method reduced
the median discrepancy of moderately misaligned slices from 2.19 mm to
1.63 mm, and of severely misaligned from 7.33 mm to 1.96 mm.
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1 Introduction

Cardiovascular diseases are one of the world’s biggest killers, accounting for over
4 million deaths in Europe yearly [1]. Enabling early diagnosis and effective
treatment is essential to the reduction of the burden of cardiovascular diseases.

In recent years much research has looked at creating personalised 3D anatom-
ical models of the heart [2]. These models usually incorporate a geometrical re-
construction of the anatomy in order to understand better cardiovascular func-
tions as well as predict different processes after a clinical event. Also, popula-
tion studies of cardiac anatomy require precise geometrical reconstructions [3,4].
However the ability to accurately reconstruct heart anatomy from MRI in three
dimensions commonly comes with a fundamental challenge: the misalignment
between slices acquired at different breath holds. In this paper we discuss an
alignment algorithm for individual CMR slices that allows subsequent accurate



reconstruction of geometrical models of the heart. The algorithm uses the in-
tersection lines between slices, introducing a new cost function designed to be
applied on both cine and late gadolinium images, as well as a specifically designed
optimisation strategy. The main contributions of this work are:

– The development of a complete framework for the correction of translational
and rotational misalignments between CMR slices, based on the combination
of short axes (SA) and long axes (LA) images and applicable to cine and
LGE CMR scans.

– The introduction of the normalised cross correlation of local phase vectors
as a similarity measure that makes the method applicable to different CMR
protocols.

– A complete validation using manually traced contours, which includes the
estimation of contouring errors.

1.1 Misalignment between CMR slices

CMR images allow for detailed ventricular anatomical information as well as an
accurate representation of myocardial function by using a plethora of available
specialised protocols. Acquiring cardiac images is a complex process due to the
constant motion of the heart. Standard clinical protocols do not allow 3D images
of the heart in a single acquisition, and thus typically acquire a collection of 2D
slices, oriented either on the short axis or on a long axis plane of the ventricles,
each one at a separate breath hold. Electrocardiogram (ECG) allow the images
to compensate for cardiac motion. Breath holding at the same lung volume
for periods ranging from 7 to 15 seconds is used to reduce slice misalignment
from the acquisition. This alignment distortion may be further enhanced by any
patient movement inside the scanner, affecting slice spatial coherence as a 3D
dataset [5].

1.2 Motion correction

A significant amount of research has been dedicated to the correction of CMR
slice misalignment. Some studies solely align endo and epicardial contours with
regards to each other. This requires the availability of accurate contours, and
has the disadvantage of forfeiting all the additional information available in the
image values. In practice, due to the inter/intra variability in expert contouring,
the final alignment will depend on the expert; on the other hand, if the appli-
cation requires the smoothest ventricular shapes possible, methods such as [6]
can be used. Other studies use volumetric approaches where individual slices
are registered to a 3D volume (slice-to-volume registration) [7–9]. The second
common approach in the literature uses slice-to-slice alignment (slice-to slice reg-
istration), which is also used in our method. This approach is based on using the
image intensities at the slice intersections. By optimising over the (dis)similarity
between intensities on the intersecting line, optimal alignment can be achieved.
Some studies [10,11] use a fixed slice, usually an LA slice, to which all the other
slices are aligned to. The drawback to this is the dependence on the choice of the



reference slice, which can heavily influence the results if a particularly misaligned
slice is chosen as the fixed reference. An alternative method is to alternate the
reference slice in an iterative manner and allow the other slices to register to it.
This has the negative effect of being highly influenced by outliers and makes the
process more sensitive to local minima. This results in optimising over a space
of 6n parameters, with n being the number of slices, which is costly and less ef-
ficient . To minimize the amount of local minima, our method fixes all the other
slices and allows only one slice to ”move”, obtaining the best global alignment.
Furthermore using the sum of similarity measures from a slice to several refer-
ence slices can lower the influence of outliers, forcing them to converge through
an iterative process; also known as alternate optimisation [12]. Theoretically, dif-
ferent alignment strategies could converge to the same minimum, regardless of
the optimisation parameters used. However, the presence of local minima means
that, in practice, the choice of optimisation parameters has a substantial effect
on the result.

