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Abstract. Centrality indices assign values to the vertices of a graph
such that vertices with higher values are considered more central. Trig-
gered by a recent result on the preservation of the vicinal preorder in
rankings obtained from common centrality indices, we review and extend
notions of domination among vertices. These may serve as building blocks
for new concepts of centrality that extend more directly, and more coher-
ently, to more general types of data such as multilayer networks. We also
give efficient algorithms to construct the associated partial rankings.

1 Introduction

One of the core concepts of network analysis is the identification of central
vertices [13]. The most commonly applied centrality indices measure, e.g., the
number of vertices a vertex can communicate with directly (degree), the expenses
of a vertex to reach each other vertex in the network (closeness [21]), and the
control over communication of others in the network (betweenness [6]).

While all centrality indices assign numerical values to each vertex in the
graph, one is typically only interested in the derived ranking. Although well
established centrality indices differ substantially in their definition, the rankings
they induce all coincide on the vicinal preorder. In the vicinal preorder [5], a
vertex w ∈ V dominates another vertex v ∈ V , i.e. v ≤ w, if and only if
N(v) ⊆ N [w] where N(u) is the neighborhood of vertex u in the graph and
N [u] = N(u)∪{u}. This implies that it is possible to construct a partial ranking
of the vertices by simply comparing their neighborhoods, and this ranking is
preserved by any centrality index [22].

The vicinal preorder, or neighborhood inclusion, is itself the union of two
other preorders: (i) the dominance preorder where v ≤a w ⇐⇒ N [v] ⊆ N [w]
and (ii) the structural preorder where v ≤n w ⇐⇒ N(v) ⊆ N(w). Furthermore,
it is an instantiation of positional dominance [1], a generic concept that allows for
valued relationships and the expression of levels of homogeneity, i.e., admissible
substitutions of vertices in the comparison of neighborhoods. Positional domi-
nance provides a building block on which concepts of centrality can not only be
generalized more easily, but also more coherently, to more complex kinds of data.
While we are motivated by the implications of variant preorders for centrality,
we are especially interested in their computational complexity here.
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Contribution. We present efficient algorithms for instances of positional domi-
nance. Our main contribution is an algorithm with O(nm log log Δ(G)) running
time for the homogeneous case with weights on both edges and vertices. This is
an improvement over the straightforward approach with an O(nmΔ(G)3/2) time
bound. In addition we give lower bounds for worst-case running times by con-
structing families of graphs with large output size, i.e., dense preorders. Although
we consider simple undirected graphs, our results can be adapted for weighted,
directed, and graphs with a given bipartition (two-mode graphs).

Note, however, that we assume throughout this paper that our input graphs
do not contain isolated vertices because these are dominated by every other
vertex in the graph (or no other vertex in the dominance preorder), so that their
relationships can be checked in constant time and are best represented implicitly.

2 Preliminaries

For the most part, we consider simple undirected graphs G = (V,E), where both
vertices and edges may carry weights ω : V ∪ E → R. For edges {v, w} ∈ E,
we use shorthand notation ω(v, w) = ω({v, w}). Weights can be thought of
as non-negative reals for convenience but any ordered range of values will do.
Following the usual convention, we denote the number of vertices and edges by
n = n(G) = |V | and m = m(G) = |E|. We write H ⊆ G if H is a subgraph of G,
and G[W ] for the subgraph induced by W ⊆ V .

The (open) neighborhood of a vertex v ∈ V is defined as N(v) = {w :
{v, w} ∈ E} and the closed neighborhood as N [v] = N(v)∪{v}. We assume that
N(v) 	= ∅, v ∈ V , throughout the paper. The degree of v ∈ V is deg(v) = |N(v)|,
and since 2m =

∑
v∈V deg(v) the average degree is 〈deg〉 = 2m

n . Let Δ(G) =
max{deg(v) : v ∈ V } denote the maximum degree of a graph.

The arboricity α(G) of a graph G is the minimum number of forests needed to
cover its edges. Arboricity is an indicator of sparseness as it is closely related to
the average degree in a densest subgraph via α(G) = maxH⊆G{
 m(H)

n(H)−1�} [16].
A binary relation R ⊆ (V × V ) is called a preorder if it is reflexive and

transitive. Since a total preorder gives a ranking, we may refer to a preorder
also as a partial ranking. If a (partial) ranking is antisymmetric, it is a (partial)
order.

