Skip to main content

The Euclidean k-Supplier Problem in

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2016)

Abstract

In this paper, we consider k-supplier problem in . Here, two sets of points \(\mathcal{P}\) and \(\mathcal{Q}\) are given. The objective is to choose a subset \(Q_{opt} \subseteq \mathcal{Q}\) of size at most k such that congruent disks of minimum radius centered at the points in \(Q_{opt}\) cover all the points of \(\mathcal{P}\).

We propose a fixed-parameter tractable (FPT) algorithm for the k-supplier problem that produces a 2-factor approximation result. For \(|P|=n\) and \(|Q|=m\), the worst case running time of the algorithm is \(O(6^k (n+m) \log (mn))\), which is an exponential function of the parameter k. We also propose a heuristic algorithm based on Voronoi diagram for the k-supplier problem, and experimentally compare the result produced by this algorithm with the best known approximation algorithm available in the literature [Nagarajan, V., Schieber, B., Shachnai, H.: The Euclidean k-supplier problem, In Proc. of 16th Int. Conf. on Integ. Prog. and Comb. Optim., 290–301 (2013)]. The experimental results show that our heuristic algorithm is slower than Nagarajan et al.’s \((1+\sqrt{3})\)-approximation algorithm, but the results produced by our algorithm significantly outperforms that of Nagarajan et al.’s algorithm.

Wireless & Geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have taken \(|\log r_{opt}|\) in the time complexity since \(r_{opt}\) may be less than 1.

References

  1. Agarwal, P.K., Procopiuc, C.: Exact and approximation algorithms for clustering. Algorithmica 33, 201–226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geometry Algorithms and Applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Basappa, M., Jallu, R.K., Das, G.K.: Constrained k-center problem on a convex polygon. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 209–222. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21407-8_16

    Chapter  Google Scholar 

  4. Brass, P., Knauer, C., Na, H.S., Shin, C.S.: Computing k-centers on a line. CoRR abs/0902.3282 (2009)

    Google Scholar 

  5. Bose, P., Toussaint, G.: Computing the constrained Euclidean, geodesic and link center of a simple polygon with applications. In: Proceedings of Pacific Graphics International, pp. 102–112 (1996)

    Google Scholar 

  6. Das, G.K., Roy, S., Das, S., Nandy, S.C.: Variations of base station placement problem on the boundary of a convex region. Int. J. Found. Comput. Sci. 19(2), 405–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, H., Xu, Y.: An approximation algorithm for k-center problem on a convex polygon. J. Comb. Opt. 27(3), 504–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumitrescu, A., Jiang, M.: Constrained \(k\)-center and movement to independence. Discrete Appl. Math. 159(8), 859–865 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceedings of the 20th ACM Symposium on Theory of Computing, pp. 434–444 (1988)

    Google Scholar 

  10. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1995)

    MATH  Google Scholar 

  12. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  14. Hurtado, F., Sacriscan, V., Toussaint, G.: Facility location problems with constraints. Stud. Locat. Anal. 15, 17–35 (2000)

    Google Scholar 

  15. Hwang, R., Lee, R., Chang, R.: The generalized searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9, 398–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karmakar, A., Das, S., Nandy, S.C., Bhattacharya, B.K.: Some variations on constrained minimum enclosing circle problem. J. Comb. Opt. 25(2), 176–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, S.K., Shin, C.-S.: Efficient algorithms for two-center problems for a convex polygon. In: Du, D.-Z.-Z., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 299–309. Springer, Heidelberg (2000). doi:10.1007/3-540-44968-X_30

    Chapter  Google Scholar 

  18. Nagarajan, V., Schieber, B., Shachnai, H.: The Euclidean k-supplier problem. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 290–301. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36694-9_25

    Chapter  Google Scholar 

  19. Roy, S., Bardhan, D., Das, S.: Base station placement on boundary of a convex polygon. J. Parallel Distrib. Comput. 68, 265–273 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Basappa, M., Jallu, R.K., Das, G.K., Nandy, S.C. (2017). The Euclidean k-Supplier Problem in . In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2016. Lecture Notes in Computer Science(), vol 10050. Springer, Cham. https://doi.org/10.1007/978-3-319-53058-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53058-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53057-4

  • Online ISBN: 978-3-319-53058-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics