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Abstract

An (m,n)-colored mixed graph G is a graph with its arcs having one of the m different
colors and edges having one of the n different colors. A homomorphism f of an (m,n)-
colored mixed graph G to an (m,n)-colored mixed graph H is a vertex mapping such that
if uv is an arc (edge) of color c in G, then f(u)f(v) is an arc (edge) of color c in H . The
(m,n)-colored mixed chromatic number χ(m,n)(G) of an (m,n)-colored mixed graph G is
the order (number of vertices) of the smallest homomorphic image of G. This notion was
introduced by Nešetřil and Raspaud (2000, J. Combin. Theory, Ser. B 80, 147–155). They
showed that χ(m,n)(G) ≤ k(2m+ n)k−1 where G is a k-acyclic colorable graph. We proved
the tightness of this bound. We also showed that the acyclic chromatic number of a graph is
bounded by k2 + k2+⌈log(2m+n)log(2m+n)k⌉ if its (m,n)-colored mixed chromatic number is at
most k. Furthermore, using probabilistic method, we showed that for graphs with maximum
degree ∆ its (m,n)-colored mixed chromatic number is at most 2(∆− 1)2m+n(2m+ n)∆−1.
In particular, the last result directly improves the upper bound 2∆22∆ of oriented chromatic
number of graphs with maximum degree ∆, obtained by Kostochka, Sopena and Zhu (1997,
J. Graph Theory 24, 331–340) to 2(∆ − 1)22∆−1. We also show that there exists a graph
with maximum degree ∆ and (m,n)-colored mixed chromatic number at least (2m+ n)∆/2.

Keywords: colored mixed graphs, acyclic chromatic number, graphs with bounded maximum
degree, arboricity, chromatic number.

1 Introduction

An (m,n)-colored mixed graph G = (V,A ∪ E) is a graph G with set of vertices V , set of arcs
A and set of edges E where each arc is colored by one of the m colors α1, α2, ..., αm and each
edge is colored by one of the n colors β1, β2, ..., βn. We denote the number of vertices and the
number of edges of the underlying graph of G by vG and eG, respectively. Also, we will consider
only those (m,n)-colored mixed graphs for which the underlying undirected graph is simple.
Nešetřil and Raspaud [5] generalized the notion of vertex coloring and chromatic number for
(m,n)-colored mixed graphs by definining colored homomorphism.

Let G = (V1, A1∪E1) and H = (V2, A2∪E2) be two (m,n)-colored mixed graphs. A colored
homomorphism of G to H is a function f : V1 → V2 satisfying

uv ∈ A1 ⇒ f(u)f(v) ∈ A2,
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uv ∈ E1 ⇒ f(u)f(v) ∈ E2,

and the color of the arc or edge linking f(u) and f(v) is the same as the color of the arc or the
edge linking u and v [5]. We write G → H whenever there exists a homomorphism of G to H.

Given an (m,n)-colored mixed graph G let H be an (m,n)-colored mixed graph with min-
imum order (number of vertices) such that G → H. Then the order of H is the (m,n)-colored
mixed chromatic number χ(m,n)(G) of G. For an undirected simple graph G, the maximum
(m,n)-colored mixed chromatic number taken over all (m,n)-colored mixed graphs having un-
derlying undirected simple graph G is denoted by χ(m,n)(G). Let F be a family of undirected
simple graphs. Then χ(m,n)(F) is the maximum of χ(m,n)(G) taken over all G ∈ F .

Note that a (0, 1)-colored mixed graph G is nothing but an undirected simple graph while
χ(0,1)(G) is the ordinary chromatic number. Similarly, the study of χ(1,0)(G) is the study of
oriented chromatic number which is considered by several researchers in the last two decades
(for details please check the recent updated survey [8]). Alon and Marshall [1] studied the
homomorphism of (0, n)-colored mixed graphs with a particular focus on n = 2.

A simple graph G is k-acyclic colorable if we can color its vertices with k colors such that
each color class induces an independent set and any two color class induces a forest. The
acyclic chromatic number χa(G) of a simple graph G is the minimum k such that G is k-acyclic
colorable. Nešetřil and Raspaud [5] showed that χ(m,n)(G) ≤ k(2m + n)k−1 where G is a k-
acyclic colorable graph. As planar graphs are 5-acyclic colorable due to Borodin [2], the same
authors implied χ(m,n)(P) ≤ 5(2m + n)4 for the family P of planar graphs as a corollary. This
result, in particular, implies χ(1,0)(P) ≤ 80 and χ(0,2)(P) ≤ 80 (independently proved before
in [7] and [1], respectively).

Let Ak be the family of graphs with acyclic chromatic number at most k. Ochem [6] showed
that the upper bound χ(1,0)(Ak) ≤ 80 is tight. We generalize it for all (m,n) 6= (0, 1) to show

that the upper bound χ(m,n)(Ak) ≤ k(2m+n)k−1 obtained by Nešetřil and Raspaud [5] is tight.
This implies that the upper bound χ(m,n)(P) ≤ 5(2m+n)4 cannot be improved using the upper
bound of χ(m,n)(A5).

The arboricity arb(G) of a graph G is the minimum k such that the edges of G can be
decomposed into k forests. Kostochka, Sopena and Zhu [3] showed that given a simple graph
G, the acyclic chromatic number χa(G) of G is also bounded by a function of χ(1,0)(G). We
generalize this result for all (m,n) 6= (0, 1) by showing that for a graph G with χ(m,n)(G) ≤ k

we have χa(G) ≤ k2 + k2+⌈log2logpk⌉ where p = 2m+ n. Our bound slightly improves the bound
obtained by Kostochka, Sopena and Zhu [3] for (m,n) = (1, 0). For achieving this result we first
establish some relations among arboricity of a graph, (m,n)-colored mixed chromatic number
and acyclic chromatic number.

Let G∆ be the family of graphs with maximum degree ∆. Kostochka, Sopena and Zhu [3]
proved that 2∆/2χ(1,0)(G∆) ≤ 2∆22∆. We improve this result in a generalized setting by proving

p∆/2 ≤ χ(m,n)(G∆) ≤ 2(∆ − 1)pp∆−1 for all (m,n) 6= (0, 1) where p = 2m+ n.

2 Preliminaries

A special 2-path uvw of an (m,n)-colored mixed graph G is a 2-path satisfying one of the
following conditions:

(i) uv and vw are edges of different colors,

(ii) uv and vw are arcs (possibly of the same color),
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(iii) uv and wv are arcs of different colors,

(iv) vu and vw are arcs of different colors,

(v) exactly one of uv and vw is an edge and the other is an arc.

Observation 1. The endpoints of a special 2-path must have different image under any homo-
morphism of G.

Proof. Let uvw be a special 2-path in an (m,n)-colored mixed graph G. Let f : G → H be a
colored homomorphism of G to an (m,n)-colored mixed graph H such that f(u) = f(w). Then
f(u)f(v) and f(w)f(v) will induce parallel edges in the underlying graph of H. But as we are
dealing with (m,n)-colored mixed graphs with underlying simple graphs, this is not possible.

Let G = (V,A ∪ E) be an (m,n)-colored mixed graph. Let uv be an arc of G with color αi

for some i ∈ {1, 2, ...,m}. Then u is a −αi-neighbor of v and v is a +αi-neighbor of u. The set
of all +αi-neighbors and −αi-neighbors of v is denoted by N+αi(v) and N−αi(v), respectively.
Similarly, let uv be an edge of G with color βi for some i ∈ {1, 2, ..., n}. Then u is a βi-
neighbor of v and the set of all βi-neighbors of v is denoted by Nβi(v). Let ~a = (a1, a2, ..., aj)
be a j-vector such that ai ∈ {±α1,±α2, ...,±αm, β1, β2, ..., βn} where i ∈ {1, 2, ..., j}. Let
J = (v1, v2, ..., vj) be a j-tuple (without repetition) of vertices from G. Then we define the set

N~a(J) = {v ∈ V |v ∈ Nai(vi) for all 1 ≤ i ≤ j}. Finally, we say that G has property Qt,j
g(j)

if for each j-vector ~a and each j-tuple J we have |N~a(J)| ≥ g(j) where j ∈ {0, 1, ..., t} and
g : {0, 1, ..., t} → {0, 1, ...∞} is an integral function.

3 On graphs with bounded acyclic chromatic number

First we will construct examples of (m,n)-colored mixed graphs H
(m,n)
k with acyclic chromatic

number at most k and χ(m,n)(H
(m,n)
k ) = k(2m + n)k−1 for all k ≥ 3 and for all (m,n) 6= (0, 1).

This, along with the upper bound established by Nešetřil and Raspaud [5], will imply the
following result:

Theorem 3.1. Let Ak be the family of graphs with acyclic chromatic number at most k. Then
χ(m,n)(Ak) = k(2m+ n)k−1 for all k ≥ 3 and for all (m,n) 6= (0, 1).

Proof. First we will construct an (m,n)-colored mixed graph H
(m,n)
k , where p = 2m+ n ≥ 2, as

follows. Let Ak−1 be the set of all (k − 1)-vectors. Thus, |Ak−1| = pk−1.
Define Bi as a set of (k − 1) vertices Bi = {bi1, b

i
2, ..., b

i
k−1} for all i ∈ {1, 2, ..., k} such that

Br ∩Bs = ∅ when r 6= s. The vertices of Bi’s are called bottom vertices for each i ∈ {1, 2, ..., k}.
Furthermore, let TBi = (bi1, b

i
2, ..., b

i
k−1) be a (k − 1)-tuple.

After that define the set of vertices Ti = {ti~a|t
i
~a ∈ N~a(TBi) for all ~a ∈ Ak−1} for all i ∈

{1, 2, ..., k}. The vertices of Ti’s are called top vertices for each i ∈ {1, 2, ..., k}. Observe that
there are pk−1 vertices in Ti for each i ∈ {1, 2, ..., k}.

Note that the definition of Ti already implies some colored arcs and edges between the set
of vertices Bi and Ti for all i ∈ {1, 2, ..., k}.

As p ≥ 2 it is possible to construct a special 2-path. Now for each pair of vertices u ∈ Ti

and v ∈ Tj (i 6= j), construct a special 2-path uwuvv and call these new vertices wuv as internal

vertices for all i, j ∈ {1, 2, ..., k}. This so obtained graph is H
(m,n)
k .

3



Now we will show that χ(m,n)(H
(m,n)
k ) ≥ k(2m + n)k−1. Let ~a 6= ~a′ be two distinct (k − 1)-

vectors. Assume that the jth co-ordinate of ~a and ~a′ is different. Then note that ti~ab
i
jt

i
~a′

is a special 2-path. Therefore, ti~a and ti~a must have different homomorphic image under any
homomorphism. Thus, all the vertices in Ti must have distinct homomorphic image under any
homomorphism. Moreover, as a vertex of Ti is connected by a special 2-path with a vertex
of Tj for all i 6= j, all the top vertices must have distinct homomorphic image under any

homomorphism. It is easy to see that |Ti| = pk−1 for all i ∈ {1, 2, ..., k}. Hence χ(m,n)(H
(m,n)
k ) ≥

∑k
i=1 |Ti| = k(2m+ n)k−1.

Then we will show that χa(H
(m,n)
k ) ≤ k. From now on, by H

(m,n)
k , we mean the underlying

undirected simple graph of the (m,n)-colored mixed graph H
(m,n)
k . We will provide an acyclic

coloring of this graph with {1, 2, ..., k}. Color all the vertices of Ti with i for all i ∈ {1, 2, ..., k}.
Then color all the vertices of Bi with distinct (k − 1) colors from the set {1, 2, ..., k} \ {i} of
colors for all i ∈ {1, 2, ..., k}. Note that each internal vertex have exactly two neighbors. Color
each internal vertex with a color different from its neighbors. It is easy to check that this is an
acyclic coloring.

Therefore, we showed that χ(m,n)(Ak) ≥ k(2m+n)k−1 while, on the other hand, Nešetřil and

Raspaud [5] showed that χ(m,n)(Ak) ≤ k(2m+n)k−1 for all k ≥ 3 and for all (m,n) 6= (0, 1).

Consider a complete graph Kt. Replace all its edges by a 2-path to obtain the graph S.
For all (m,n) 6= (0, 1), it is possible to assign colored edges/arcs to the edges of S such that it
becomes an (m,n)-colored mixed graph with t vertices that are pairwise connected by a special
2-path. Therefore, by Observation 1 we know that χ(m,n)(S) ≥ t whereas, it is easy to note that
S has arboricity 2. Thus, the (m,n)-colored mixed chromatic number is not bounded by any
function of arboricity. Though the reverse type of bound exists. Kostochka, Sopena and Zhu [3]
proved such a bound for (m,n) = (1, 0). We generalize their result for all (m,n) 6= (0, 1).

Theorem 3.2. Let G be an (m,n)-colored mixed graph with χ(m,n)(G) = k where p = 2m+n ≥
2. Then arb(G) ≤ ⌈logpk + k/2⌉.

Proof. Let G′ be an arbitrary labeled subgraph of G consisting vG′ vertices and eG′ edges. We
know from Nash-Williams’ Theorem [4] that the arboricity arb(G) of any graph G is equal to
the maximum of ⌈eG′/(vG′ − 1)⌉ over all subgraphs G′ of G. So it is sufficient to prove that for
any subgraph G′ of G, eG′/(vG′ − 1) ≤ logpk + k/2. As G′ is a labeled graph, so there are peG′

different (m,n)-colored mixed graphs with underlying graph G′. As χ(m,n)(G) = k, there exits
a homomorphism from G′ to a (m,n)-colored mixed graph Gk which has the complete graph on
k vertices as its underlying graph. Note that the number of possible homomorphisms of G′ to

Gk is at most kvG′ . For each such homomorphism of G′ to Gk there are at most p(
k
2) different

(m,n)-colored mixed graphs with underlying labeled graph G′ as there are p(
k

2) choices of Gk.
Therefore,

p(
k
2).kvG′ ≥ peG′ (1)

which implies

logpk ≥ (eG′/vG′)−

(

k

2

)

/vG′ . (2)

If vG′ ≤ k, then eG′/(vG′ − 1) ≤ vG′/2 ≤ k/2. Now let vG′ > k. We know that χ(m,n)(G
′) ≤

χ(m,n)(G) = k. So
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logpk ≥
eG′

vG′

−
k(k − 1)

2vG′

≥
eG′

(vG′ − 1)
−

eG′

vG′(vG′ − 1)
−

k − 1

2

≥
eG′

(vG′ − 1)
− 1/2 − k/2 + 1/2

≥
eG′

(vG′ − 1)
− k/2.

Therefore,
eG′

(vG′−1) ≤ logpk + k/2.

We have seen that the (m,n)-colored mixed chromatic number of a graph G is bounded by
a function of the acyclic chromatic number of G. Here we show that it is possible to bound
the acyclic chromatic number of a graph in terms of its (m,n)-colored mixed chromatic number
and arboricity. Our result is a generalization of a similar result proved for (m,n) = (1, 0) by
Kostochka, Sopena and Zhu [3].

Theorem 3.3. Let G be an (m,n)-colored mixed graph with arb(G) = r and χ(m,n)(G) = k

where p = 2m+ n ≥ 2. Then χa(G) ≤ k⌈logpr⌉+1.

Proof. First we rename the following symbols: α1 = a0,−α1 = a1, α2 = a2,−α2 = a3, ..., αm =
a2m−2,−αm = a2m−1, β1 = a2m, β2 = a2m+1, ..., βn = a2m+n−1.

Let G be a graph with χ(m,n)(G) = k where 2m+ n = p. Let v1, v2, ..., vt be some ordering
of the vertices of G. Now consider the (m,n)-colored mixed graph G0 with underlying graph G
such that for any i < j we have vj ∈ Na0(vi) whenever vivj is an edge of G.

Note that the edges of G can be covered by r edge disjoint forests F1, F2, ..., Fr as arb(G) = r.
Let si be the number i expressed with base p for all i ∈ {1, 2, ..., r}. Note that si can have at
most s = ⌈logpr⌉ digits.

Now we will construct a sequence of (m,n)-colored mixed graphs G1, G2, ..., Gs each having
underlying graph G. For a fixed l ∈ {1, 2, ..., s} we will describe the construction of Gl. Let i < j
and vivj is an edge of G. Suppose vivj is an edge of the forest Fl′ for some l′ ∈ {1, 2, ..., r}. Let
the lth digit of sl′ be sl′(l). Then Gl is constructed in a way such that we have vj ∈ N

as
l′
(l)(vi)

in Gl.
Note that there is a homomorphism fl : Gl → Hl for each l ∈ {1, 2, ..., s} such that Hl is an

(m,n)-colored mixed graph on k vertices. Now we claim that f(v) = (f0(v), f1(v), ..., fs(v)) for
each v ∈ V (G) is an acyclic coloring of G.