3 Dominance

The dominance preorder is a restriction of the more general vicinal preorder.
A vertex w ∈ V (vertex) dominates a vertex v ∈ V , v ≤a w, if N [v] ⊆ N [w].
The subscript indicates that a relation w.r.t. the dominance preorder can only
exist for pairs of adjacent vertices. Any two vertices that dominate each other
are also referred to as true twins, because they are adjacent and have exactly
the same neighborhood. Consequently, each equivalence class of the dominance
relation ≤a induces a clique.
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Algorithm 1: Dominance Preorder
input : simple undirected graph G = (V, E)
output : partial ranking ≤a on V (dominance)

initialize ≤a with v ≤a v for all v ∈ V ;
for {v, w} ∈ E do deg(v, w) ← 0
for vi = v1, . . . , vn where deg(v1) ≥ . . . ≥ deg(vn) do

mark all w ∈ N+(vi) with vi;
for w ∈ N+(vi) do

for u ∈ N+(w) do
if u is marked with vi then

foreach {i, j} ∈ ({vi,w,u}
2

)
do increment deg(i, j)

if deg(vi, w) = deg(vi) − 1 then add vi ≤a w
if deg(vi, w) = deg(w) − 1 then add w ≤a vi

To construct the dominance preorder, we extend the concept of neighbor-
hood to edges {v, w} ∈ E via N(v, w) = N(v) ∩ N(w), and denote deg(v, w) =
|N(v, w)| < min{deg(v),deg(w)}. Since deg(v, w) = deg(v) − 1 means every
neighbor of v other than w itself is also a neighbor of w, it implies v ≤a w. Thus,
the dominance preorder can be determined using any algorithm that counts the
number of triangles an edge is part of.

Algorithm1 is based on an efficient realization [17] of the triangle listing
algorithm of Chiba and Nishizeki [2]. Given any ordering of the vertices, here
specifically from higher to lower degrees, we let N+(v) denote the number of
adjacent vertices that appear after v in the ordering, i.e., all edges are oriented
from earlier to later respective to the ordering.

Theorem 1. Algorithm1 determines the dominance preorder of a simple undi-
rected graph in time O(α(G)m).

Proof. The vertex ordering ensures that for each edge, the neighbors of the vertex
with smaller degree are inspected. Following Chiba and Nishizeki’s reasoning for
their algorithm K3 [2], the claimed runtime is a consequence of the inequality∑

{u,v}∈E

min{deg(u),deg(v)} ≤ 2α(G)m

��
As the arboricity of a graph can be as large as n, Algorithm1’s running time

is far from being linear in the size of the input and output, since clearly the size
of the dominance preorder is bounded from above by m.

However, although in the worst case the arboricity is linear in n, it is often
small in social networks [4] and can, in fact, be even smaller than the average
degree [2]. We show next that there is no simple relationship between these two
graph invariants because arboricity is determined by the densest subgraph.



63

Theorem 2. There is a family of graphs Gn, n > 3, with 〈deg〉 ∈ O(1) and
α(Gn) ∈ Ω(n1/2).

Proof. Let G be a graph with n = k2 vertices with k ∈ Z consisting of a
√

n-
clique where each vertex of the clique except for one has additionally

√
n pen-

dants. Consequently G has m < 3n edges and therefore 〈deg〉 ∈ O(1). However
its arborocity is α(G) ≥ 


√
n

2 � [2]. ��

4 Structural Equivalence and Neighborhood Inclusion

The dominance preorder requires that dominating vertices are adjacent. This
is a severe restriction, as all non-adjacent pairs are necessarily incomparable.
A natural extension of the dominance preorder that softens this requirement
is the vicinal preorder [5]. In the vicinal preorder, a vertex w ∈ V dominates
a vertex v ∈ V , v ≤ w, if N(v) ⊆ N [w]. Another way to look at the vicinal
preorder is that it is the union of the dominance preorder and the following.

In the structural preorder a vertex w ∈ V dominates a vertex v ∈ V , v ≤n w,
if N(v) ⊆ N(w). Analogously to the dominance preorder the subscript indicates
that this relation can only exist between non-adjacent pairs of vertices. The
resulting equivalence classes induce independent sets, and vertices that domi-
nate each other are also known as structurally equivalent [12], or false twins.
As the vicinal preorder is the union of dominance and structural preorder, each
equivalence class induces either a clique or an independent set. The graphs for
which the vicinal preorder is complete are known as threshold graphs [15].

Computing the set of false twins as well as recognizing threshold graphs can
be done in O(m) time [8,11,18]. Moreover, constructing the dominance preorder
using Algorithm1 and counting cycles of length 4 (the problem underlying the
structural and thus the vicinal preorder) is possible in time O(α(G)m) [2]. How-
ever, these algorithms cannot be adapted for our purposes without increasing
their running time. This is due to the fact that the sizes of structural and vicinal
preorder are not bounded by O(α(G)m), as we will show now using a concept
closely related to the structural and vicinal preorder: Subset partial orders.

Given a family of subsets of a domain, the subset partial order represents all
the subset inclusions between the subsets. Expressing our problem in terms of
subset partial orders, the domain is the vertex set, the subsets are the neighbor-
hoods of the vertices and the preorders correspond to the subset partial order.

Yellin and Jutla [23] constructed subset partial orders of size Θ(m2/ log2 m),
which was later shown to be a tight upper bound [19]. The example below
adapts Yellin and Jutla’s construction to graphs. It shows the Ω(m2/ log2 m)
lower bound for the structural and vicinal preorder, and demonstrates that we
cannot hope to construct both preorders in time O(α(G)m) like the dominance
preorder.

Theorem 3. There exists a family of graphs for which even the transitive reduc-
tions of both vicinal and structural preorder have size Θ(m2/ log2 m) and thus
ω(α(G)m).



64

Y X Z

Fig. 1. Graph G4 as produced by the construction in the proof of Theorem 3.

Proof. Let k denote an even positive integer. Let X = {x1, . . . , xk}, Y =
{y1, . . . , y( k

k/2)} and Z = {z0, . . . , z( k
k/2)−1} be disjoint sets. Let A1, . . . , A( k

k/2)
be the subsets of X of size k/2. We construct the graph Gk as follows: The
vertex set of Gk is given by V = X � Y � Z. Each vertex yi is adjacent to all
vertices in Ai. Finally, each vertex zi is adjacent to all vertices in X, to vertex
zi−1 mod ( k

k/2) and to zi+1 mod ( k
k/2); i.e., the vertices in Z form a cycle. Figure 1

exemplifies the construction for k = 4.
First, the graph has m = k

2

(
k

k/2

)
+ (k + 1)

(
k

k/2

) ∈ Θ(k
(

k
k/2

)
) edges. Second,

note that all vertices in Z dominate all vertices in Y in the vicinal and structural
preorder, but any two other vertices are incomparable. Thus, both preorders have
size

(
k

k/2

)2
, and since the preorders do not contain any transitive relationships,

this is also the size of the transitive reductions. Finally, the graph has arboricity
at most k + 2, as we can cover all edges by k stars centered at the vertices in X
and two paths that cover the edges of the cycle within Z.

Using Stirling’s formula, we obtain
(

k
k/2

) ∈ Θ(2k/
√

k) and thus k ∈ Θ(log m).
Putting it all together, the transitive reductions of the preorders have size(

k
k/2

)2 ∈ Θ(m2/ log2 m) ⊆ Ω(α(G)m2/ log3 m) ⊆ ω(α(G)m). ��
Several algorithms have been developed that compute the subset partial order

in O(m2/ log m) randomized or worst-case time [19,20,23]. However, these algo-
rithms require substantive book keeping [19], cannot be generalized to weighted
edges [20] or use complex data structures [23].

Algorithm2 adapts a simple subset partial order algorithm introduced by
Pritchard [20] to the vicinal preorder, and it can also be straightforwardly mod-
ified to determine the structural preorder instead. As this algorithm can also
be used to count all cycles of length 4 in a graph, it can also be viewed as an
adaption of Chiba and Nishizeki’s algorithm C4 [2].

Theorem 4. Algorithm2 determines the vicinal preorder of a simple undirected
graph in time O(Δ(G)m) with space linear in the size of the input.