1.3 Similarity function

Cost functions, otherwise known as similarity measures, provide a measure of
(dis)similarity between images/intensities in the domain of image registration.
Similarity functions can be feature-based, which aim at the alignment of spe-
cific image features (e.g. edges), or voxel-based, which use all intensity values
and quantifies their differences. Voxel-based measures can usually be posed in a
generative and statistical framework providing a measure of mutual dependence
between random variables. The similarity criterion is one of the key factors in
the performance of a registration process, and depends on the nature of the
data to be registered [13] . Protocols including gadolinium injections suffer from
contrast wash-in/wash-out in the images, increasing the disparity in intensities
between slices at different time instants. This prevents the use of simple mea-
sures based on intensity differences, such as Sum of Absolute/Square Differences
(SAD/SSD). Although some studies such as [14] use SSD as a similarity func-
tion, they only apply to same plane (2D-2D) registration, whereas in our case,
the intensity discrepancy mostly occurs between the LA and SA slices. We con-
sider that the use of a contrast-independent measure based on salient features
would be more appropriate to match the line intersection profiles. Phase based
metrics have been a popular choice to use in the last years [15,16]. Local phase
is a contrast independent descriptor of image structure and is thus not affected
by intensity discrepancies [17].

2 Materials and Methods

2.1 CMR data

The datasets used consists of DICOM files containing 2D CINE MRI and 2D
LGE sequences of size 216 x 256 pixels (approx: 1.41 mm x 1.41 mm). 15 datasets



(SIEMENS TrioTim 3 Tesla scanner at the John Radcliffe Hospital, Oxford, UK)
from different subjects were used. Each dataset contains between 9 and 13 SA
slices from apex to base separated by 8/10 mm and 3 LA slices (4 chamber view,
2 chamber view and out-flow tract). For validation purposes, left ventricle epi-
and endocardial contours were manually traced by an expert on all SA and
LA slices using the CMR42 software (Circle Cardiovascular Imaging, Calgary,
Canada).

2.2 Image registration algorithm

Our method relies on the intensity profiles at the line formed by the intersection
between two slices to align the slices together and give spatial coherence to the
3D dataset. This is based on the assumption that two slices will be perfectly
aligned when the underlying features of the line profile at their intersection is
complementary. Assuming that slices from a subject are triggered at the same
cardiac phase the 3D shape/anatomy of the heart remains fixed among slices.
Therefore, rigid-body transformations between slices are considered. As such, we
perform rigid registration for each of the slices over 6 degrees of freedom of a
rigid-body transformation.

Fig. 1: Left panel shows some 2D MRI slices in their spatial 3D positions, where
a clear misalignment can be shown (red box). Right panel shows the intensity
profiles along an intersection line.

2.3 Alignment score and optimisation strategy

The global motion (GM) discrepancy of the slices can be measured as the sum of
(dis)similarity measures E between pair of intersecting slices. Let Si be the i-th
slice and Θi the set of its 6 rigid transformation parameters, for example Θ =
{tx, ty, tz, α, β, γ} (in our case 3 translations plus 3 Euler angles). Moreover, let

SΘi
i be the transformed version of the slice Si by the rigid transformation defined



by parameters Θi. By using this notation, the global motion (GM) discrepancy
is given by

GM (Θ1, Θ2, . . . , Θn;S1, S2, . . . , Sn) =
∑

E
(
SΘi
i , S

Θj

j

)
(1)

where the summation runs over all pairs Si, Sj intersecting in a line, i.e. an
LA slice will intersect with all the SAs and the other LAs. Minimising GM is
akin to finding the parameters for each slice. In this work, this minimisation is
performed in an alternate manner, by optimising the parameters Θ of a single
slice whilst leaving the others fixed. As the GM is built as a sum of terms, the
iterative minimisation of partial terms results in the minimisation of the global
motion discrepancy and the slices match together.

2.4 Similarity measure

The particularities of image acquisition described in Section 2.1 prevent the use
of simple measures based on intensity differences, such as SAD/SSD. For images
with high intensity disparity, feature-based similarity measure can provide a
more robust method of assessing similarity between the images at the intersection
profiles. As local phase is independent of contrast and not affected by intensity
inconsistencies, it is a sensible choice as a similarity measure. The local phase
can be obtained through the analytic signal in 1D, and general extensions to
higher dimensions have been proposed including the use of oriented filters or
the monogenic signal [16]. Although our registration is based on the similarity
between the 1D intersecting line profiles, we compute the local phase for an entire
image, and then obtain the line intersection between two local phase images as
it results in less noise in the line profiles [16]. The normalised cross correlation
(NCC) between two profiles is used as similarity measure E for an intersecting
pair. In 2D, the local frequency information can be obtained by convolving the
images with banks of quadrature pairs of log-Gabor filters [15]. A quadrature
filter is a complex valued function which transforms a real valued signal to an
analytical signal with weighted frequency components. Convolving the image
with a filter will result in response vectors encoding phase and amplitude. By
using quadrature filters, local phase (Φ) can be estimated by

Φ = arctan

(
Iq
Ip

)
(2)

where Iq represents the magnitude of the odd filters convolved with the image,
and Ip the filter response. With respect to 2D, quadrature filters can be gener-
alised through directional formulation [18]. This results in the image that can be
seen in Figure 3. Once the local phase images are obtained, the line intersection
at both images is taken to account for the similarity measure, using NCC.