For adjacent vertices u, v in G clearly we have f(v) 6= f(u) as f0(v) 6= f0(u). Let C be
a cycle in G. We have to show that at least 3 colors have been used to color this cycle with
respect to the coloring given by f . Note that in C there must be two incident edges uv and
vw such that they belong to different forests, say, Fi and Fi′ , respectively. Now suppose that C
received two colors with respect to f . Then we must have f(u) = f(w) 6= f(v). In particular
we must have f0(u) = f0(w) 6= f0(v). To have that we must also have u,w ∈ Nai(v) for some
i ∈ {0, 1, ..., p − 1} in G0. Let si and si′ differ in their jth digit. Then in Gj we have u ∈ Na′i(v)
and w ∈ Na′′i (v) for some i′ 6= i′′. Then we must have fj(u) 6= fj(w). Therefore, we also have
f(u) 6= f(w). Thus, the cycle C cannot be colored with two colors under the coloring f . So f
is indeed an acyclic coloring of G.

Thus, combining Theorem 3.2 and 3.3 we have χa(G) ≤ k⌈logp⌈logpk+k/2⌉⌉+1 for χ(m,n)(G) = k
where p = 2m+ n ≥ 2. However, we managed to obtain the following better bound.
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Theorem 3.4. Let G be an (m,n)-colored mixed graph with χ(m,n)(G) = k ≥ 4 where p =

2m+ n ≥ 2. Then χa(G) ≤ k2 + k2+⌈log2logpk⌉.

Proof. Let t be the maximum real number such that there exists a subgraph G′ of G with
vG′ ≥ k2 and eG′ ≥ t.vG′ . Let G′′ be the biggest subgraph of G with eG′′ > t.vG′′ . Thus, by
maximality of t, vG′′ < k2.

Let G0 = G−G′′. Hence χa(G) ≤ χa(G0) + k2. By maximality of G′′, for each subgraph H
of G0, we have eH ≤ t.vH .

If t ≤ vH−1
2 , then eH ≤ (t + 1/2)(vH − 1). If t > vH−1

2 , then vH
2 < t + 1/2. So eH ≤

(vH−1).vH
2 ≤ (t+ 1/2)(vH − 1). Therefore, eH ≤ (t+ 1/2)(vH − 1) for each subgraph H of G0.
By Nash-Williams’ Theorem [4], there exists r = ⌈t+1/2⌉ forests F1, F2, · · · , Fr which covers

all the edges of G0. We know from Theorem 3.3 χa(G0) ≤ ks+1 where s = ⌈logpr⌉.
Using inequality (2) we get logpk ≥ t− 1/2. Therfore

s = ⌈logp(⌈t+ 1/2⌉)⌉ ≤ ⌈logp(1 + ⌈logpk⌉)⌉ ≤ 1 + ⌈logplogpk⌉.

Hence χa(G) ≤ k2 + k2+⌈logplogpk⌉.

Our bound, when restricted to the case of (m,n) = (1, 0), slightly improves the existing
bound [3].

4 On graphs with bounded maximum degree

Recall that G∆ is the family of graphs with maximum degree ∆. It is known that χ(1,0)(G∆) ≤

2∆22∆ [3]. Here we prove that χ(m,n)(G∆) ≤ 2(∆ − 1)p.p(∆−1) + 2 for all p = 2m + n ≥ 2 and
∆ ≥ 5. Our result, restricted to the case (m,n) = (1, 0), slightly improves the upper bound of
Kostochka, Sopena and Zhu [3].

Theorem 4.1. For the family G∆ of graphs with maximum degree ∆ we have p∆/2 ≤ χ(m,n)(G∆) ≤

2(∆ − 1)p.p(∆−1) + 2 for all p = 2m+ n ≥ 2 and for all ∆ ≥ 5.

If every subgraph of a graph G have at least one vertex with degree at most d, then G is
d-degenerated. Minimum such d is the degeneracy of G. To prove the above theorem we need
the following result.

Theorem 4.2. Let G′
∆ be the family of graphs with maximum degree ∆ and degeneracy (∆−1).

Then χ(m,n)(G
′
∆) ≤ 2(∆− 1)p.p(∆−1) for all p = 2m+ n ≥ 2 and for all ∆ ≥ 5.

To prove the above theorem we need the following lemma.