Proof. For each non-isolated vertex v ∈ V , the algorithm marks neighbors u ∈
N(v) and vertices w ∈ N(u) \ {v} at distance two. For a marked vertex w, t[w]
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Algorithm 2: Vicinal Preorder
input : graph G = (V, E)
output : partial ranking ≤ on V (neighborhood-inclusion)

initialize ≤ with v ≤ v for all v ∈ V ;
for v ∈ V do

for u ∈ N(v) do
for w ∈ N [u] \ {v} do // use N(u) to determine ≤n

if w not marked with v then
mark w with v;
t[w] ← 0;

increment t[w];
if t[w] = deg(v) then add v ≤ w

holds the number of times it was encountered from a neighbor u of v (plus one for
the neighbors themselves). This counter reaches deg(v) if and only if all (other)
neighbors of v are also neighbors of w.

As for the running time, note that the first two loops yield
∑

v∈V deg(v) ∈
O(m) iterations in total. During each iteration, the inner loop is executed
deg(u) ≤ Δ(G) times. ��

We note that Pritchard also gave an optimized variant of the algorithm that
runs in O(min{m2/ log n, Δ(G)m}) time [20]. This can be a substantial improve-
ment on sparse graphs with o(n log n) edges, and the algorithm can also be faster
on graphs with o(log n) high-degree vertices. However, there appears to be no
simple generalization of this optimization to weighted edges.

4.1 A Heuristic Based on Modular Decomposition

Closely related to the problem of computing the preorders is modular decompo-
sition. The modular decomposition of a graph can be computed in O(m) time [7],
and it lends itself to a heuristic approach to compute the dominance, structural
and vicinal preorders on unweighted graphs that we will describe now.

In modular decomposition, a module defines a subset M ⊆ V such that
all vertices in M have exactly the same neighborhood in V \ M . A module is
strong if there is no other module overlapping it. The modular decomposition
tree MD(G) represents the inclusion structure of strong modules in the graph.
The representative graph R(M) of the module M is the quotient graph G[M ]/P ,
where P is the partition of M given by the child modules of M in MD(G); in
other words, it is the graph obtained from the subgraph G[M ] by contracting
all child modules into single vertices. There are three types of strong modules:
In a series module, R(M) is a complete graph; in a parallel module, R(M) is an
empty graph; otherwise, the module is prime.

The heuristic computes the preorders by walking the modular decomposition
tree MD(G). Suppose we are currently at module M in the walk of MD(G) and
consider two vertices v, w ∈ V that are contained in different child modules
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Cv, Cw of M in MD(G). The heuristic decides the relation between v and w in
the dominance and structural preorders as summarized in Table 1. The vicinal
preorder arises by combining the cases for the other two preorders.

Table 1. Modular decomposition heuristic: ordering of v and w based on the type of
the containing module M and the distinct children Cv � v, Cw � w of M in MD(G)

M Dominance preorder Structural preorder

Series N [v] ⊆ N [w] ⇐⇒ Cw = {w} N(v) 
⊆ N(w)

Parallel N [v] 
⊆ N [w] N(v) ⊆ N(w) ⇐⇒ Cv = {v}
Prime N [v] ⊆ N [w] ⇐⇒ N(v) ⊆ N(w) ⇐⇒

1. NR(M)[Cv] ⊆ NR(M)[Cw] 1. NR(M)(Cv) ⊆ NR(M)(Cw)

2. Cw = {w} or 2. Cv = {v} or

Cw is series with child {w} Cv is parallel with child {v}

The bottleneck in this heuristic is condition 1 for prime modules. While we
can construct the representative graphs in O(m) time [10], we also need algo-
rithms that compute the preorders on them. Using Algorithms 1 and 2, the heuris-
tic computes the dominance preorder in time O(m+α′(G)m′) ⊆ O(α(G)m) and
the structural and vicinal preorders in time O(m+Δ′(G)m′+|≤|) ⊆ O(Δ(G)m),
where α′(G) and Δ′(G) denote the maximum arboricity and the maximum
degree of a representative prime graph in G, m′ is the total number of edges in
representative prime graphs in G, and |≤| refers to the size of the output. This
heuristic can thus significantly improve runtime on decomposable graphs.

5 Positional Dominance

The notions of dominance considered so far all require adjacency with iden-
tical neighbors. Common centrality indices, on the other hand, are typically
invariant under automorphisms. In degree centrality, for instance, it is sufficient
to have more neighbors, no matter which. Positional dominance [1] generalizes
such assumptions by allowing comparison of neighbors using sets of admissible
permutations. We here consider the case in which any neighbor with at least the
same vertex weight and at least an equally strong relationship may serve as a
replacement.

A vertex w dominates vertex v w.r.t. positional dominance,

v ≤ w if
{

there ex. π : V → V such that ω(u) ≤ ω(π(u)) and
ω((v, u)) ≤ ω((w, π(u))) ∀(v, u) ∈ E : ω((v, u)) 	= 0 .

Restricting π to the identity permutation or transpositions we can derive the
structural and dominance preorders, therefore positional dominance is a gen-
eralization of the previous notions. Note that diagonal entries and the dyads
(v, w), (w, v) may be treated specially when comparing v and w in the positional
dominance approach, however we will not address this topic in more detail here.
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Fig. 2. Sweep line approach: blue/white vertices are neighbors of v/w, and white ver-
tices are partitioned into bins Xi and Yj along dotted and dashed lines, respectively.
Vertices connected by a black line have been matched. (left) potential candidates for
the matching of the vertex under the sweep line; (right) matching an unmatched vertex
in the non-empty bin Yk (here Y2) that contains the vertices with smallest edge-weight
greater than or equal to the one of the vertex under the sweep line. (Color figure online)

The straightforward approach to decide whether v ≤ w or not consists of two
phases.1 In the first phase for each vertex u ∈ N(w) the subset of vertices in N(v)
that is dominated by u is computed, which requires O(k + deg(w) log deg(v))
time [14] with k denoting the total number of dominance pairs. Based on these
dominance relations, it is tested in the second phase if there exists a mapping π
such that v ≤ w. Finding this mapping is equivalent to finding a perfect matching
in the bipartite graph induced by the dominance relations and can be done in
O(

√
deg(v) + deg(w)k) [9]. Consequently computing the positional dominance

preorder using this approach has a complexity of O(nmΔ(G)3/2).
In the following we will show that this problem can be solved more efficiently

using a greedy sweep line approach, cf. Algorithm3 and Fig. 2. The basic idea of
this approach is to process all neighbors vi of vertex v in decreasing order of their
vertex-weights. The algorithm maintains bins Y = (Y1, . . . , Ydeg(v)) that parti-
tion the set of unmatched candidates u with vertex-weight ω(u) ≥ ω(vi). Here, a
bin Yj contains all those unmatched candidates u whose associated edge-weights
lie between ω(v, vσ(j)) ≤ ω(w, u) < ω(v, vσ(j+1)), where σ is a permutation such
that neighbors vσ(1), . . . , vσ(deg(v)) of v are sorted in increasing order of their asso-
ciated edge-weights. Hence, the bins Yσ−1(i), . . . , Ydeg(v) contain all unmatched
candidates with edge-weight at least ω(v, vi). To find a vertex to match with
vi, we thus identify a non-empty bin Yk with k ≥ σ−1(i). If there are several
such bins, we choose the one with smallest index k ≥ σ−1(i). We then match
vi with an arbitrary vertex in bin Yk. This greedy matching is correct since v’s
remaining unprocessed neighbors all have smaller vertex-weights than all the
vertices in the bins Y due to the way we process the neighbors of v. Matching
vi with a candidate from the non-empty bin Yk with minimal index k ≥ σ−1(i),

1 In the following we assume that deg(v) ≤ deg(w), since otherwise w cannot domi-
nate v w.r.t. positional dominance.
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Algorithm 3: Positional Dominance Test v ≤ w

input : graph G = (V, E; ω : V ∪ E → R) and v, w ∈ V
data : bins X = (X1, . . . , Xdeg(v)), Y = (Y1, . . . , Ydeg(v)),

vertex array of bin indices b[u], list of indices of non-empty bins T
output : boolean indicating whether v ≤ w, or not

if deg(w) < deg(v) then return FALSE
let N(v) = 〈v1, . . . , vdeg(v)〉 s.t. ω(v1) ≥ · · · ≥ ω(vdeg(v));
let σ be permutation s.t. ω(v, vσ(1)) ≤ · · · ≤ ω(v, vσ(deg(v)));
partition N(w) into Xi = {u ∈ N(w) : ω(vi) ≤ ω(u) < ω(vi−1)} where ω(v0) := ∞;
for u ∈ N(w) do

if ω(v, vσ(1)) ≤ ω(w, u) then b[u] ← max{k : ω(v, vσ(k)) ≤ ω(w, u)}
T, Y1, . . . , Ym ← ∅;
for i = 1, . . . , deg(v) do