2.5 Contour-based alignment

Due to inconsistencies in manual contouring of the SA and LA slices, a “perfect”
alignment (i.e. one in which the distances between SA and LA contour is zero)



might not be achievable. In order to establish a baseline error value, we applied
a misalignment correction algorithm using the contours from manual images,
substituting function E() in equation (1) by the Euclidean distance between SA
and LA contours. We refer to this algorithm as “contour-based” to differentiate
it from the “image-based” algorithm we propose here.

3 Results

We investigated the performance of the registration algorithm using the nor-
malised correlation of the local phase signals. The algorithm was used on 15
datasets, each containing 3 LAs and several SAs. The algorithm was run for 9
iterations, for each dataset, in order to evaluate the convergence of the registra-
tion. This number was chosen empirically, as the algorithm appeared to converge
by then (see Figure 2).

Table 1 shows the mean, median, and standard deviation resulting from con-
tour to contour distance calculations before the alignment and after, using the
image based method, and contour only method. The upper part of the table rep-
resents all of the 682 individual contour to contour distance for all the datasets.
The lower part reports the values for the 82 contours that were deemed signifi-
cantly misaligned (>5 mm).

Before Image Contour
based based

Median : 2.19 1.63 0.31
Mean : 2.82 2.03 0.46
Std : 2.48 1.71 0.47

Median : 7.33 1.96 0.29
Mean : 7.73 2.72 0.43
Std : 2.43 2.36 0.44

Table 1: Top: LGE phase results for all 15 patients before alignment and after
9 different iterations, as well as with alignment by minimising contours only.
Bottom: Same as above but for significantly misaligned slices. Fig. 2: Pairwise
energy E between slices over several iterations. Red line shows the global energy
GM .

4 Discussion

Our method relies on using all available information to correct for misalignment
by using both the long and short axes slices, in an iterative process. By taking
into account all intersections simultaneously, we minimize the effect that individ-
ual outliers have on the overall results, forcing these outliers towards the global
“consensus” position. By using local phase, we rely on its invariance to changes
of intensities in order to focus on obtaining high feature similarity rather than
high intensity profile similarity. Relying on the latter assumes that the images
to be registered contain similar intensity profiles which is not always the case.



Fig. 3: Late gadolinium image on the left and local phase image on the right

The slice optimisation was constrained to compensate for potential structural
symmetry, which might lead to out of plane misalignment such as could be the
case with midventricle short axis slices. A hard constraint was chosen as an
alternative to introducing a regulariser as the latter would induce a bias towards
the initial positions of the planes.

The median and mean values for all 15 patients can be observed to decrease
notably, however our method distinguishes itself more with regards to the re-
markably misaligned slices. We have defined significantly misaligned slices as
slices having higher than 5 mm between contours. Results show that the median
value before the alignment is 7.33 mm (7.73 mm mean). After the alignment, a
median of 1.96 mm was obtained (2.72 mm mean). By minimising the contour to
contour distances only, results show that zero minimal distance is unobtainable,
due to the variability in contouring. As such, the lowest median obtainable with
our contours was 0.29 mm (0.43 mm mean), which should be accounted for when
looking at the image based results.

Oscillations along the iterations of the alternate optimisation are a concern
due to the slice dependencies. This can be observed in the behaviour of the
global energy at the different iterations (see Figure 2). It can be seen empirically
that 10-20 iterations are enough to converge. GM can be seen to decrease and
follow a descent path without any jumps occurring, however the evolution of
the pairwise energy can result in a non-monotonic (non-descent) path. Even
after running the algorithm for more then 100 iterations, some energy pairs will
continue oscillating. It can also be seen that for a given pair, the lower the energy,
the more it oscillates.

Validation for cardiac image processing comes with some important draw-
backs that need to be taken into account. There typically exist no true ground
truth due to the nature of the problems. In the majority of cases the ground truth
relies on quantification values based on clinical segmentation. However expert



Fig. 4: Surface reconstruction before and after alignment.

segmentation should not be considered as the true ground truth, but more as an
approximation, as it suffers from inter-intra expert variability. Furthermore the
choice of quantification methods is highly variable and can greatly impact the
results.

It can be said that the motion correction algorithm is indispensable for any
cardiac anatomical reconstruction which is clearly shown by Figure 4. Several
artifacts can be observed such as non aligned SA contours causing a waving
surface. Furthermore spatial discrepancies between SAs and LAs produces depth
fissures and ridges of the surfaces and discrepancies between LAs do not allow
for a good reconstruction of the apical region.

We have presented a phase based registration algorithm that corrects for
the misalignment of LGE MRI images. This framework will be used as a pre-
processing step in 3D reconstructions of the heart, leading to accurate anatomical
models.
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