Lemma 4.3. There exists an (m,n)-colored complete mixed graph with property Qt−1,j
1+(t−j)(t−2)

on c = 2(t− 1)p.p(t−1) vertices where p = 2m+ n ≥ 2 and t ≥ 5.

Proof. Let C be a random (m,n)-colored mixed graph with underlying complete graph. Let u, v
be two vertices of C and the events u ∈ Na(v) for a ∈ {±α1,±α2, ...,±αm, β1, β2, ..., βn} are
equiprobable and independent with probability 1

2m+n = 1
p . We will show that the probability of

C not having property Qt−1,j
1+(t−j)(t−2) is strictly less than 1 when |C| = c = 2(t − 1)p.p(t−1). Let

P (J,~a) denote the probability of the event |N~a(J)| < 1 + (t − j)(t − 2) where J is a j-tuple of
C and ~a is a j-vector for some j ∈ {0, 1, ..., t − 1}. Call such an event a bad event. Thus,
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P (J,~a) =

(t−j)(t−2)
∑

i=0

(

c− j

i

)

p−ij(1− p−j)c−i−j

< (1 − p−j)c
(t−j)(t−2)
∑

i=0

ci

i!
(1− p−j)−i−jp−ij

< 2e−cp−j

(t−j)(t−2)
∑

i=0

ci

< e−cp−j

c(t−j)(t−2)+1.

(3)

Let P (B) denote the probability of the occurrence of at least one bad event. To prove this
lemma it is enough to show that P (B) < 1. Let T j denote the set of all j-tuples and W j denote
the set of all j-vectors. Then

P (B) =

t−1
∑

j=0

∑

J∈T j

∑

~a∈W j

P (J,~a) <

t−1
∑

j=0

(

c

j

)

pje−cp−j

c(t−j)(t−2)+1

<
t−1
∑

j=0

cj

j!
pje−cp−j

c(t−j)(t−2)+1

= 2
t−1
∑

j=0

pj

2j
2j−1

j!
cje−cp−j

c(t−j)(t−2)+1

< 2

t−1
∑

j=0

pj

2j
e−cp−j

c(t−j)(t−2)+1+j .

(4)

Consider the function f(j) = 2(p/2)je−cp−j
c(t−j)(t−2)+1+j . Observe that f(j) is the jth

summand of the last sum from equation (4). Now

f(j + 1)

f(j)
=

p

2

e(p−1)cp−j−1

ct−3

>
p

2

e(p−1)cp−(t−1)

ct−3

>
p

2

(

e2(p−1)(t−1)p−1

c

)t−3

(5)

As p−1
p > 1

2 ,

(k − 1)p−1

2
> ln(k − 1) =⇒ (p − 1)(k − 1)p−1 > ln(k − 1)p.

Furthermore,

(p− 1)

ln p
(k − 1)p−1 >

ln 2

ln p
+ (k − 1) =⇒ (p− 1)(k − 1)p−1 > ln(2pk−1).
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Adding the above two inequalities we get

e2(p−1)(t−1)p−1
> 2(t− 1)ppt−1 = c.

Hence f(j+1)
f(j) > p

2 . Thus, using inequality (4) we get P (B) <
t−1
∑

j=0
f(j). This implies

P (B) <

{

(p/2)t−1
(p/2)−1 f(0), if p > 2

tf(0), if p = 2

Case.1: p > 2.

P (B) < 2.
(p/2)t − 1

(p/2) − 1
.

c(t−1)2

e2(t−1)ppt−1

< 4.
(p/2)t − 1

p− 2
.
( c

e2pt−1

)(t−1)p

< 4.(p/2)t.
( c

e2pt−1

)(t−1)p

<
( pc

e2pt−1

)(t−1)p

(6)

Now, we observe that

ln(pc) < ln p+ ln 2 + p ln(t− 1) + (t− 1) ln p

= t ln p+ p ln(t− 1) + ln 2

< tp+ p(t− 1) + 2

< 2tp < 2pt−1

So from the inequality (6), we can say that P (B) < 1 for p > 2.

Case.2: p = 2.