for u ∈ Xi do
if ω(v, vσ(1)) ≤ ω(w, u) then

if Yb[u] = ∅ then T ← T ∪ {b[u]}
Yb[u] ← Yb[u] ∪ {u}

if k < σ−1(i) for all k ∈ T then return FALSE
k ← min{� ∈ T : � ≥ σ−1(i)};
remove some vertex u from Yk // match vi and some vertex u ∈ Yk

if Yk = ∅ then T ← T \ {k}
return TRUE

consequently, retains those candidates in the bins that have the highest potential
to also dominate the remaining neighbors of v respective their edge-weights.

Before we actually prove the correctness and running time of this algorithm,
we first show an invariant of the outer for loop. Assume that vertex v is domi-
nated by vertex w w.r.t. positional dominance via the permutation π′ : V → V .
This means that Algorithm3 would succeed if it matched according to the per-
mutation π′, since neighbor π′(vi) of w would always be available for matching
in some bin while processing vi. Now let Y = (Y1, . . . , Ydeg(v)) be the actual bins
produced by the algorithm, and Y ′ = (Y ′

1 , . . . , Y ′
deg(v)) be the bins that would

be produced by the algorithm if it matched according to the permutation π′

instead. Observe that at any point during the execution of the algorithm, we
have

∑deg(v)
j=1 |Yj | =

∑deg(v)
j=1 |Y ′

j |, and T and T ′ always contain the indices of all
non-empty bins Y and Y ′, respectively. We say that Y covers Y ′ if and only if
for all k ∈ {1, . . . ,deg(v)} we have

∑deg(v)
j=k |Yj | ≥ ∑deg(v)

j=k |Y ′
j |.

Lemma 1. Y covers Y ′ at the end of each successful iteration performed by the
outer for loop.

Proof. We prove the loop invariant by induction on the number of loop iterations
performed by the outer for loop.

– Basis: Before the first iteration of the outer for loop, all bins are empty, so Y
trivially covers Y ′.
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– Inductive step: By induction, Y covers Y ′ at the end of the (i−1)-th iteration.
During the i-th iteration, the inner for loop adds the same vertices to the bins
in Y and Y ′, therefore at the end of this loop Y still covers Y ′.
Finally, Algorithm3 tries to match the current neighbor vi of v with some
neighbor of w. Since w dominates v via permutation π′, ω(w, π′(vi)) is at
least as large as ω(v, vi), and since π′(vi) thus must be matchable, π′(vi)
must be in some bin Y ′

k. Additionally, Y still covers Y ′ after the inner for
loop, so there is a non-empty bin Y� with σ−1(i) ≤ 	 minimal. Algorithm3
will pick a vertex from Y� and match it with vi. If 	 ≤ k, then the invariant
still holds trivially after the matching. If 	 > k, observe that

∑deg(v)
j=� |Yj | =∑deg(v)

j=k |Yj | ≥ ∑deg(v)
j=k |Y ′

j | ≥ 1 +
∑deg(v)

j=k+1 |Y ′
j | before the removal, as bins

Yk, . . . , Y�−1 are empty. Thus, Y still covers Y ′ after removing vertices from
Y� and Y ′

k in both cases. ��
Theorem 5. Algorithm3 decides for a given pair of vertices v, w with deg(v) ≤
deg(w) and weights ω in O(deg(w) log deg(v)) time whether v ≤ w or not.

Proof. We will start by proving the correctness of the algorithm and thereafter
show the correctness of the claimed running time.

Correctness: Assume for now that w dominates v w.r.t. positional dominance
via permutation π′. Suppose that Algorithm3 already succeeded in performing
0 ≤ i − 1 < deg(v) iterations of the outer for loop, and let Y and Y ′ denote the
respective bins at the beginning of the i-th iteration. During the i-th iteration,
Algorithm3 tries to match neighbor vi of v with some neighbor of w. In π′, vi has
already been matched with π′(vi) ∈ N(w). First, assume that π′(vi) was already
in a bin Y ′

k at the beginning of the i-th iteration; i.e., it was already a candidate
in previous iterations. Since Y covers Y ′ (Lemma 1), there is a non-empty bin
Y� with 	 ≥ k. Since 	 ≥ k ≥ σ−1(i), we have ω(w, u) ≥ ω(v, vi) for any vertex
u ∈ Y�, so the algorithm finds a vertex to match with vi in the i-th iteration.
Next, suppose that π′(vi) was newly added to the bins Y ′ in the inner for loop
of the i-th iteration. All newly added vertices are inherently unmatched in the
algorithm and thus can be matched with vi. Therefore, the algorithm will also
succeed in performing the i-th iteration, and hence, correctly decide that v ≤ w.