P (B) < 2t.
c(t−1)2

e(t−1)22t

= 2t.
( c

e2t

)(t−1)2

<

(

2tc

e2t

)(t−1)2

(7)

Observe that, ln c = 2 ln(t− 1) + t ln 2 < 2(t− 1) + 2t = 4t− 2.
Now, we see that

ln(2tc) < 4t− 2 + 2t < 6t < 2t =⇒ 2tc < e2
t

=⇒
2tc

e2t
< 1

So from the inequality (7), we can say that P (B) < 1 for p = 2.
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Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Suppose that G is an (m,n)-colored mixed graph with maximum degree
∆ and degeneracy (∆ − 1). By Lemma 4.3 we know that there exists an (m,n)-colored mixed
graph C with property Q∆−1,j

1+(∆−j)(∆−2) on 2(∆ − 1)p.p(∆−1) vertices where p = 2m + n ≥ 2 and
∆ ≥ 5. We will show that G admits a homomorphism to C.

As G has degeneracy (∆− 1), we can provide an ordering v1, v2, ..., vk of the vertices of G in
such a way that each vertex vj has at most (∆− 1) neighbors with lower indices. Let Gl be the
(m,n)-colored mixed graph induced by the vertices v1, v2, ..., vl from G for l ∈ {1, 2, ..., k}. Now
we will recursively construct a homomorphism f : G → C with the following properties:

(i) The partial mapping f(v1), f(v2), ..., f(vl) is a homomorphism of Gl to C for all l ∈
{1, 2, ..., k}.

(ii) For each i > l, all the neighbors of vi with indices less than or equal to l has different
images with respect to the mapping f .

Note that the base case is trivial, that is, any partial mapping f(v1) is enough. Suppose that
the function f satisfies the above properties for all j ≤ t where t ∈ {1, 2, ..., k − 1} is fixed. Now
assume that vt+1 has s neighbors with indices greater than t+1. Then vt+1 has at most (∆− s)
neighbors with indices less than t+1. Let A be the set of neighbors of vt+1 with indices greater
than t+1. Let B be the set of vertices with indices at most t and with at least one neighbor in
A. Note that as each vertex of A is a neighbor of vt+1 and has at most ∆ − 1 neighbors with
lesser indices, |B| = (∆−2)|A| = s(∆−2). Let D be the set of possible options for f(vt+1) such
that the partial mapping is a homomorphism of Gt+1 to C. As C has property Q∆−1,j

1+(∆−j)(∆−2)

we have |C| ≥ 1+ s(∆− 1). So the set D \B is non-empty. Thus, choose any vertex from D \B
as the image f(vt+1). Note that this partial mapping satisfies the required conditions. �

Finally, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First we will prove the lower bound. Let Gt be a ∆ regular graph on t
vertices. Thus, Gt has

t∆
2 edges. Then we have

kt = χ(m,n)(Gt) ≥
p∆/2

p(
kt
2 )/t

using inequality (1) (see Section 3). If χ(m,n)(Gt) ≥ p∆/2 for some t, then we are done. Otherwise,

χ(m,n)(Gt) = kt is bounded. In that case, if t is sufficiently large, then χ(m,n)(Gt) ≥ p∆/2 as
χ(m,n)(Gt) is a positive integer.

Let G = (V,A∪E) be a connected (m,n)-colored mixed graph with maximum degree ∆ ≥ 5
and p = 2m+n ≥ 2. If G has a vertex of degree at most (∆− 1) then it has degeneracy at most
(∆− 1). In that case by Theorem 4.1 we are done.

Otherwise, G is ∆ regular. In that case, remove an edge uv of G to obtain the graph G′.
Note that G′ has maximum degree at most ∆ and has degeneracy at most (∆ − 1). Therefore,
by Theorem 4.1 there exists an (m,n)-colored complete mixed graph C on 2(∆ − 1)p.p(∆−1)

vertices to which G′ admits a f homomorphism to. Let G′′ be the graph obtained by deleting
the vertices u and v of G′. Note that the homomorphism f restricted to G′′ is a homomorphism
fres of G

′′ to C. Now include two new vertices u′ and v′ to C and obtain a new graph C ′. Color
the edges or arcs between the vertices of C and {u′, v′} in such a way so that we can extend the
homomorphism fres to a homomorphism fext of G to C ′ where fext(u) = u′, fext(v) = v′ and

9



fext(x) = fres(x) for all x ∈ V (G) \ {u, v}. It is easy to note that the above mentioned process
is possible.

Thus, every connected (m,n)-colored mixed graph with maximum degree ∆ admits a homo-
morphism to C ′. �
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