Conversely, assume the algorithm succeeds. Let π be the permutation com-
puted during the run of the algorithm. The algorithm ensures that any neighbor
vi of v is only matched with a single neighbor π(vi) of w if ω(π(vi)) ≥ ω(vi),
as π(vi) will not be added to the bins Y otherwise, and ω(w, π(vi)) ≥ ω(v, vi),
as otherwise π(vi) cannot be extracted from a bin Yk, k ≥ σ−1(i). Thus, w
dominates v w.r.t. positional dominance via permutation π. ��
Time complexity: Sorting the neighbors of v (lines 2–3) and (pre-)binning the
neighbors of w (lines 4–6) can be done in O(deg(w) log deg(v)) time. It remains
to be shown that the work done by the outer for loop does not exceed this
complexity. The cost of the outer for loop is composed of (i) adding neighbors
of w to a bin Yk, (ii) adding indices of non-empty bins to T (iii) testing if T
contains a bin Yk with k ≥ σ−1(i) and (iv) possibly removing the index of a bin
from T if that bin becomes empty again. Since each neighbor of w is sorted into a
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bin Yk at most once, (i) costs in total O(deg(w)) time. Furthermore, there are at
most deg(v) deletions and tests in T , so steps (ii), (iii) and (iv) are performed at
most O(deg(v)) times. When T is implemented by a specialiced data structure
on a bounded integer domain like a van Emde Boas tree [3], (ii), (iii) and (iv)
cost in total O(deg(v) log log deg(v)) time. Thus, the total running time of the
outer for loop of Algorithm3 is in O(deg(w) + deg(v) log log deg(v)). ��

To compute the positional dominance preorder, we can sort the neighbor-
hoods of all vertices in advance in O(m log Δ(G)) time. Then we no longer
need to sort the neighborhoods (lines 2–3) and (pre-)binning (lines 4–6) is
possible in O(deg(w)) time in Algorithm3. That means that on pre-sorted
neighborhoods, the runtime is dominated by the outer for loop, which requires
O(deg(w) + deg(v) log log deg(v)) time. Hence, we can compute the positional
dominance preorder of a graph G with weights ω in time O(nm log log Δ(G)),
since

∑
v,w∈V

deg(v)≤deg(w)

(deg(w) + deg(v) log log deg(v)) ≤ 2n

(∑
v∈V

deg(v)

)
log log Δ(G)

= 4nm log log Δ(G).

6 Conclusion

We studied various notions of dominance which can serve as potential build-
ing blocks for the generalization of the concept of centrality. Using a greedy
sweep line approach, cf. Algorithm3, we were able to show that positional domi-
nance can be computed in O(nm log log Δ(G)) time compared to O(nmΔ(G)3/2)
required by a straight-forward algorithm to solve this problem. For this problem,
we see the greatest potential for further runtime improvements in avoiding some
of the pairwise comparisons between vertices.

Restricting positional dominance to the identity permutation, i.e., assuming
heterogeneity, translates into the structural preorder, which is a restriction of the
vicinal preorder and a variant of (vertex) dominance. With Algorithm1 we pre-
sented an algorithm running in O(a(G)m) to compute the dominance preorder.
The running time may be far from linear in the size of input and output, for social
networks, however, where the arboricity is often negligible [4], it is acceptable,
not least since we are not aware of any faster solution to this problem. While
the main challenge in the computation of the structural preorder lies in finding
cycles of length four we proved that a running time of O(a(G)m), which is the
running time of an efficient algorithm to solve this problem [2], is not achievable
as the size of the preorder can already be much larger. As a result of this finding
we proposed with Algorithm2 a procedure to compute the structural as well as
vicinal preorder in time O(Δ(G)m). For computing dominance, structural and
vicinal preorder, we additionally presented a heuristic that can yield substan-
tial speed-ups on unweighted graphs that are decomposable through modular
decomposition.
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